
Automation systems and
integration — Object-Process
Methodology
Systèmes d'automatisation et intégration — Object-Process
Methodology

International
Standard

ISO 19450

First edition
2024-01

Reference number
ISO 19450:2024(en) © ISO 2024

ii

ISO 19450:2024(en)

﻿
© ISO 2024 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

© ISO 2024
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

https://www.iso.org

ISO 19450:2024(en)

Foreword...vi
Introduction..vii
1	 Scope.. 1
2	 Normative references.. 1
3	 Terms and definitions... 1
4	 Symbols... 8
5	 Conformance.. 10
6	 Object-Process Methodology (OPM) principles and concepts... 10

6.1	 OPM modelling principles..10
6.1.1	 Modelling as a purpose-serving activity...10
6.1.2	 Unification of function, structure, and behaviour...11
6.1.3	 Identify functional value..11
6.1.4	 Function versus behaviour..11
6.1.5	 System boundary setting.. 12
6.1.6	 Clarity and completeness trade-off... 12

6.2	 OPM fundamental concepts.. 12
6.2.1	 Bimodal representation... 12
6.2.2	 OPM modelling elements... 12
6.2.3	 OPM things: objects and processes.. 13
6.2.4	 OPM links: procedural and structural.. 13
6.2.5	 OPM context management..14
6.2.6	 OPM model implementation (informative)..14

7	 OPM thing syntax and semantics...15
7.1	 Objects... 15

7.1.1	 Description.. 15
7.1.2	 Representation... 15

7.2	 Processes... 15
7.2.1	 Description.. 15
7.2.2	 Representation..16

7.3	 OPM things..16
7.3.1	 OPM thing defined..16
7.3.2	 Object-process test..16
7.3.3	 OPM thing generic properties..17
7.3.4	 Default values of thing generic properties...17
7.3.5	 Object states..18

8	 OPM link syntax and semantics overview..20
8.1	 Procedural link overview... 20

8.1.1	 Kinds of procedural links... 20
8.1.2	 Procedural link uniqueness OPM principle.. 20
8.1.3	 State-specified procedural links.. 20

8.2	 Operational semantics and flow of execution control... 20
8.2.1	 Event-Condition-Action control mechanism... 20
8.2.2	 Preprocess object set and postprocess object set...21
8.2.3	 Skip semantics of condition versus wait semantics of non-condition links.............................21

9	 Procedural links...22
9.1	 Transforming links... 22

9.1.1	 Kinds of transforming links... 22
9.1.2	 Consumption link... 22
9.1.3	 Result link... 23
9.1.4	 Effect link.. 23
9.1.5	 Basic transforming links summary... 23

iii

﻿
© ISO 2024 – All rights reserved

Contents� Page

ISO 19450:2024(en)

9.2	 Enabling links...24
9.2.1	 Kinds of enabling links...24
9.2.2	 Agent and agent link...24
9.2.3	 Instrument and instrument link...24
9.2.4	 Basic enabling links summary... 25

9.3	 State-specified transforming links.. 26
9.3.1	 State-specified consumption link... 26
9.3.2	 State-specified result link.. 26
9.3.3	 State-specified effect links...27
9.3.4	 State-specified transforming links summary.. 29

9.4	 State-specified enabling links... 30
9.4.1	 State-specified agent link... 30
9.4.2	 State-specified instrument link.. 30
9.4.3	 State-specified enabling links summary...31

9.5	 Control links..31
9.5.1	 Kinds of control links..31
9.5.2	 Event links...32
9.5.3	 Condition links..37
9.5.4	 Exception links... 44

10	 Structural links...45
10.1	 Kinds of structural links...45
10.2	 Tagged structural link..45

10.2.1	 Unidirectional tagged structural link..45
10.2.2	 Unidirectional null-tagged structural link..45
10.2.3	 Bidirectional tagged structural link... 46
10.2.4	 Reciprocal tagged structural link... 46

10.3	 Fundamental structural relations...47
10.3.1	 Kinds of fundamental structural relations..47
10.3.2	 Aggregation-participation relation link.. 48
10.3.3	 Exhibition-characterization link.. 49
10.3.4	 Generalization-specialization and Inheritance..52
10.3.5	 Classification-instantiation link... 55
10.3.6	 Fundamental structural relation link and tagged structural link summary..........................57

10.4	 State-specified structural relations and links... 58
10.4.1	 State-specified characterization relation link... 58
10.4.2	 State-specified tagged structural relations..59

11	 Relationship cardinalities...64
11.1	 Object multiplicity in structural and procedural links.. 64
11.2	 Object multiplicity expressions and constraints... 66
11.3	 Attribute value and multiplicity constraints... 68

12	 Logical operators: AND, XOR, and OR..68
12.1	 Logical AND procedural links... 68
12.2	 Logical XOR and OR procedural links...70
12.3	 Diverging and converging XOR and OR links..71
12.4	 State-specified XOR and OR link fans... 73
12.5	 Control-modified link fans..74
12.6	 State-specified control-modified link fans...74
12.7	 Link probabilities and probabilistic link fans... 75

13	 Execution path and path labels..77
14	 Context management with Object-Process Methodology (OPM)..79

14.1	 Completing the system diagram (SD).. 79
14.2	 Achieving model comprehension... 79

14.2.1	 OPM refinement-abstraction mechanisms.. 79
14.2.2	 Control (operational) semantics within an in-zoomed process context.................................... 83
14.2.3	 OPM fact consistency principle... 94
14.2.4	 Abstraction ambiguity resolution for procedural links.. 95

iv

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Annex A (normative) Object-Process Language (OPL) formal syntax in Extended Bachus-Naur
form (EBNF)..98

Annex B (informative) Guidance for Object-Process Methodology (OPM)..114
Annex C (informative) Modelling OPM using OPM..117
Annex D (informative) OPM dynamics and simulation...151
Bibliography...157

v

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out through
ISO technical committees. Each member body interested in a subject for which a technical committee
has been established has the right to be represented on that committee. International organizations,
governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely
with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described
in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types
of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the
ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent
rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a)
patent(s) which may be required to implement this document. However, implementers are cautioned that
this may not represent the latest information, which may be obtained from the patent database available at
www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions
related to conformity assessment, as well as information about ISO's adherence to the World Trade
Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 184, Automation systems and integration,
Subcommittee SC 5, Interoperability, integration, and architectures for enterprise systems and automation
applications.

This first edition cancels and replaces ISO/PAS 19450:2015, which has been technically revised.

The main changes are as follows:

—	 document designation from PAS to International Standard (this document);

—	 clarified several defined terms and added term cross references;

—	 added introduction statement for all figures and tables;

—	 clarified use of “may” or “can” as appropriate;

—	 corrected identified errors in figures and tables.

Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.

vi

﻿
© ISO 2024 – All rights reserved

https://www.iso.org/directives-and-policies.html
http://www.iso.org/patents
https://www.iso.org/foreword-supplementary-information.html
https://www.iso.org/members.html

ISO 19450:2024(en)

Introduction

Object-Process Methodology (OPM) is a compact conceptual approach, language, and methodology for
modelling and knowledge representation of automation systems. The application of OPM ranges from simple
assemblies of elemental components to complex, multidisciplinary, dynamic systems. OPM is suitable for
implementation and support by tools using information and computer technology. This document specifies
both the language and methodology aspects of OPM in order to establish a common basis for system
architects, designers, and OPM-compliant tool developers to model all kinds of systems.

OPM provides two semantically equivalent modalities of representation for the same model: graphical
and textual. A set of hierarchically structured, interrelated Object-Process-Diagrams (OPDs) constitutes
the graphical model, and a set of automatically generated sentences in a subset of the English language
constitutes the textual model expressed in the Object-Process Language (OPL). In a graphical-visual model,
each OPD consists of OPM elements, depicted as graphical symbols, sometimes with label annotation.
The OPD syntax specifies the consistent and correct ways to manage the arrangement of those graphical
elements. Using OPL, OPM generates the corresponding textual model for each OPD in a manner that retains
the constraints of the graphical model. Since OPL's syntax and semantics are a subset of English natural
language, domain experts easily understand the textual model.

OPM notation supports the conceptual modelling of systems with formal syntax and semantics. This
formality serves as the basis for model-based systems engineering in general, including systems architecting,
engineering, development, life cycle support, communication, and evolution. Furthermore, the domain-
independent nature of OPM opens system modelling to the entire scientific, commercial and industrial
community for developing, investigating and analysing manufacturing and other industrial and business
systems inside their specific application domains, thereby enabling companies to merge and provide for
interoperability of different skills and competencies into a common intuitive yet formal framework.

OPM facilitates a common view of the system under construction, test, integration, and daily maintenance,
providing for working in a multidisciplinary environment. Moreover, using OPM, companies can improve
their overall, big-picture view of the system's functionality, flexibility in assignment of personnel to tasks,
and managing exceptions and error recovery. System specification is extensible for any necessary detail,
encompassing the functional, structural and behavioural aspects of a system.

One particular application of OPM is in the drafting and authoring of technical standards. OPM helps sketch
the implementation of a standard and identify weaknesses in the standard to reduce, thereby significantly
improving the quality of successive drafts. With OPM, even as the model-based text of a system expands to
include more details, the underlying model keeps maintaining its high degree of formality and consistency.

This document provides a baseline for system architects and designers, who can use it to model systems
concisely and effectively. OPM tool vendors can utilise this document as a formal standard specification for
creating software tools to enhance conceptual modelling.

This document provides a presentation of the normative text that follows the Extended Bachus Naur Form
(EBNF) specification of the language syntax. All elements are presented in Clause 6 to 13 with only minimal
reference to methodological aspects, Clause 14 presents the context management mechanisms related to in-
zooming and unfolding.

NOTE	 OPM is an established modelling paradigm with a 15-year history of use in international commerce. As
such, several conventions for its use and presentation already exist in the literature and practice.

This document uses the presentation conventions for the expression of OPM related constructs found in the originating
and current literature for OPM. Using a different set of conventions, or simply applying the ISO/IEC Directives, Part
2 drafting guidelines for these terms and presentations, creates a discontinuity between this document and the
supporting references and practice, and can cause confusion in application of this document to existing and future
practice.

This document applies the following conventions for the presentation of OPM elements and terminology:

—	 The phrases and associated abbreviations “Object-Process Methodology (OPM)”, “Object-Process Diagram (OPD)”
and “Object-Process Language (OPL)” are terms of art associated with the OPM paradigm and appear as specified
with the hyphen and capitalization of each word in the phrase.

vii

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

—	 In OPD and OPL text, the object name and process name appear in Cambria bold font text with capitalization of
each word to distinguish the object and process from the other OPD and OPL text. The same convention for object
and process name bold capitalization is carried into the text of this document as well to indicate that in the text,
the word or phrase corresponds to an OPM object or process.

—	 In OPD and OPL text, the object state label and attribute value label appear in Cambria bold font text in lowercase,
and somewhat smaller font in OPD figures, to distinguish the object state label and attribute value label from the
other OPD and OPL text. The same convention for object state label and attribute value label in bold font lowercase
is carried into the text of this document as well to indicate that in the text, the word or phrase corresponds to an
OPM object state label or attribute value label.

—	 In OPD and OPL text, link tags that are not user-specified appear in Cambria lowercase, and somewhat smaller font
in OPD. Link tags that are user-specified appear as entered by the user in Cambria bold font text, and somewhat
smaller font in OPD.

—	 In OPL, the first letter of the first word of a sentence is capitalized.

—	 Some of these conventions are repeated in the text as appropriate to remind the reader of the distinctions. Some
OPD figures contain colour to help distinguish OPM modelling element type distinctions.

Most figures contain both a graphical image, the OPD portion, and a textual equivalent, the OPL portion
of the figure. Because this is a language specification, the precise use of term definitions is essential and
several terms in common use have particular meaning when using OPM. In addition to those listed above as
OPM presentation conventions, Annex B explains other conventions for the use of OPM.

Annex A presents the formal syntax for OPL, in EBNF form.

Annex B presents conventions and patterns commonly used in OPM applications.

Annex C presents aspects of OPM as OPM models.

Annex D summarizes the dynamic and simulation capabilities of OPM.

viii

﻿
© ISO 2024 – All rights reserved

International Standard ISO 19450:2024(en)

Automation systems and integration — Object-Process
Methodology

1	 Scope

This document specifies Object-Process Methodology (OPM) with detail sufficient for enabling practitioners
to utilise the concepts, semantics, and syntax of OPM as a modelling paradigm and language for producing
conceptual models at various extents of detail, and for enabling tool vendors to provide application modelling
products to aid those practitioners.

While this document presents some examples for the use of OPM to improve clarity, it does not attempt to
provide a complete reference for all the possible applications of OPM.

2	 Normative references

There are no normative references in this document.

3	 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

—	 ISO Online browsing platform: available at https://​www​.iso​.org/​obp

—	 IEC Electropedia: available at https://​www​.electropedia​.org/​

Note 1 to entry	 To facilitate a term search, terms are in alphabetical sequence.

3.1
abstraction, noun
outcome of an abstraction process (3.2)

3.2
abstraction process
decreasing the extent of detail and system model completeness (3.9) in order to achieve better comprehension

3.3
affectee
transformee (3.79) that is affected by a process (3.59) occurrence, i.e. its state (3.69) changes

Note 1 to entry: An affectee can only be a stateful object. A stateless object can only be created or consumed, but not
affected.

3.4
agent
enabler (3.18) that is a human or a group of humans

3.5
attribute
object (3.40) that characterizes a thing (3.77) other than itself

1

﻿
© ISO 2024 – All rights reserved

https://www.iso.org/obp/ui
https://www.electropedia.org/

ISO 19450:2024(en)

3.6
behaviour
transformation (3.78) of objects (3.40) resulting from the execution of an Object-Process Methodology (OPM)
(3.44) model comprising a collection of processes (3.59) and links (3.37) to objects in the model

3.7
beneficiary
<system> stakeholder who gains functional value (3.83) from the system's operation (3.47)

3.8
class
collection of things (3.77) with the same perseverance (3.51), essence, and affiliation valuation, and the same
feature (3.22) and state (3.69) set

Note 1 to entry: Perseverance, essence and affiliation are properties of things (see 7.3.3).

3.9
completeness
<system model> extent to which all the details of a system are specified in a model

3.10
condition link
procedural link (3.57) from an object (3.40) or object state (3.69) to a process (3.59), denoting a procedural
constraint

3.11
consumee
transformee (3.79) that a process (3.59) occurrence consumes or eliminates

3.12
context
<model> portion of an Object-Process Methodology (OPM) (3.44) model represented by an Object-Process
Diagram (OPD) (3.42) and corresponding Object-Process Language (OPL) (3.43) text

3.13
control link
procedural link (3.57) with additional control semantics

3.14
control modifier
symbol embellishing a link (3.37) to add control semantics to the link, making it a control link (3.13)

Note 1 to entry: The control modifiers are the symbols 'e' for event and 'c' for condition.

3.15
discriminating attribute
attribute (3.5) whose different values (3.82) identify corresponding specialization relations

3.16
effect
change in the state (3.69) of an object (3.40) or the value (3.82) of an attribute (3.5)

Note 1 to entry: An effect only applies to a stateful object.

3.17
element
thing (3.77) or link (3.37)

3.18
enabler
<process> object (3.40) that enables a process (3.59) but which the process does not transform

2

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

3.19
event
<OPM> point in time of creation (or appearance) of an object (3.40), or entrance of an object to a particular
state (3.69), initiating an evaluation of the precondition (3.54)

3.20
event link
control link (3.13) denoting an event (3.19) originating from an object (3.40) or object state (3.69) to a process
(3.59)

3.21
exhibitor
thing (3.77) that exhibits (is characterized by) a feature (3.22) by means of the exhibition-characterization
relation

3.22
feature
attribute (3.5) or operation (3.47)

3.23
folding
abstraction (3.1) achieved by hiding the refineables (3.62) of a refinee (3.63) to which unfolding (3.81) applies

Note 1 to entry: The four kinds of folded refineables are parts (part folding), features (feature folding), specializations
(specialization folding), and instances (instance folding).

Note 2 to entry: Folding is primarily applied to objects. When applied to a process, its subprocesses are unordered,
which is adequate for modelling asynchronous systems, in which processes' temporal order is undefined.

Note 3 to entry: The opposite of folding is unfolding.

3.24
function
process (3.59) that provides functional value (3.83) to a beneficiary (3.7)

3.25
general, noun
<OPM> refineable (3.62) with specializations

3.26
informatical, adj.
of, or pertaining to informatics, e.g. data, information, knowledge

3.27
inheritance
assignment of Object-Process Methodology (OPM) (3.44) elements (3.17) of a general (3.25) to its specializations

3.28
input link
link (3.37) from object (3.40) source (input) state (3.69) to the transforming process (3.59)

3.29
instance
<model> modelled thing (3.77) that is a refinee (3.63) in a classification-instantiation relation

3.30
instance
<operational> actual, uniquely identifiable thing (3.77) that exists during model execution, e.g. during
simulation or runtime implementation

Note 1 to entry: A process instance is identifiable by the operational instances of the involved object set during process
occurrence and the process start and end time stamps of the occurrence.

3

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

3.31
instrument
non-human enabler (3.18)

3.32
invocation
<process> initiating of a process (3.59) by a process

3.33
involved object set
union of preprocess object set (3.55) and postprocess object set (3.53)

3.34
in-zoom context
things (3.77) and links (3.37) within the boundary of the thing to which object (3.40) in-zooming (3.35) or
process (3.59) in-zooming (3.36) applies

3.35
in-zooming
<object> object (3.40) part unfolding (3.81) that indicates spatial ordering of the constituent objects

3.36
in-zooming
<process> process (3.59) part unfolding (3.81) that indicates temporal partial ordering of the constituent
processes

3.37
link
graphical expression of a structural relation (3.74) or a procedural relation (3.58) between two Object-Process
Methodology (OPM) (3.44) things (3.77)

3.38
metamodel
model of a modelling language or part of a modelling language

3.39
model fact
relation between two Object-Process Methodology (OPM) (3.44) things (3.77) or states (3.69) in the OPM model

3.40
object
<OPM> model element (3.17) representing something that does or can exist physically or informatically
(3.26)

3.41
object class
pattern for objects (3.40) that have the same structure (3.75) and pattern of transformation (3.78)

3.42
Object-Process Diagram
OPD
Object-Process Methodology (OPM) (3.44) graphic representation of an OPM model or part of a model, in
which objects (3.40) and processes (3.59) in the universe of interest appear together with the structural links
(3.73) and procedural links (3.57) among them

3.43
Object-Process Language
OPL
subset of English natural language that represents textually the Object-Process Methodology (OPM) (3.44)
model that the Object-Process Diagram (OPD) (3.42) represents graphically

4

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

3.44
Object-Process Methodology
OPM
formal language and method for specifying complex, multidisciplinary systems in a single function-
structure-behaviour unifying model that uses a bimodal graphic-text representation of objects (3.40) in the
system and their transformation (3.78) or use by processes (3.59)

3.45
Object-Process Diagram object tree
OPD object tree
tree graph, whose root is an object (3.40), depicting elaboration of the object through refinement (3.64)

3.46
Object-Process Diagram process tree
OPD process tree
tree graph whose root is the System Diagram (SD) (3.76) and each node is an Object-Process Diagram (OPD)
(3.42) obtained by in-zooming (3.36) of a process (3.59) in its ancestor OPD (or the SD) and for which each
directed edge connected to the ancestor OPD process points to the same process in the child OPD

Note 1 to entry: OPM model elaboration usually occurs by process decomposition through in-zooming, therefore the
OPD process tree is the primary way to navigate an OPM model.

3.47
operation
process (3.59) that a thing (3.77) performs, which characterizes the thing other than itself

3.48
output link
link (3.37) from the transforming process (3.59) to the output (destination) state (3.69) of an object (3.40)

3.49
out-zooming
<object> inverse of object (3.40) in-zooming (3.35)

3.50
out-zooming
<process> inverse of process (3.59) in-zooming (3.36)

3.51
perseverance
property (3.61) of thing (3.77) which can be static, defining an object (3.40), or dynamic, defining a process
(3.59)

3.52
postcondition
<process> condition that is the outcome of successful process (3.59) completion

3.53
postprocess object set
collection of objects (3.40) remaining or resulting from process (3.59) completion

Note 1 to entry: The postprocess object set can include stateful objects, for which specific states result from process
performance.

3.54
precondition
<process> condition for starting a process (3.59)

5

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

3.55
preprocess object set
collection of objects (3.40) to evaluate prior to starting a process (3.59)

Note 1 to entry: The collection of the objects can include stateful objects for which specific states are necessary for
process performance.

3.56
primary essence
<system> essence of the majority of things (3.77) in a system

Note 1 to entry: Essence pertains to the physical or informatical nature of a thing (see 7.3.3).

3.57
procedural link
graphical notation of procedural relation (3.58) in Object-Process Methodology (OPM) (3.44)

3.58
procedural relation
connection or association between an object (3.40) or object state (3.69) and a process (3.59)

Note 1 to entry: Procedural relations specify how the system operates to attain its function, designating time-
dependent or conditional initiating of processes that transform objects.

Note 2 to entry: An invocation or exception link signifies a transient object in the flow of execution control between
two processes.

3.59
process
transformation (3.78) of one or more objects (3.40) in the system

3.60
process class
pattern for processes (3.59) that perform the same object (3.40) transformation (3.78) pattern

3.61
property
modelling annotation common to all elements (3.17) of a specific kind that serve to distinguish that element

Note 1 to entry: Cardinality constraints, path labels, and structural link tags are frequent property annotations.

Note 2 to entry: Unlike an attribute, the value of a property cannot change during model simulation or operational
implementation. Each kind of element has its own set of properties.

Note 3 to entry: Property is an attribute of an element in the OPM metamodel.

3.62
refineable, noun
<OPM> thing (3.77) amenable to refinement (3.64)

Note 1 to entry: A refineable can be a whole, an exhibitor, a general, or a class.

3.63
refinee
thing (3.77) that refines a refineable (3.62),

Note 1 to entry: A refinee can be a part, a feature, a specialization, or an instance.

Note 2 to entry: Each of the four kinds of refinees has a corresponding refineable (part-whole, feature-exhibitor,
specialization-generalization, instance-class).

3.64
refinement
<model> elaboration that increases the extent of detail and the consequent model completeness (3.9)

6

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

3.65
resultee
transformee (3.75) that a process (3.59) occurrence creates

3.66
stakeholder
<OPM> individual, organization, or group of people that has an interest in, or can be affected by, the system
being contemplated, developed, or deployed

3.67
stateful object
object (3.40) with specified states (3.69)

3.68
stateless object
object (3.40) lacking specified states (3.69)

3.69
state
<object> possible situation or position of an object (3.40)

Note 1 to entry: In OPM there is no concept of process state, such as "started", "in process", or "finished" within a model.
Instead, OPM represents and models subprocesses, such as starting, processing, or finishing. Also see discussion of
OPM process metamodel in Annex C.

3.70
state
<system> snapshot of the system model taken at a certain point in time, which captures all the existing
operational instances (3.30) of objects (3.40) and current state (3.69) of stateful object (3.67), and the
operational instances of processes (3.59), with their elapsed times, executing at the time the snapshot occurs

3.71
state expression
refinement (3.64) involving the revealing of any proper subset of an object's (3.40) set of states (3.69)

3.72
state suppression
abstraction (3.1) involving the hiding of any proper subset of an object's (3.40) set of states (3.69)

3.73
structural link
graphic notation of structural relation (3.74) in Object-Process Methodology (OPM) (3.44)

3.74
structural relation
operationally invariant connection or association between things (3.77)

Note 1 to entry: Structural relations persist in the system for at least some interval of time. They provide the structural
aspect of the system, and are not contingent upon conditions that are time-dependent.

3.75
structure
<OPM> collection of objects (3.40) in an Object-Process Methodology (OPM) (3.44) model and the non-transient
relations or associations among them

7

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

3.76
System Diagram
SD
Object-Process Diagram (OPD) (3.42) with one systemic process (3.59) indicating the system function (3.24)
and the objects (3.40) connecting with that function to depict the overall context for and top-level view of the
system

Note 1 to entry: SD is the root of the OPD process tree and has no extent of detail beyond the overall context depicted,
i.e. no in-zoomed refinee is present. Any OPD other than SD is a node in the OPD process tree resulting from refinement.

3.77
thing
<OPM> object (3.40) or process (3.59)

3.78
transformation
creation (e.g. generation, construction) or consumption (e.g. elimination, destruction) of an object (3.40) or a
change in the state (3.69) of an object

Note 1 to entry: Only a process can perform transformation.

3.79
transformee
object (3.40) that a process (3.59) transforms (e.g. creates, consumes, or affects)

3.80
transforming link
consumption link (3.37), effect link, or result link

3.81
unfolding
refinement (3.64) that elaborates a refinee (3.63) with additional detail comprising other things (3.77) and
the links (3.37) between them

Note 1 to entry: The four kinds of unfolding are part unfolding, feature unfolding, specialization unfolding, and
instance unfolding.

Note 2 to entry: Unfolding is primarily applied to objects for exposing details about the unfolded object.

3.82
value
<attribute> state (3.69) of an attribute (3.5)

3.83
value
<functional> benefit at cost that the system's function (3.24) delivers

3.84
whole
aggregate thing (3.77) comprised of two or more parts, each having the same perseverance (3.51) as the
aggregate

4	 Symbols

object

physical object

8

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

environmental object

process

physical process

environmental process

state

aggregation-participation

exhibition-characterization

generalization-specialization

classification-instantiation

unidirectional tagged structural link

bidirectional tagged structural link

agent link

Instrument link

effect link

consumption link

result link

input-output link pair

instrument event link

consumption event link

9

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

instrumental condition link

consumption condition link

invocation link

self-invocation link

over-time exception link

under-time exception link

5	 Conformance

Anticipating that the implementation of this document by toolmakers and utilization by end-users is likely
to occur in increments over time, several kinds of conformance criteria are appropriate.

a)	 Partial (symbolic) conformance with Object-Process Methodology (OPM), through utilizing the language
part of OPM, namely OPM Semantics and Syntax:

1)	 using only OPM symbols defined in Clause 4 of this document with the meaning assigned to them in
this document;

2)	 using only OPM elements defined in Clause 7 through Clause 12 of this document with the meaning
assigned to them in this document.

b)	 Full conformance with OPM:

1)	 conformance with a) above;

2)	 conformance with the approach and scheme of modelling systems with OPM, as defined in Clause 6
and Clause 14 of this document.

c)	 Conformance by toolmakers:

1)	 conformance with a) above;

2)	 provision for b) – users are guided and helped to adhere to b) on the basis of the formalism of a);

3)	 support for OPL according to the EBNF definition specified in Annex A of this document.

6	 Object-Process Methodology (OPM) principles and concepts

6.1	 OPM modelling principles

6.1.1	 Modelling as a purpose-serving activity

System function and modelling purpose shall guide the scope and extent of detail of an OPM model. A
complex or complicated system may involve many stakeholders, including the beneficiary, owner, users, and
regulators, as well as many hardware and software components, exposing different aspects relevant to each
stakeholder. The function or benefit expectations of stakeholders in general, and beneficiaries in particular,

10

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

shall identify and prescribe the modelling purpose. This, in turn, shall determine the scope of the system
model.

EXAMPLE	 For a manufacturing plant that produces widgets, the viewpoint of the marketing manager, who cares
about supply rates and dates, does not include the machines in the plant that are used as instruments for making
widgets, which are not affected by the marketing process. However, from the viewpoint of the maintenance manager,
the machines are affected as they become worn during operation and need to be maintained, both to prevent them
from breaking and to fix them when they do break. Therefore, the OPM manufacturing plant model for the marketing
manager will differ substantially from that constructed for the maintenance manager.

6.1.2	 Unification of function, structure, and behaviour

The OPM structure model of a system shall be an assembly of the physical and informatical (logical)
objects connected by structural relations. During the lifetime of a system, creation and destruction of those
structural relations may occur.

The OPM behaviour model of a system, referred to as its dynamics, shall reflect the mechanisms that act
on the system over time to transform systemic objects, i.e. objects that are either internal to the system or
environmental objects, that is objects that are external to the system, or both.

The combination of system structure and behaviour enables the system to perform a function, which shall
deliver the (functional) value of the system to at least one stakeholder, who is the system's beneficiary. An
OPM model integrates the functional (utilitarian), structural (static), and behavioural (dynamic) aspects of
a system into a single, unified model. Maintaining focus from the viewpoint of overall system function, this
structure-behaviour unification provides a coherent single frame of reference for understanding the system
of interest, enhancing its intuitive comprehension while adhering to formal syntax.

6.1.3	 Identify functional value

The functional value providing process of a modelled system shall express the function of the system as
perceived by the system's main beneficiary or beneficiaries group. Identifying and labelling this primary
process, the system's function, is a critical first step in constructing an OPM model according to the
methodology prescription of the OPM approach. An appropriate function label or name should clarify and
emphasize the central goal of the modelled system and the functional value that the system should provide
for its main beneficiary. Modelling with OPM should begin by defining, naming, and depicting the function of
the system as its primary process.

NOTE	 Such a deliberation, which often provokes a debate between the system architecture team members at
this early stage, is extremely useful, as it exposes differences and often even misconceptions among the participants
regarding the system which they set out to architect, model, and design.

After the function of the system aligns with the functional value expectation of its main beneficiary, the
modeller shall identify and add other principal stakeholders to the OPM model.

6.1.4	 Function versus behaviour

The value of the function to the beneficiary is often implied and expressed in process terms, which
emphasize what happens, the behaviour, rather than the purpose, the functional value, for which the primary
process happens. The modeller should distinguish between function and behaviour to create a clear and
unambiguous system model. This distinction is essential because in many situations a system's function is
achievable by different concepts, each implementing a different design and behaving differently.

EXAMPLE	 Consider a system for enabling humans to cross a river with their vehicles. Two obvious concepts are
a static structure to enable car crossing and a dynamic moving element carrying cars. The corresponding system
designs are a bridge and a ferry. While the function and the primary process – River Crossing – are identical for both
designs, they differ dramatically in their structure and behaviour.

Failure to recognize the difference between function and behaviour can lead to a premature choice of a
sub-optimal design. In the example above, this can result in making a decision to build a bridge without
considering the possibly superior ferry option at all.

11

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

6.1.5	 System boundary setting

The system's environment shall be a collection of things, which are outside of the system, but which can
interact with the system, possibly changing the system and its environment. The modeller shall distinguish
these environmental things, which are not part of the system, from systemic things, which are part of
the system. The modeller is not able to architect, design or manipulate the structure and behaviour of
environmental things even though those environmental things can influence or be influenced by the system.

6.1.6	 Clarity and completeness trade-off

Overwhelming detail and complicatedness are inherent in real-life systems. Making such systems
understandable entails a trade-off that should balance between two conflicting criteria: clarity and
completeness. Clarity shall be the extent of unambiguous comprehension that the system’s structure and
behaviour models convey. Completeness shall be the extent of specification for all the system's details. These
two model attributes conflict with each other. On the one hand, completeness requires the full stipulation of
system details. On the other hand, the need for clarity imposes an upper limit on the extent of detail within
an individual model diagram, after which comprehension deteriorates because of clutter and overloading.

Establishing an appropriate balance requires careful management of context during model development.
The increase in the expression of completeness in a given model diagram often results in the reduction of
clarity. However, the modeller can take advantage of the union of information provided by the entire OPM
system model and have one diagram which is clear and unambiguous but not complete, and another that
focuses on completeness for some portion of the system with more detail.

6.2	 OPM fundamental concepts

6.2.1	 Bimodal representation

An OPM model shall be bimodal with expression in semantically equivalent graphics and text representations.
Each OPM model graphical diagram, i.e. an Object-Process Diagram (OPD), shall have an equivalent OPM
textual paragraph comprised of one or more OPM language sentences using the Object-Process Language
(OPL).

NOTE 1	 The bimodal graphics-text representation of the OPM model helps to involve non-technical stakeholders
in the requirements elicitation and initial conceptual modelling of the system under development. This involvement
engages those stakeholders as active participants and helps detect errors soon after their inadvertent introduction.
The bimodal representation also helps novice OPM users quickly gain familiarity with the semantics of the OPM
graphic modality when inspecting the text and corresponding graphic in tandem.

NOTE 2	 Annex A specifies the OPL syntax using the conventions of ISO/IEC 14977.

NOTE 3	 For most of the OPD figures throughout this document, the corresponding paragraph of OPL sentences
accompanies the graphical OPD.

6.2.2	 OPM modelling elements

Elements, the basic building blocks of any system modelled in the OPM, shall be of two kinds: things and
links. The modelling elements of object and process shall designate things in the model context. The
modelling element of link shall designate associations between things in the model context. Objects shall
be stateless or have object states. Links shall be either procedural or structural. Figure 1 depicts the OPM
metamodel overview.

12

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Figure 1 — OPM metamodel overview

Within an OPM model, modelling elements shall have unique symbols, textual expression, syntactic
constraints and semantic interpretation. Within an OPM model, each modelled thing shall have a unique
identifying name of relevance to model stakeholders and unique source and destination things shall
distinguish each link or tagged link. A modelled link, together with its source and destination things shall be
an OPM construct that has a corresponding OPL sentence.

Once identified, a modelled thing may appear in any relevant context for that thing and may appear more
than once in a context to enhance understanding.

6.2.3	 OPM things: objects and processes

An object shall be a thing, which, once constructed, exists or can exist physically or informatically.
Associations among objects shall constitute the object structure of the system being modelled, i.e. the static,
structural aspect of the system. An object state shall be a particular situational classification of an object at
some point during its lifetime. At every point in time, an object with an object state is in one of its states or in
transition between two of its states as a consequence of a process currently affecting that object.

A process shall be a thing that expresses the transformation of objects in the system. A process is always
associated with and occurs or happens to one or more objects; it does not exist in isolation. A process
transforms objects by creating them, consuming them, or changing their state. Thus, processes complement
objects by providing the dynamic, behavioural aspect of the system.

NOTE	 Inspecting processes to determine which subprocess is performing at the point in time of inspection
reveals the status of a process. OPM does not specify explicitly the model state of a process. See process metamodel in
Annex C.

6.2.4	 OPM links: procedural and structural

Procedural links shall denote procedural relations. A procedural relation shall specify how the system
operates to attain its function, designating time-dependent or conditional initiating of processes, which
transform objects.

Structural links shall denote structural relations. A structural relation shall specify an association that
persists in the system for at least some interval of time, i.e. a static aspect of the system, and shall not be
contingent upon conditions that are time-dependent.

13

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

6.2.5	 OPM context management

OPM shall provide mechanisms for managing the contextual scope of model detail to promote both
comprehension and clarity. From the initial functional model context, the modeller shall use refinement of
object and process structure to extend model detail with each incremental extent of detail comprising a
contextual focus.

To achieve the system function, a set of non-trivial processes shall comprise a hierarchical network of sub-
processes. The process hierarchy shall induce a partial order on the processes, i.e. some processes end
before others can start, while other processes may occur in parallel or as alternatives. At any extent of detail
in the process hierarchy, a process in a system should provide or contribute functional value as part of its
ancestor process.

The fundamental unit of context management is the OPD that depicts the modelling elements of that
particular context. New diagram unfolding and new diagram in-zooming provide structural and procedural
connections between contexts. Although any OPD may include any number of elements, only those elements
pertinent to the particular context should appear in the OPD.

The management context for names and labels of things and links shall be the entire OPM model for which
separate model fragments contextualize the relationships and interactions among model elements that
produce behaviour. Thing names shall be unique within that management context.

6.2.6	 OPM model implementation (informative)

6.2.6.1	 Conceptual models versus runtime models

When constructing models with OPM, modellers need to understand the distinction between the conceptual
model they are creating and an operational occurrence of that model that they may use to assess system
behaviour. Practicing modellers have an intuitive sense for this distinction, readily thinking of modelling
element operational instance occurrences when creating a model, even when those elements are very
abstract. However, those not familiar with modelling of the kind OPM supports can find the specification of
this document somewhat confusing.

An OPM model is a formal framework within which object and process occurrences interact by means of
links. Because an OPM model has this kind of framework, akin to the system's structure, and model elements
interact using links, the modeller may simulate system behaviour by creating object and process operational
instance occurrences, and then follow the flow of execution control embodied in the connections and OPM
semantic rules. The presence of thing occurrences translates the abstract conceptual model into a more
concrete runtime form.

Annex D presents OPM facilities to support simulation activities. However, as the users of this document
construct OPM models, they need to keep in mind that the behaviour of the modelled system occurs only
when operational instance occurrences of things exist. The appearance of a link between two things does
not imply behaviour until operational instance occurrences of those things exist. The word 'runtime', i.e.
when operational instance occurrences do exist, is implicit in every specification statement provided herein.

NOTE	 The word 'instance' also occurs with a different meaning in the presentation of the classification-
instantiation relation. In that usage, an instance is a refinee typical of the class.

6.2.6.2	 OPM model realization

The conceptual framework for OPM includes the capability for model simulation. To use this capability
successfully, a modeller needs to understand the distinction between a model as a representation of a
pattern of structure and behaviour and an instance of the model operating to perform the function for which
the model is a pattern. The model has an architectural form, based in part on the arrangement of structure
and procedure, which the modeller extends with detail as the model design evolves. A model expressing
consistent detail is implementable as a simulation, i.e. capable of realizing resources, using processes to
transform objects, and producing functional value to a beneficiary.

14

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

6.2.6.3	 OPD navigation and OPL composition

This document expresses the means for creating OPM model diagrams and corresponding OPL texts. The
in-zooming and unfolding mechanisms of Clause 14 provide ways to link OPD diagrams with corresponding
OPL to express the linkage as text. However, because there are many ways to label these links, some of which
may be specific to a tool implementation, Clause 14 does not specify the labels to assign for identifying
successive hierarchic levels, linkage between related OPD diagrams, or corresponding OPL segments.

7	 OPM thing syntax and semantics

7.1	 Objects

7.1.1	 Description

An object shall be a thing that exists or has the potential of physical or informatical existence. From the
temporal viewpoint, the existence of an object shall be persistent. As long as no process acts on the object, it
shall remain in its current implicit or explicit state.

An OPM object is an abstract category identifier for a pattern of structure, properties and features, i.e.
attributes and operations, that are applicable to operational instance objects of that category. Within
constraints of the model, any non-negative number of object operational instances may exist.

7.1.2	 Representation

A rectangular box containing a label, the object name, shall signify graphically the presence of a model
object. Figure 2 graphically illustrates the object Vehicle Occupant Group. In OPL text, the object name
shall appear in bold font with capitalization of each word.

Figure 2 — Object graphic notation

NOTE	 Subclause B.6.2 discusses conventions for naming objects.

7.2	 Processes

7.2.1	 Description

A process shall be a thing that transforms one or more objects. Transformation may be generation (e.g.
construction, creation), effect, or consumption (e.g. destruction, elimination). A process shall have positive
performance time duration.

An OPM process is an abstract category identifier for a pattern of transformation. For the concrete,
operational instance realization, a process instance is a specific occurrence of the process pattern that the
category specifies. The process operational instance transforms one or more object operational instances.

NOTE 1	 A process can directly invoke another process, by means of the invocation link (see 9.5.2.5), which results
in the invoking process creating a transient object that the invoked process immediately consumes.

NOTE 2	 The effect of a process on an object is usually a change in that object's state. However, there are persistent
processes whose effect is state maintenance. Rather than inducing a change, the semantics of a persistent process is to
maintain the object in its current state.

15

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

EXAMPLE	 The process Existing is the most prominent persistent process; it describes a static (implicit)
state of existence. Examples of other persistent processes are Holding, Maintaining, Keeping, Staying, Waiting,
Prolonging, Extending, Delaying, Occupying, Persisting, Continuing, Supporting, Withholding, and Remaining.
For biological objects, Existing entails Living – actively maintaining the necessary life processes.

7.2.2	 Representation

An ellipse containing a label, the process name, shall signify graphically the presence of the abstract process
category. Figure 3 graphically illustrates the process Automatic Crash Responding. In OPL text, the process
name shall appear in bold font with capitalization of each word.

Figure 3 — Process graphic notation

NOTE	 Subclause B.6.3 discusses conventions for naming processes.

7.3	 OPM things

7.3.1	 OPM thing defined

An OPM thing shall be an object or a process. Objects and processes are symmetric in many regards and have
much in common in terms of relations, such as aggregation, generalization and characterization. An object
exists while a process happens to one or more objects. OPM objects and OPM processes depend on each
other in the sense that a process is necessary to transform an object, while at least one object to transform is
necessary for a process to occur or happen.

7.3.2	 Object-process test

To apply OPM in a useful manner, the modeller needs to make the essential distinction between objects
and processes, as a prerequisite for successful system analysis and design. By default, a noun shall identify
an object. The object-process test provides modellers with criteria to distinguish nouns used for processes
from nouns used for objects. Providing a correct answer to the question about whether a given noun is an
object or a process is crucial and fundamental to OPM.

To be a process, a noun or noun phrase shall satisfy each of the following three process criteria:

—	 time association, the noun in question associates with the passage of time;

—	 verb association, the noun in question derives from, or has a common root with a verb, or has a synonym
that associates with a verb;

—	 object transformation, the noun in question occurs, happens, performs, executes, transforms, changes,
or alters at least one object, or maintains it in its current state.

EXAMPLE	 Flight is a noun that is a process because it passes all three object-process test criteria: a) it has a time
association; b) it associates with the verb to fly; and c) it transforms Airplane by changing the value of its location
attribute from source to destination.

16

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

7.3.3	 OPM thing generic properties

All OPM things shall have the following three generic properties:

—	 Perseverance, which pertains to the thing’s persistence and denotes whether the thing is static, i.e. an
object, or dynamic, i.e. a process. Accordingly, the permissible value for the Perseverance property is
static, dynamic or persistent.

—	 Essence, which pertains to the thing’s nature and denotes whether the thing is physical or informatical.
Accordingly, the permissible value of the generic attribute Essence is physical or informatical.

—	 Affiliation, which pertains to the thing’s scope and denotes whether the thing is systemic, i.e. part of the
system, or environmental, i.e. part of the system’s environment. Accordingly, the value of the property
Affiliation is systemic or environmental.

NOTE	 While objects are persistent, i.e. they have static perseverance, and processes are transient, i.e. they have
dynamic perseverance, boundary examples of persistent processes (see 7.2.1), as well as of transient objects (see sub-
clause 9.5.2.5.1), can exist.

Graphically, as shown in Figure 4, shading effects shall denote physical OPM things and dashed lines
shall denote environmental OPM things. All eight Perseverance-Essence-Affiliation generic property
combinations of an OPM thing shown in Figure 4 can occur. The lower portion of Figure 4 expresses, from
left to right and top to bottom, the OPL sentences corresponding to the graphical elements.

Informatical Systemic Process is an informatical and systemic process.
Physical Systemic Process is a physical and systemic process.
Informatical Systemic Object is an informatical and systemic object.
Physical Systemic Object is a physical and systemic object.
Informatical Environmental Process is an informatical and environmental process.
Physical Environmental Process is a physical and environmental process.
Informatical Environmental Object is an informatical and environmental object.
Physical Environmental Object is a physical and environmental object.

Figure 4 — OPM thing generic attribute combinations

7.3.4	 Default values of thing generic properties

The default value of the Affiliation generic property of a thing shall be systemic.

17

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Any non-trivial system tends to have a majority of objects and processes with the same thing generic
property values for Essence.

EXAMPLE	 Data processing systems are informatical, although they have physical components. A transportation
system, such as a railway system or an aviation system, is physical, although they have informatical components.

A system's Primary Essence shall be the same as that of the majority thing Essence values within the system
boundary.

The default value of the Essence generic property of a thing within the boundary of a system shall be the
Primary Essence of the system.

A supporting tool should provide an option for the modeller to specify a system's primary essence as a means
to establish the default thing generic attribute value for Essence.

The OPL corresponding to a diagram shall not reflect the default values of thing generic properties unless
the thing does not yet connect to another thing, e.g. during the course of the modelling process. As soon as
links to other things appear, thing generic properties shall merge as appropriate into OPL phrases describing
these links.

7.3.5	 Object states

7.3.5.1	 Stateful and stateless objects

Object state shall be a possible situation in which an object may exist. An object state has meaning only in
the context of the object to which it belongs, i.e. the object that has the state.

A stateless object shall be an object that has no specification of states.

A stateful object shall be an object with a specified set of permissible states. In a runtime model, at any point
in time, any stateful object operational instance is at a particular permissible state or exists in transition
between two permissible states as a consequence of a process currently affecting that object.

NOTE 1	 Depending upon model behaviour, operational instances of an object may be at different states.

NOTE 2	 Subclause B.6.4 discusses conventions for naming object states.

7.3.5.2	 Object state representation

Graphically, a labelled, rounded-corner rectangle (a 'rountangle') placed inside the object to which it belongs
shall denote an object state. In OPL text, the object state label shall appear in bold font without capitalization.

EXAMPLE	 Figure 5 depicts the object Museum Visitor with two states labelled inside the museum and out of
the museum. Below the graphical representation is the corresponding OPL sentence.

Museum Visitor can be inside the museum or out of the museum.

Figure 5 — Stateful object with two states

18

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

7.3.5.3	 Initial, default, and final states

The initial state of an object shall be its state as the system begins operating or its state upon generation by
the system during operation. The final state of an object shall be its state as the system completes operation
or its state upon consumption by the system during operation. The default state of an object shall be the
state in which the object is most likely to be upon random inspection.

An object may have zero or more initial states, zero or more final states, and zero or one default state. The
same state can be any combination of initial, final and/or default.

NOTE 1	 The initial and final states are especially useful for objects that exhibit a lifecycle pattern, such as a product
or an organism or a system.

NOTE 2	 If an object has more than one initial state, then it is possible to assign to each initial state a probability of
the object being created in that state (see 12.7).

7.3.5.4	 Initial, default, and final state representation

Graphically, a thick contour border shall denote an initial state, a double contour border shall denote a final
state, and an open arrow pointing diagonally from the left shall denote a default state. The corresponding
OPL sentences make the state specification explicit.

EXAMPLE	 Figure 6 depicts the object Specification with initial, default and final states. Below the graphical
representation are the corresponding OPL sentences.

 State preliminary of Specification is initial.
State approved of Specification is default.
State cancelled of Specification is final.

Figure 6 — A stateful object with initial, default, and final states

7.3.5.5	 Attribute values

Since an attribute is an object, an attribute value shall correspond to a state in the sense that a value is a
state of an attribute. An object may have an attribute, which is a different object, and for some time interval
during the existence of the object exhibiting that attribute, the value of that attribute is the state of the
different object.

EXAMPLE	 Considering Temperature in degrees Celsius as an attribute of Engine, 75 is a value of that attribute.

NOTE 1	 Since an attribute is a stateful object, a permissible attribute value is a member of the set of permissible
states of that stateful object. An enumerated list or a set of one or more ranges of numbers defines the set of permissible
values for the attribute.

NOTE 2	 In contrast, a property value is fixed and does not change during model operation.

Attributes with values expressed in measurement units shall express the measurement unit graphically in
an OPD within brackets below the attribute object name and express the measurement unit in text after the
attribute object name in corresponding OPL sentences, e.g. Temperature in degrees Celsius.

19

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

8	 OPM link syntax and semantics overview

8.1	 Procedural link overview

8.1.1	 Kinds of procedural links

A procedural link shall be one of three kinds:

—	 Transforming link, which connects a transformee (an object that the process transforms) or one of its
states, with a process to model object transformation, namely generation, consumption, or state change
of that object as a result of the process performance;

—	 Enabling link, which connects an enabler (an object that enables the process occurrence but is not
transformed by that process), i.e. an agent or an instrument, or its state, with a process to model an
enabling presence for that process; or

—	 Control link, which is a transforming or an enabling link with the added semantics of an execution
control mechanism to model an event that initiates a linked process, to model a condition for process
performance, or to model a connection of two processes denoting invocation, or exception.

Transformee and enabler are roles an object may have with respect to the process to which they link. Hence,
an object may have the role of an enabler for one process and a transformee for another process.

8.1.2	 Procedural link uniqueness OPM principle

A process shall connect with a transforming link to at least one object or object state. At any particular extent
of abstraction, an object or any one of its states shall have exactly one role as a model element with respect to
a process to which it links: the object may be a transformee, an enabler, an initiator, or a conditional object.
At a given extent of abstraction, an object or an object state shall link to a process by only one procedural
link.

8.1.3	 State-specified procedural links

Each procedural link may be qualified as a state-specified procedural link. A state-specified procedural link
shall be a procedural link that connects a process to a specified state of an object.

8.2	 Operational semantics and flow of execution control

8.2.1	 Event-Condition-Action control mechanism

The Event-Condition-Action paradigm shall provide the OPM operational semantics and flow of execution
control. At the point in time of object creation, or appearance of the object from the system's perspective, or
entrance of an object to a particular state, an event shall occur. At runtime, for objects that are the source
of a link with a process, e.g. enabler of a process, the occurrence of an event shall initiate evaluation of the
precondition for every process to which the object links as a link source.

When the precondition evaluation for a process begins, the event shall cease to exist for that process. If, and
only if, the evaluation reveals satisfaction of the precondition, shall the process start performance of the
process and action occurs.

Starting performance of a process has two prerequisites: a) an initiating event, and b) satisfaction of a
precondition. Thus, events and preconditions in concert specify OPM flow of execution control for process
performance.

NOTE	 Invocation and exception are event-condition-actions that occur only between processes.

The flow of execution control shall be the consequence of successive Event-Condition-Action sequences
that begin with initiation of the system function by an external event and end when the system function is
complete.

20

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

8.2.2	 Preprocess object set and postprocess object set

The preprocess object set of a process shall determine the precondition to satisfy before performance of
that process starts. The preprocess object set can be complicated and include compound logical expressions,
or can simply include the existence of one or more objects, possibly in specified states. Typical objects in a
preprocess object set are consumees, i.e. objects the process consumes, affectees, i.e. objects the process
affects, and process enablers. Some of these objects can have a further stipulation regarding flow of
execution control, i.e. a condition link. Every process shall have a preprocess object set with at least one
object, possibly in a specified state.

The postprocess object set shall determine the postcondition that process completion satisfies. The
postprocess object set can be complicated and include compound logical expressions or can simply include
the existence of one of more objects, possibly in specified states. Typical objects in a postprocess object set
are resultees, i.e. objects the process generates and affectees, i.e. objects the process affects. Every process
shall have a postprocess object set with at least one object, possibly in a specified state.

NOTE 1	 The intersection of the preprocess object set and the postprocess object set of the same process includes
the process enablers and affectees. Consumees are only members of the preprocess object set, while resultees are only
members of the postprocess object set.

NOTE 2	 Subclause 14.2.2.4.4 presents the operational instance semantics for objects in the involved object set.

8.2.3	 Skip semantics of condition versus wait semantics of non-condition links

A process preprocess object set may include both condition links (see 9.5.3) and non-condition links, i.e.
procedural links without the condition control modifier. The distinguishing aspect of condition links is their
'skip semantics', which provide for skipping or bypassing a process if the source object operational instance
of the condition link does not exist. Without the condition link qualification, the non-existence of a source
object operational instance causes the process to wait for another event and operational instances of all
source objects to exist, possibly in a specified state, thus satisfying the precondition.

If there are one or more non-condition links and one or more condition links, the existence of all of them
shall be necessary to satisfy the precondition and start the process. However, if there are one or more
unsatisfied non-condition links and one or more unsatisfied condition links, a conflict arises between the
wait semantics of the former and the skip semantics of the latter. To resolve the conflict, the skip semantics
of the condition links shall be stronger than the wait semantics of their non-condition counterparts and
the flow of execution control bypasses the process, which does not start its performance or generate an
exception.

Even if just one of the conditions attendant to the condition links connecting with the process does not exist,
the precondition satisfaction evaluation shall fail, execution control skips the process, and an event occurs
for the next sequential process(es) by means of an invocation link of some kind (see 9.5.2.5 and 14.2.2).

There is no result event link or result condition link, because these are outgoing procedural links relating to
the postprocess object set. When a process completes, it creates the postprocess object set without further
condition, so there is no condition on the creation of resultees or change of affectees. Creation of an object,
possibly at a specified state, in the postprocess object set may serve as an event or condition for the next
sequential process(es).

To achieve robust flow of execution control under all circumstances, the modeller should model premature
process ending without completion as exception handling (see 9.5.4).

21

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

9	 Procedural links

9.1	 Transforming links

9.1.1	 Kinds of transforming links

A transforming link shall specify a connection between a process and its transformee (the object it consumes,
creates, or changes the object state). The three kinds of transforming links shall be consumption link, result
link, and effect link. Figure 7 illustrates the three kinds of transforming connections with the corresponding
OPL sentences below the graphical representation.

a) Result b) Effect c) Consumption

Deleting consumes File Creating yields File Editing affects File

Figure 7 — Transforming links

A transformee shall be a role that an object has with respect to a given process. The same object can have a
different role for another process.

9.1.2	 Consumption link

A consumption link shall be a transforming link specifying that the linked process consumes (e.g. destroys,
eliminates) the linked object, the consumee.

Graphically, an arrow with a closed arrowhead, as shown in Figure 7, pointing from the consumee to the
consuming process shall denote the consumption link.

The syntax of a consumption link OPL sentence shall be: Processing consumes Consumee.

Existence of the consumee shall be a precondition, or part of the precondition, for process activation. If the
consumee does not exist, i.e. no operational instance of the consumee exists, then process activation shall
wait for the consumee to exist.

The consumption shall be immediate upon process activation, unless the modeller needs to model
consumption of the object over time. In this case, the consumption link shall have a property that indicates
the rate of consumption of the consumee and the consumee shall have an attribute that indicates the
available quantity.

The modeller may create an exception if the object quantity is less than the rate times the expected process
duration.

NOTE	 See Clause 11 for the denotation of link properties.

EXAMPLE 1	 Steel Rod is a consumee for the process Machining, which generates the resultee Shaft. Once
Machining has started, it consumes Steel Rod.

22

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

EXAMPLE 2	 Water is a consumee for the process Irrigating. The consumee has an attribute Quantity in liter with
value 1,000 and the consumption link has a property Flow Rate in liter/sec with value 50. In this case, if Irrigating is
uninterrupted, it will last 20 seconds, and it will consume Water at the specified Flow Rate value.

9.1.3	 Result link

A result link shall be a transforming link specifying that the linked process creates (e.g. generates, yields)
the linked object, which is the resultee.

Graphically, an arrow with a closed arrowhead, as shown in Figure 7, pointing from the creating process to
the resultee shall denote a result link.

The syntax of a result link OPL sentence shall be: Processing yields Resultee.

The generation of the resultee shall be immediate upon process completion, unless the modeller needs to
model the generation of the object over time. In this case, the result link shall have a property that indicates
its rate of resultee generation and the resultee shall have an attribute that indicates the available quantity.

NOTE	 See Clause 11 for the denotation of link properties.

EXAMPLE 1	 Steel Rod is a consumee for the process Machining, which generates the resultee Shaft. When
Machining completes, it generates Shaft.

EXAMPLE 2	 Gasoline and Diesel Oil are resultees of the process Refining, which consumes Crude Oil. The
resultees Gasoline and Diesel Oil each have an attribute Quantity [cubic meter]. The Refining to Gasoline result
link has the property Gasoline Yield Rate [cubic meter/hour] with value 1,000 and the Refining to Diesel Oil result
link has the property Diesel Oil Yield Rate [cubic meter/hour] with value 800. Assuming there is enough Crude Oil,
if Refining activates and performs for 10 hours, it will yield 10,000 cubic meters of Gasoline and 8,000 cubic meters
of Crude Oil.

9.1.4	 Effect link

An effect link shall be a transforming link specifying that the linked process affects the linked object, which
is the affectee, i.e. the process causes some unspecified change in the state of the affectee.

Graphically, a bidirectional arrow with two closed arrowheads, as shown in Figure 7, one pointing in each
direction between the affecting process and the affected object shall denote the effect link.

The syntax of an effect link OPL sentence shall be: Processing affects Affectee.

9.1.5	 Basic transforming links summary

Table 1 summarizes the basic transforming links.

Table 1 — Basic transforming links summary

Name Semantics Sample OPD and OPL Source Destination

Consumption
link

The process consumes
the object.

consumed
object

consuming
process

Eating consumes Food.

Result
link

The process generates
the object.

creating
process created object

Mining yields Copper.

Effect
link

The process affects
the object by changing
it from one state to
another state.

affected object and affecting
process are both source and
destinationPurifying affects Copper.

23

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

9.2	 Enabling links

9.2.1	 Kinds of enabling links

An enabling link shall be a procedural link specifying an enabler for a process. An enabler for a process
shall be an object that is necessary for that process to occur. The existence and state of an enabler after the
process is complete shall be the same as just before the process began its performance.

The two kinds of enabling links shall be agent link and instrument link.

The enabler shall be present throughout the performance of the process that it enables. If, from the system's
viewpoint, the enabler ceases to exist during the performance of the process it enables, that process shall
immediately end.

An enabler is a role an object has with respect to a given process. The same object may be an enabler for one
process and a transformee for another process.

To achieve robust flow of execution control under all circumstances, the modeller should model premature
process ending without completion as exception handling (see 9.5.4).

9.2.2	 Agent and agent link

An agent shall be a human or a group of humans capable of intelligent decision-making, who interact with
the system to enable or control the process throughout performance of the process.

An agent link shall be an enabling link from the agent object to the process it enables, specifying that the
agent object is necessary for linked process activation and performance.

Graphically, a line with a filled circle resembling a black lollipop at the terminal end extending from the
agent object to the process it enables shall denote an agent link.

The syntax of an agent link OPL sentence shall be: Agent handles Processing.

EXAMPLE 1	 In the OPD in Figure 8, Welder is the agent for Welding. Performing the process of Welding the object
Steel Part A with the object Steel Part B to create Steel Part AB, requires a human Welder. Welder is the agent of
Welding. However, Welding does not transform the Welder, but Welding cannot take place without the Welder.

Welder handles Welding.
Welding consumes Steel Part A and Steel Part B.
Welding yields Steel Part AB.

Figure 8 — Agent link example

EXAMPLE 2	 In the OPD in Figure 8, if, for whatever reason, Welder goes away before Welding completes, then
Welding stops prematurely and the creation of Steel Part AB does not occur, although Welding already consumed
Steel Part A and Steel Part B.

9.2.3	 Instrument and instrument link

An instrument shall be an inanimate or otherwise non-decision-making enabler of a process that is not able
to start or take place without the existence and availability of the instrument.

24

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

An instrument link shall be an enabling link from the instrument object to the process it enables, specifying
that the instrument object is necessary for linked process activation and performance.

Graphically, a line with an open circle resembling a white lollipop at the terminal end extending from the
instrument object to the process it enables shall denote an instrument link.

The syntax of an instrument link OPL sentence shall be: Processing requires Instrument.

EXAMPLE 1	 A Manufacturing process cannot consume or (disregarding wear and tear) change the state
of a Machine that enables the transformation of Bar Stock to Machined Part. In this context, the Machine is an
instrument of the Manufacturing process.

EXAMPLE 2	 In the Figure 9 OPD, Sintering Oven is the instrument for Sintering, because without it Sintering
cannot happen. However, while the Insert Set object is transformed (its state changes from pre-sintered to sintered),
disregarding wear and tear, Sintering Oven remains unaffected as a result of preforming the Sintering process.

Insert Set can be pre-sintered or sintered.
Sintering requires Sintering Oven.
Sintering changes Insert Set from pre-sintered to sintered.

Figure 9 — Instrument link example

EXAMPLE 3	 In the Figure 9 OPD, if during the Sintering process Sintering Oven ceases to exist, e.g. due to severe
cracking, Sintering will stop and Insert Set will not be in its sintered state, although it already left its pre-sintered
state.

9.2.4	 Basic enabling links summary

Table 2 summarizes the enabling links.

Table 2 — Enabling links summary

Name Semantics Sample OPD and OPL Source Destination

Agent
Link

Agent is a human or a
group of humans who
enables the occurrence
of the process to which
it is linked but is not
transformed by that
process.

agent – the
enabling
object

enabled pro-
cess

Welder handles Welding.

Instrument
Link

Instrument is an
inanimate object that
enables the occurrence
of the process to which
it is linked but is not
transformed by that
process.

instrument –
the enabling
object

enabled pro-
cess

Manufacturing requires Machine.

25

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

9.3	 State-specified transforming links

9.3.1	 State-specified consumption link

A state-specified consumption link shall be a consumption link from a specified state of the consumee to the
linked process that consumes (destroys, eliminates) the object. Existence of the consumee in the specified
state shall be a precondition, or part of the precondition, for process activation. If the consumee is not in that
specified state, then process activation shall wait for the consumee to exist at that specified state.

Graphically, an arrow with a closed arrowhead pointing from the specified state of the object to the process,
which consumes the object, shall denote the state-specified consumption link.

The syntax of a state-specified consumption link OPL sentence shall be: Process consumes specified-state
Object.

The consumption shall be immediate upon process activation, unless the modeller needs to model
consumption of the object over time. In this case, the consumption link shall have a property that indicates
the rate of consumption of the consumee and the consumee shall have an attribute that indicates the
available quantity.

The modeller may create an exception if the object quantity is less than the rate times the expected process
duration.

NOTE	 See Clause 11 for the denotation of link properties.

EXAMPLE 1	 Steel Rod at state pre-heat-treated is a consumee for the process Machining, which generates the
resultee Shaft. When Machining activates, it consumes pre-heat-treated Steel Rod, because this pre-heat-treated
Steel Rod is not available for any purpose other than becoming a Shaft resultee of this process. If Steel Rod previously
went through a Heat Treating process, it is at state heat-treated, and therefore not available to undergo Machining.

EXAMPLE 2	 Continuing with EXAMPLE 1, Steel Rod is at state pre-heat-treated and has an attribute Quantity
[units] with value 600. The state-specified consumption link has a property Rate [units/hour] with value 60. When
Machining performs, it consumes the 600 Steel Rods after 10 working hours.

9.3.2	 State-specified result link

A state-specified result link shall be a result link from a process to a specified state of the resultee object
that the process creates (generates, yields). Existence of the resultee at the specified state shall be a
postcondition, or part of the postcondition, upon completion of the generating process.

Graphically, an arrow with a closed arrowhead pointing from the process to the specified state of the object
shall denote the state-specified result link.

The syntax of a state-specified result link OPL sentence shall be: Process yields specified-state Object.

The generation of the resultee at the particular state shall be immediate upon process completion, unless
the modeller needs to model the generation of the object over time. In this case, the result link shall have a
property that indicates its rate of resultee generation and the resultee shall have an attribute that indicates
the available quantity at that specified state.

NOTE 1	 See Clause 11 for the denotation of link properties.

At runtime an operating model may consist of multiple operational instances of an object with each
operational instance at a different state.

EXAMPLE 1	 Steel Rod at state pre-heat-treated is a consumee for the process Machining, which generates the
resultee Shaft at state pre-heat-treated. A state-specified result link from Machining to the pre-heat-treated state
of Shaft denotes this model specification.

A result link yielding a stateful object with an initial state should attach at that object rectangle or one of its
states other than the initial state.

NOTE 2	 The modeller can want the OPL on the right in Figure 10, but the OPL on the left reduces ambiguity.

26

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

EXAMPLE 2	

 a) Correct b) Incorrect

 A can be s1, s2, or s3.
S2 is initial.
P yields A.

A can be s1, s2, or s3.
S2 is initial.
P yields s2 A.

Figure 10 — Result link to an object with an initial state

9.3.3	 State-specified effect links

9.3.3.1	 Input and output effect links

An input source link shall be the link from a specified state of an object, an input source, to the transforming
process, while the output destination link shall be the link from the transforming process to a specified state
of an object, an output destination. These links provide three possible modelling situations in the context of
a single object linking to a single process: a) input-output-specified effect link specifying both input source
and output destination states; b) input-specified effect link specifying only the input source state; and c)
output-specified effect link specifying only the output destination state.

9.3.3.2	 Input-output-specified effect link

An input-output-specified effect link shall be a pair of effect links, where the input source link connects to
an affecting process from a specified state of an affectee, and the output destination link connects from
that same process to a different output destination state of the same affectee. Existence of the affectee at
the input source state shall be a precondition, or part of the precondition, for affecting process activation.
Existence of the affectee at the output destination state shall be a postcondition, or part of the postcondition,
upon affecting process completion.

Graphically, a pair of arrows consisting of an arrow with a closed arrowhead from the input source state
of the affectee to the affecting process, the input source link, and a similar arrow from that process to the
output destination state of the affectee at process completion, the output destination link, shall denote the
input-output-specified effect link.

The syntax of an input-output-specified effect link OPL sentence shall be: Process changes Object from
input-state to output-state.

EXAMPLE 1	 The OPD in Figure 11 depicts state-specified consumption and result links. Machining can only
consume Raw Metal Bar in state cut and generate Part in state pre-tested. Cutting and Testing are environmental
processes. Cutting must precede Machining in order to change Raw Metal Bar from its pre-cut to its cut state, while
Testing changes Part from pre-tested to tested.

NOTE 1	 In the case of an input-output-specified effect link, once an affecting process starts, it causes the object
to exit out of its input source state. However, the object reaches its output destination state only when the process
completes. Between process start and process completion, the affectee object is in transition between the two states.

EXAMPLE 2	 In the OPD in Figure 11, Cutting takes Raw Metal Bar from its pre-cut to its cut state. As long as
Cutting is active, the state of Raw Metal Bar is in transition and bound to the Cutting process: Cutting takes it out
of its pre-cut state but has not yet brought it to its cut state with process completion. While Cutting the state of
Raw Metal Bar is indeterminate: it can be partly cut and reusable or mostly cut and unusable. In either case, it is not
available for Machining, since it is not in its cut state.

27

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 Raw Metal Bar is physical.
Raw Metal Bar can be pre-cut or cut.
Machine Operator is physical.
Coolant is physical.
Machining is physical.
Machining consumes Coolant.
Machine Operator handles Machining.
Part is physical.
Part can be pre-tested or tested.
Testing is environmental and physical.
Cutting changes Raw Metal Bar from pre-cut to cut.
Machining consumes Raw Metal Bar.
Machining yields pre-tested Part.
Testing changes Part from pre-tested to tested.

Figure 11 — State-specified consumption and results links

NOTE 2	 If an active affecting process stops prematurely, i.e. it does not complete, the state of any affectee remains
indeterminate unless exception handling resolves the object to one of its permissible states.

9.3.3.3	 Input-specified effect link

An input-specified effect link shall be a pair of effect links, where the input source link connects to an
affecting process from an input source state of the affectee, and the output destination link connects from
the same process to the same affectee without specifying a particular state. The output destination state of
the object shall be its default state or, if the object does not have a default state. then the state probability
distribution of the object shall determine the output destination state of that object (see 12.7).

Existence of the affectee at the input source state is a precondition, or part of the precondition, for affecting
process activation. Existence of the affectee at any one of its states shall be a postcondition, or part of the
postcondition, upon affecting process completion.

Graphically, a pair of arrows consisting of an arrow with a closed arrowhead from the input source state of
the affectee to the affecting process, the input link, and a similar arrow from that process to the affectee but
not to any one of its states shall denote the input-specified effect link.

The syntax of an input-specified effect link OPL sentence shall be: Process changes Object from input-state.

9.3.3.4	 Output-specified effect link

An output-specified effect link shall be a pair of effect links, where the input source link connects to an
affecting process from an affectee without specifying a particular state, and the output destination link

28

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

connects from the same process to an output destination state of the same affectee. Existence of the affectee
shall be a precondition, or part of a precondition, for affecting process activation. Existence of the affectee
at the output destination state shall be a postcondition, or part of the postcondition, upon affecting process
completion.

Graphically, a pair of arrows consisting of an arrow with a closed arrowhead from the affectee without
specifying a particular state, the input link, and a similar arrow from that process to an output destination
state of that affectee, the output link, shall denote the output-specified effect link.

The syntax of an input-specified effect link OPL sentence shall be: Process changes Object to output-state.

9.3.4	 State-specified transforming links summary

Table 3 summarizes the state-specified transforming links.

Table 3 — State-specified transforming links summary

Name Semantics Sample OPD and OPL Source Destination

State-specified
consumption

link

The process con-
sumes the object
if and only if the
object is in the
specified state.

consumee
state process

Eating consumes edible Food.

State-specified
result link

The process gener-
ates the object in
the specified state.

process resultee state

Mining yields raw Copper.
Input-out-

put-specified
effect link pair

(consisting of
one state-spec-

ified input
link and one

state-specified
output link)

The process chang-
es the object from
a specified input
state via the input
link to a specified
output state via
the output link.

affectee
source state

affecting pro-
cess

Purifying changes Copper from raw to pure. affecting
process

affectee desti-
nation state

Input-specified
effect link pair

(consisting of
one state-spec-

ified input
link and one

state-unspeci-
fied output link)

The process chang-
es the object from
a specified input
state to any output
state.

affectee
source state

affecting pro-
cess

Testing changes Sample from awaiting test. affecting
process affectee

Output-speci-
fied effect link

pair
(consisting of
one state-un-

specified input
link and one

state-specified
output link)

The process chang-
es the object from
any input state to
a specified output
state.

affectee affecting pro-
cess

Cleaning & Painting changes Engine Hood to
painted.

affecting
process

affectee desti-
nation state

29

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

9.4	 State-specified enabling links

9.4.1	 State-specified agent link

A state-specified agent link shall be an agent link from a specified state of the agent to a process. The agent
in the specified state shall be necessary for process activation and performance.

Graphically, a line with a filled circle resembling a black lollipop at the terminal end extending from the
specified state of the agent object to the process it enables shall denote a state-specified agent link.

The syntax of a state-specified agent link OPL sentence shall be: Specified-state Agent handles Processing.

NOTE	 State name labels do not appear with beginning capital letters except when they appear at the beginning of
an OPL sentence.

EXAMPLE	 A Pilot must be sober in order to qualify as an agent for the Flying process of an Airplane. In OPL:
Sober Pilot handles Flying.

9.4.2	 State-specified instrument link

A state-specified instrument link shall be an instrument link from a specified state of the instrument to a
process. The instrument in the specified state shall be necessary for process activation and performance.

Graphically, a line with an empty circle resembling a white lollipop at the terminal end extending from the
specified state of the instrument object to the process it enables shall denote a state-specified instrument
link.

The syntax of a state-specified instrument link OPL sentence shall be: Processing requires specified-state
Instrument.

EXAMPLE	 The OPD in Figure 12 depicts the difference between basic and state-specified instrument links. On
the left, the object Moving Truck is the instrument for Moving, meaning that the state of this object does not matter,
while on the right, the qualifying state serviced of Moving Truck is an instrument of Moving, meaning that if and
only if Moving Truck is serviced can Moving take place.

a) Instrument link b) State-specified instrument link

Moving Truck is physical.
Moving Truck can be worn out or serviced.
Servicing is environmental and physical.
Servicing changes Moving Truck from worn out to
serviced.
Apartment Content Location is physical.
Apartment Content Location can be old apartment
or new apartment.
Moving is physical.
Moving requires Moving Truck.
Moving changes Apartment Content Location from
old apartment to new apartment.

Moving Truck is physical.
Moving Truck can be worn out or serviced.
Servicing is environmental and physical.
Servicing changes Moving Truck from worn out to
serviced.
Apartment Content Location is physical.
Apartment Content Location can be old apartment
or new apartment.
Moving is physical.
Moving requires serviced Moving Truck.
Moving changes Apartment Content Location from
old apartment to new apartment.

30

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Figure 12 — Instrument link vs. state-specified instrument link

9.4.3	 State-specified enabling links summary

Table 4 summarizes the state-specified enabling links.

Table 4 — State specified enabling links summary

Name Semantics Sample OPD & OPL Source Destination

State-specified
agent link

The human agent
enables the pro-
cess provided the
person is at the
specified state.

agent state enabled process

Healthy Miner handles Copper Mining.

State-specified
instrument link

The process
requires the
instrument at the
specified state.

instrument
state enabled process

Copper Mining requires operational Drill.

9.5	 Control links

9.5.1	 Kinds of control links

As part of the Event-Condition-Action paradigm (see 8.2.1) underlying OPM's operational semantics, an
event link, a condition link, and an exception link shall express an event, a condition, and a time exception
respectively. These three link kinds shall be control links. Control links shall occur either between an object
and a process or between two processes.

An event link shall specify a source event and a destination process to activate upon event occurrence. The
event occurrence causes an evaluation of the process' precondition for satisfaction.

Satisfying the precondition allows process performance to proceed and the process becomes active. If the
process precondition is not satisfied, then process performance shall not occur. Regardless of whether the
evaluation is successful or not, the event shall be lost.

If the process precondition is not satisfied, process activation shall not occur until another event activates
the process. Control links determine if the process waits for another activating event or if the flow of
execution control bypasses the process.

Subsequent events can come from other sources to initiate precondition evaluation.

A condition link shall be a procedural link between a source object or object state and a destination process.
A condition link shall provide a bypass mechanism, which enables system execution control to skip, or
bypass, the destination process if its precondition satisfaction evaluation fails.

NOTE	 Without the condition link bypass mechanism, the failure to satisfy the precondition constrains the process
to wait for satisfaction of the precondition.

For both event links and condition links, each kind of incoming transforming link and enabling link, i.e. a link
from an object or object state to a process, shall have a corresponding kind of event link and condition link.

An exception link shall be a procedural link between a process that for some reason is unable to complete
successfully or takes more or less time to complete than expected, and a process that is to manage the
exception situation.

Since failure to complete successfully often results in undertime or overtime performance, exception links
can serve other situations. In addition, all non-time related exceptions can be modelled using value ranges
(see C.6 for such usage).

31

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Graphically, a control modifier appearing as an annotation next to an incoming transforming link or enabling
link, i.e. a link from an object or an object state to a process, shall denote the corresponding control link. The
symbol "e" annotation, signifying event, shall denote an event link and the symbol "c" annotation, signifying
condition, shall denote a condition link. The control modifier annotation for an exception link is one or two
short bars crossing the link near the exception managing process.

9.5.2	 Event links

9.5.2.1	 Transforming event links

9.5.2.1.1	 Consumption event link

A consumption event link shall be an annotated consumption link between an object and a process, which
an operational instance of the object initiates. Satisfaction of the process precondition and the subsequent
process performance shall consume the instance of the initiating object.

Graphically, an arrow with a closed arrowhead pointing from the object to the process with the small letter
"e" annotation near the arrowhead, signifying event, shall denote the consumption event link.

The syntax of a consumption event link OPL sentence shall be: Object initiates Process, which consumes
Object.

9.5.2.1.2	 Effect event link

An effect event link shall be an annotated portion of an effect link from an object to a process, which an
operational instance of the object initiates. Satisfaction of the process precondition and the subsequent
process performance shall affect the initiating object in some manner.

Graphically, a bidirectional arrow with closed arrowheads at each end between the object and the process
with a small letter "e" annotation near the process end of the arrow, signifying event, shall denote the effect
event link.

The syntax of an effect event link OPL sentence shall be: Object initiates Process, which affects Object.

9.5.2.1.3	 Transforming event links summary

Table 5 summarizes the transforming event links.

Table 5 — Transforming event link summary

Name Semantics Sample OPD and OPL Source Destination

Consumption
event link

The object initiates
the process, which, if
performed, con-
sumes the object.

initiating con-
sumee

initiated process,
which consumes
the initiating con-
sumee

Food initiates Eating, which con-
sumes Food.

Effect event link
The object initiates
the process, which,
if performed, affects
the object.

initiating
affectee

initiated process,
which affects the
initiating affecteeCopper initiates Purifying, which

affects Copper.
NOTE The event link is the link from the object to the process; the link from the process to the object is not an event link.

9.5.2.2	 Enabling event links

9.5.2.2.1	 Agent event link

An agent event link shall be an annotated enabling link from an agent object to the process that it initiates
and enables.

32

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Graphically, a line with a filled circle resembling a black lollipop at the terminal end extending from an
agent object to the process it initiates and enables with a small letter "e" annotation near the process end,
signifying event, shall denote an agent event link.

The syntax of an agent event link OPL sentence shall be: Agent initiates and handles Process.

9.5.2.2.2	 Instrument event link

An instrument event link shall be an annotated enabling link from an instrument object to the process that
it initiates and enables.

Graphically, a line with an empty circle resembling white lollipop at the terminal end extending from the
instrument object to the process it initiates and enables with a small letter "e" annotation near the process
end, signifying event, shall denote an instrument event link.

The syntax of an instrument event link OPL sentence shall be: Instrument initiates Process, which requires
Instrument.

9.5.2.2.3	 Enabling event link summary

Table 6 summarizes the enabling event links.

Table 6 — Enabling event link summary

Name Semantics Sample OPD and OPL Source Destination

Agent event
link

The agent—a
human—both initi-
ates and enables the
process. The agent
must exist through-
out the process
duration.

initiating
agent initiated processMiner initiates and handles Copper Min-

ing.

Instrument
event link

The object initiates
the process as an in-
strument, so it does
not change, but it
must exist through-
out the process
duration.

initiating
instrument initiated processDrill initiates Copper Mining, which re-

quires Drill.

9.5.2.3	 State-specified transforming event links

9.5.2.3.1	 State-specified consumption event link

A state-specified consumption event link shall be an annotated consumption link from a specified state
of an object to a process, which an operational instance of the object initiates. Satisfaction of the process
precondition, including the initiating object at the specified state, and the subsequent process performance
shall consume the initiating object.

Graphically, an arrow with a closed arrowhead pointing from the specified state of the object to the process
with the small letter "e" annotation near the arrowhead, signifying event, shall denote the state-specified
consumption event link.

The syntax of a state-specified consumption event link OPL sentence shall be: Specified-state Object
initiates Process, which consumes Object.

33

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

9.5.2.3.2	 Input-output-specified effect event link

An input-output-specified effect event link shall be an annotated input-output-specified effect link that
initiates the affecting process when an operational instance of the object enters the specified input source
state.

Graphically, the input-output-specified effect link with a small letter "e" annotation near the arrowhead end
of the input link, signifying event, shall denote the input-output-specified effect event link.

The syntax of an input-output-specified effect event link OPL sentence shall be: Input-state Object initiates
Process, which changes Object from input-state to output-state.

9.5.2.3.3	 Input-specified effect event link

An input-specified effect event link shall be an annotated input-specified effect link that initiates the
affecting process when an operational instance of the object enters the specified input source state.

Graphically, the input-specified effect link with a small letter "e" annotation at the arrowhead end of the
input link, signifying event, shall denote the input-specified effect event link.

The syntax of an input-specified effect event link OPL sentence shall be: Input-state Object initiates
Process, which changes Object from input-state.

9.5.2.3.4	 Output-specified effect event link

An output-specified effect event link shall be an annotated output-specified effect link that initiates the
affecting process when an operational instance of the object comes into existence.

Graphically, the output-specified effect link with a small letter "e" annotation at the arrowhead end of the
input link, signifying event, shall denote the output-specified effect event link.

The syntax of an output-specified effect event link OPL sentence shall be: Object in any state initiates
Process, which changes Object to destination-state.

9.5.2.3.5	 State-specified transforming event link summary

Table 7 summarizes the state-specific transforming event links.

34

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Table 7 — State-specified transforming event link summary

Name Semantics Sample OPD and OPL Source Destination

State-specified
consumption

event link

The object in the
specified state
both initiates the
process and is
consumed by it.

consumee
state

initiated pro-
cess

Edible Food initiates Eating, which con-
sumes Food.

Input-output
specified event

link pair

The object in the
specified state
both initiates the
process and is
transformed by
it to the output
state.

affectee
source state

initiates pro-
cess

Raw Copper initiates Purifying, which
changes Copper from raw to pure.

initiates pro-
cess

affectee desti-
nation state

Input-specified
effect link pair

The object in the
specified state
both initiates the
process and is
transformed by it
to any one of its
states.

affectee
source state

initiated pro-
cess

Awaiting test Sample initiates Testing,
which changes Sample from awaiting test.

initiates pro-
cess affectee

Output-speci-
fied event link

pair

The object (in any
one of its states)
both initiates the
process and is
transformed by
it to the output
state.

affectee initiates pro-
cess

Rusty Engine Hood initiates Cleaning &
Painting which changes Engine Hood to

painted
initiates pro-
cess

affectee desti-
nation state

9.5.2.4	 State-specified enabling event links

9.5.2.4.1	 State-specified agent event link

A state-specified agent event link shall be an annotated state-specified agent link that initiates the process
when an operational instance of the agent enters the specified state.

Graphically, the state-specified agent link with a small letter "e" annotation near the process end of the link,
signifying event, shall denote the state-specified agent event link.

The syntax of a state-specified agent event link OPL sentence shall be: Specified-state Agent initiates and
handles Processing.

35

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

9.5.2.4.2	 State-specified instrument event link

A state-specified instrument event link shall be an annotated state-specified instrument link that initiates
the process when an operational instance of the instrument enters the specified state.

Graphically, the state-specified instrument link with a small letter "e" annotation near the process end of the
link, signifying event, shall denote the state-specified instrument event link.

The syntax of a state-specified instrument event link OPL sentence shall be: Specified-state Instrument
initiates Processing, which requires specified-state Instrument."

9.5.2.4.3	 State-specified enabling event link summary

Table 8 summarizes the state-specified enabling event links.

Table 8 — State-specified enabling event link summary

Name Semantics Sample OPD and OPL Source Destination

State-specified
agent event link

The human agent in
the specified state
both initiates the
process and acts as its
agent.
The agent must be at
the specified state
throughout the pro-
cess duration.

agent state initiated process

Healthy Miner initiates and handles
Copper Mining.

State-specified
instrument
event link

The object at the
specified state both
initiates the process
and is instrument for
its performance.
The instrument must
be at the specified
state throughout the
process duration.

instrument
state initiated process

Operational Drill initiates Copper
Mining, which requires operational

Drill.

9.5.2.5	 Invocation links

9.5.2.5.1	 Process invocation and invocation link

Process invocation shall be an event by which a process initiates a process. An invocation link shall be a link
from a source process to the destination process that it invokes (initiates), signifying that when the source
process completes, it immediately initiates the destination process at the other end of the invocation link.

NOTE	 A normal or expected flow of execution control does not invoke a new process if the prior process does
not complete successfully. It is up to the modeller to take care of any process that aborts. C.6 provides several ways to
manage termination of a process because of a failure, especially C.6.8.

Since an OPM process performs a transformation, the invocation link semantically implies the creation of an interim
object by the invoking source process that the subsequent invoked destination process immediately consumes. In an
OPM model, an invocation link can replace a transient, short-lived physical or informatical object (such as Record ID in
a query), that a source process creates to initiate the destination process, which immediately consumes the transient
object.

36

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Graphically, a lightening symbol jagged line from the invoking source process to the invoked destination
process ending with a closed arrowhead at the invoked process shall denote an invocation link.

The syntax of an invocation link OPL sentence shall be: Invoking-process invokes invoked-process.

9.5.2.5.2	 Self-invocation link

Self-invocation shall be invocation of a process by itself, such that upon process completion, the process
immediately invokes itself. The self-invocation link shall specify self-invocation.

Graphically, a pair of invocation links, originating at the process and joining head to tail before ending back
at the original process shall denote the self-invocation link.

The syntax of a self-invocation link OPL sentence shall be: Invoking-process invokes itself.

9.5.2.5.3	 Invocation link summary

Table 9 summarizes the invocation links.

Table 9 — Invocation link summary

Name Semantics Sample OPD & OPL Source Destination

Invocation
link

As soon as the
invoking process
ends, it invokes
the process
pointed to by the
invocation link.

Initiating process Another initiat-
ed process

Product Finishing invokes Product Ship-
ping.

Self-invoca-
tion link

Upon process
completion, it
immediately
invokes itself.

Initiating process The same pro-
cess

Recurrent Processing invokes itself.

9.5.3	 Condition links

9.5.3.1	 Basic Condition transforming links

9.5.3.1.1	 Condition consumption link

A condition consumption link shall be an annotated consumption link from a consumee to a process.
If a consumee operational instance exists when an event initiates the process, then the presence of that
consumee operational instance satisfies the process precondition with respect to that object. If evaluation of
the entire preprocess object set satisfies the precondition, the process starts and consumes that consumee
instance. However, if a consumee operational instance does not exist when an event initiates the process,
then the process precondition evaluation fails and the flow of execution control bypasses, or 'skips', the
process without process performance.

Graphically, an arrow with a closed arrowhead pointing from the consumee to the process with the small
letter "c" annotation near the arrowhead, signifying condition, shall denote a condition consumption link.

The syntax of the condition consumption link OPL sentence shall be either:

—	 Process occurs if Object exists, in which case Object is consumed, otherwise Process is skipped, or

37

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

—	 If Object exists then Process occurs and consumes Object, otherwise bypass Process.

NOTE	 See 14.2.2.4.2 for additional detail regarding the semantics of "skip" and Figure C.25 for several examples.

9.5.3.1.2	 Condition effect link

A condition effect link shall be an annotated effect link from an affectee to a process. If an affectee object
operational instance exists when an event initiates the process, then the presence of that affectee instance
satisfies the process precondition with respect to that object. If evaluation of the entire preprocess object
set satisfies the precondition, the process starts and affects that affectee instance. However, if an affectee
operational instance does not exist when an event initiates the process, then the process precondition
evaluation fails and the flow of execution control bypasses, or 'skips' the process without process
performance.

Graphically, a bidirectional arrow with two closed arrowheads, one pointing in each direction between the
affectee and the affecting process, with the small letter "c" annotation near the process end of the arrow,
signifying condition, shall denote a condition effect link.

The syntax of the condition effect link OPL sentence shall be either:

—	 Process occurs if Object exists, in which case Process affects Object, otherwise Process is skipped, or,

—	 If Object exists then Process occurs and affects Object, otherwise bypass Process.

9.5.3.1.3	 Condition transforming link summary

Table 10 summarizes the condition transforming links.

Table 10 — Condition transforming link summary

Name Semantics Sample OPD and OPL Source Destination

Condition con-
sumption link

If an object operation-
al instance exists and
the rest of the process
precondition is satisfied,
then the process performs
and consumes the object
instance, otherwise exe-
cution control advances to
initiate the next process.

Conditioning
object

Conditioned
processProcess occurs if Object exists,

in which case Process consumes
Object, otherwise Process is

skipped.

Condition effect
link

If an object operational
instance exists and the
rest of the process pre-
condition is satisfied, then
the process performs and
affects the object instance,
otherwise execution con-
trol advances to initiate
the next process.

Conditioning
object

Conditioned
processProcess occurs if Object exists, in

which case Process affects Object,
otherwise Process is skipped.

9.5.3.2	 Basic condition enabling links

9.5.3.2.1	 Condition agent link

A condition agent link shall be an annotated agent link from an agent to a process. If an agent operational
instance exists when an event initiates the process, then the presence of that agent instance satisfies the
process precondition with respect to that object. If evaluation of the entire preprocess object set satisfies
the precondition, the process starts and that agent handles its performance. However, if an agent operational
instance does not exist when an event initiates the process, then the process precondition evaluation fails
and the flow of execution control bypasses, or 'skips' the process without process performance.

38

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Graphically, a line with a filled circle resembling a black lollipop at the terminal end extending from an
agent object to the process it enables, with the small letter "c" annotation near the process end, signifying
condition, shall denote a condition agent link.

The syntax of the condition agent link OPL sentence shall be either:

—	 Agent handles Process if Agent exists, else Process is skipped, or,

—	 If Agent exists then Agent handles Process, otherwise bypass Process.

9.5.3.2.2	 Condition instrument link

A condition instrument link shall be an annotated instrument link from an instrument to a process. If
an instrument operational instance exists when an event initiates the process, then the presence of that
instrument instance satisfies the process precondition with respect to that object. If evaluation of the entire
preprocess object set satisfies the precondition, the process starts. However, if an instrument operational
instance does not exist when an event initiates the process, then the process precondition evaluation fails
and the flow of execution control bypasses, or 'skips' the process without process performance.

Graphically, a line with an empty circle resembling a white lollipop at the terminal end, extending from
an instrument object to the process it enables, with the small letter "c" annotation near the process end,
signifying condition, shall denote a condition instrument link.

The syntax of the condition instrument link OPL sentence shall be either:

—	 Process occurs if Instrument exists, else Process is skipped, or,

—	 If Instrument exists then Process occurs, otherwise bypass Process.

EXAMPLE	 Figure 13 is an OPD with a condition instrument link from Nearby Mobile Device to Cellular Network
Signal Amplifying, which occurs only if an environmental object Nearby Mobile Device exists and is otherwise
skipped, as there is no point in amplifying if no device is nearby.

 Cellular Network Signal Amplifying occurs if Nearby
Mobile Device exists, otherwise Cellular Network Signal
Amplifying is skipped.

Figure 13 — Condition instrument link (with partial OPL)

9.5.3.2.3	 Basic condition enabling link summary

Table 11 summarizes the condition enabling links.

39

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Table 11 — Condition enabling link summary

Name Semantics Sample OPD and OPL Source Destination

Agent
con-

dition
link

The agent ena-
bles the process
if the agent is
present, other-
wise the process
is skipped.

Condition-
ing agent

Conditioned
process

Engineer handles Part Designing if Engi-
neer is present, otherwise Part Designing

is skipped.

Instru-
ment
con-

dition
link

The instru-
ment enables
the process if it
exists, otherwise
the process is
skipped.

Condition-
ing instru-
ment

Conditioned
process

Precise Measuring occurs if LASER Meter
exists, otherwise Precise Measuring is

skipped.

9.5.3.3	 Condition state-specified transforming links

9.5.3.3.1	 Condition state-specified consumption link

A condition state-specified consumption link shall be an annotated condition consumption link from a
specified state of a consumee to a process. If an operational instance of the consumee at the specified state
exists when an event initiates the process, then the presence of that consumee instance satisfies the process
precondition with respect to that object. If evaluation of the entire preprocess object set satisfies the
precondition, the process starts and consumes that consumee instance. However, if an operational instance
of a consumee in the specified state does not exist when an event initiates the process, then the process
precondition evaluation fails and the flow of execution control bypasses, or 'skips', the process without
process performance.

Graphically, an arrow with a closed arrowhead pointing from the specified state of the consumee to the
process with the small letter "c" annotation near the arrowhead, signifying condition, shall denote a
condition state-specified consumption link.

The syntax of the condition state-specified consumption link OPL sentence shall be either:

—	 Process occurs if Object is specified-state, in which case Object is consumed, otherwise Process is
skipped, or,

—	 If specified-state Object exists then Process occurs and consumes Object, otherwise bypass Process.

9.5.3.3.2	 Condition input-output-specified effect link

A condition input-output-specified effect link shall be an annotated input-output-specified effect link from
a source input state to a process. If an operational instance of the affectee at the specified state exists when
an event initiates the process, then the presence of that affectee instance satisfies the process precondition
with respect to that object. If evaluation of the entire preprocess object set satisfies the precondition, the
process starts and affects that object operational instance by changing the state of the instance from the
specified input state to the specified output state. However, if an operational instance of an affectee at the
specified state does not exist when an event initiates the process, then the process precondition evaluation
fails and the flow of execution control bypasses, or 'skips', the process without process performance.

Graphically, the condition input-output-specified effect link with the small letter "c" annotation near the
arrowhead of the input link, signifying condition, shall denote a condition input-output-specified effect link.

40

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

The syntax of the condition input-output-specified effect link OPL sentence shall be either:

—	 Process occurs if Object is input-state, in which case Process changes Object from input-state to
output-state, otherwise Process is skipped, or,

—	 If input-state Object then Process changes Object from input-state to output-state, otherwise bypass
Process.

9.5.3.3.3	 Condition input-specified effect link

A condition input-specified effect link shall be an annotated input-specified effect link from a source input
state to a process. If an operational instance of the affectee at the specified state exists when an event
initiates the process, then the presence of that affectee instance satisfies the process precondition with
respect to that object. If evaluation of the entire preprocess object set satisfies the precondition, the process
starts and affects that object instance by changing the state of the instance from the specified input state
to a destination state. The destination state shall be either its default state or, if the object does not have a
default state, the state probability distribution of the object shall determine the output destination state of
that object (see 12.7). However, if an operational instance of an affectee at the specified state does not exist
when an event initiates the process, then the process precondition evaluation fails and the flow of execution
control bypasses, or 'skips', the process without process performance.

Graphically, the condition input-specified effect link with the small letter "c" annotation near the arrowhead
of the input link, signifying condition, shall denote the condition input-specified effect link.

The syntax of a condition input-specified effect link OPL sentence shall be either:

—	 Process occurs if Object is input-state, in which case Process changes Object from input-state,
otherwise Process is skipped, or,

—	 If input-state Object then Process changes Object from input-state, otherwise bypass Process.

9.5.3.3.4	 Condition output-specified effect link

A condition output-specified effect link shall be an annotated output-specified effect link from a source
object to a process. If an operational instance of the affectee exists when an event initiates the process,
then the presence of that affectee instance satisfies the process precondition with respect to that object.
If evaluation of the entire preprocess object set satisfies the precondition, the process starts and affects
that object instance by changing the state of the instance to the specified output-state. However, if an
operational instance of an affectee does not exist when an event initiates the process, then the process
precondition evaluation fails and the flow of execution control bypasses, or 'skips', the process without
process performance.

Graphically, the condition output-specified effect link with the small letter "c" annotation near the arrowhead
of the input link, signifying condition, shall denote a condition output-specified effect link.

The syntax of the condition output-specified effect OPL sentence shall be: either

—	 Process occurs if Object exists, in which case Process changes Object to output-state, otherwise
Process is skipped, or,

—	 If Object exists then Process changes Object to output-state, otherwise bypass Process.

9.5.3.3.5	 Condition state-specified transforming link summary

Table 12 summarizes the condition state-specific transforming links.

41

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Table 12 — Condition state-specified transforming link summary

Name Semantics Sample OPD and OPL Source Destination

Condition
state-specified
consumption

link

The process performs
if the object is in the
state from which the
link originates, oth-
erwise the process is
skipped.

conditioning
specified state
of the object

conditioned
process

Testing occurs if Raw Material Sam-
ple is pre-approved, in which case

Raw Material Sample is consumed,
otherwise Testing is skipped.

Condition
input-out-

put-specified
effect link

The process performs
if the object is in the
input state (from
which the link orig-
inates) and changes
the object from its
input state to its out-
put state, otherwise
the process is skipped.

conditioning
specified input
state of the
object

conditioned
process

Testing occurs if Raw Material is
pre-tested, in which case Testing

changes Raw Material from pre-test-
ed to tested, otherwise Testing is

skipped.

Condition
input-specified

effect link

The process performs
if the object is in the
input state (from
which the link orig-
inates) and changes
the object from its
input state to any one
of its states, otherwise
the process is skipped.

conditioning
specified input
state of the
object

conditioned
process

Delivery Attempting occurs if Mes-
sage is created, in which case Delivery

Attempting changes Message from
created, otherwise Delivery Attempt-

ing is skipped.

42

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Name Semantics Sample OPD and OPL Source Destination

Condition out-
put-specified

effect link

The process performs
if the object exists and
changes the object
from its input state to
any one of its states,
otherwise the process
is skipped.

conditioning
object

conditioned
process

Stress Testing occurs if Suspicious
Component exists, in which case

Stress Testing changes Suspicious
Component to stress-tested, other-

wise Stress Testing is skipped.

9.5.3.4	 Condition state-specified enabling links

9.5.3.4.1	 Condition state-specified agent link

A condition state-specified agent link shall be an annotated state-specified agent link from a specified state
of an agent to a process. If an operational instance of the agent at the specified state exists when an event
initiates the process, then the presence of that agent instance satisfies the process precondition with respect
to that object. If evaluation of the entire preprocess object set satisfies the precondition, the process starts
and that agent handles operation. However, if an operational instance of an agent in the specified state does
not exist when an event initiates the process, then the process precondition evaluation fails and the flow of
execution control bypasses, or 'skips', the process without process performance.

Graphically, the state-specified agent link with a small letter "c" annotation near the process end, signifying
condition, shall denote a condition state-specified agent link.

The syntax of the condition state-specified agent link OPL sentence shall be either:

—	 Agent handles Process if Agent is specified-state, else Process is skipped, or,

—	 If specified-state Agent exists then Agent handles Process, otherwise bypass Process.

9.5.3.4.2	 Condition state-specified instrument link

A condition state-specified instrument link shall be an annotated state-specified instrument link from a
specified state of an instrument to a process. If an operational instance of the instrument at the specified
state exists when an event initiates the process, then the presence of that instrument instance satisfies the
process precondition with respect to that object. If evaluation of the entire preprocess object set satisfies
the precondition, the process starts. However, if an operational instance of an instrument in the specified
state does not exist when an event initiates the process, then the process precondition evaluation fails and
the flow of execution control bypasses, or 'skips', the process without process performance.

Graphically, the state-specified instrument link with a small letter "c" annotation near the process end,
signifying condition, shall denote a condition state-specified instrument link.

The syntax of the condition state-specified instrument link OPL sentence shall be either:

—	 Process occurs if Instrument is specified-state, otherwise Process is skipped, or,

—	 If specified-state Instrument then Process occurs, otherwise bypass Process.

Table 12 (continued)Table 12 (continued)

43

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

9.5.3.4.3	 Condition state-specified enabling link summary

Table 13 summarizes the condition state-specified enabling links.

Table 13 — Condition state-specified enabling link summary

Name Semantics Sample OPD and OPL Source Destination

State-specified
agent condi-

tion link

The agent enables
the process if the
agent is in the
specified state, oth-
erwise the process
is skipped.

conditioning
specified state
of agent

conditioned
process

Engineer handles Critical Part Design-
ing if Engineer is safety design author-
ized, otherwise Critical Part Designing

is skipped.

State-specified
instrument
condition link

The instrument en-
ables the process if
it is in the specified
state, otherwise the
process is skipped.

conditioning
specified state
of instrument

conditioned
process

Ultra-Precision Measuring occurs if
LASER Meter is periodically calibrated,

otherwise Ultra-Precise Measuring is
skipped.

9.5.4	 Exception links

9.5.4.1	 Minimal, Expected, and Maximal Process Duration and Duration Distribution

A process may have a Duration attribute with a value that expresses units of time. Duration may specialize
into Minimal Duration, Expected Duration, and Maximal Duration.

Minimal Duration and Maximal Duration should designate the minimum and maximum allowable time
units for process completion. Expected Duration of a process should be the statistical mean of the duration
of that process.

Duration may have an optional Duration Distribution property with a value identifying the name and
parameters for a probability distribution function associated with the process duration. At run-time, the
value of Duration is determined separately for each process instance (i.e. for each individual process
occurrence) by sampling from the process Duration Distribution.

NOTE	 See Annex C for process duration and system time run-time discussion and examples.

9.5.4.2	 Overtime exception link

The overtime exception link shall connect the source process with an overtime handling destination process
to specify that if at runtime, performance of the source process instance exceeds its Maximal Duration
value, then an event initiates the destination process.

Graphically, a single short bar, oblique to the line connecting the source and destination processes and next
to the destination process, shall denote the overtime exception link.

44

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Given that, max-duration is the value of Maximal Duration, and time-unit is an allowable time
measurement unit, the syntax of the overtime exception link shall be: Overtime Handling Destination
Process occurs if duration of Source Process exceeds max-duration time-units.

9.5.4.3	 Undertime exception link

The undertime exception link shall connect the source process with an undertime handling destination
process to specify that if at runtime, performance of the source process instance takes less than its Minimal
Duration value, then an event initiates the destination process.

Graphically, two parallel short bars, oblique to the line connecting the source and destination processes and
next to the destination process, shall denote the undertime exception link.

Given that, min-duration is the value of Minimal Duration, and time-unit is an allowable time measurement
unit, the syntax of the undertime exception link shall be: Undertime Handling Destination Process occurs
if duration of Source Process falls short of min-duration time-units.

NOTE	 Similar to the invocation link, the two (2) time exception links are procedural links that connect two
processes directly, unlike most procedural links, which connect an object and a process. There is, in fact, an interim
object Overtime Exception Message or an Undertime Exception Message created by the OPM's process execution
mechanism realizing the process failed to end by the maximal allotted time or ended prematurely, falling short of the
minimal allotted time, respectively. Since the OPM operational mechanism creates and immediately consumes these
objects, their depiction is not necessary in the model.

10	 Structural links

10.1	 Kinds of structural links

Structural links specify static, time-independent, long-lasting relations in the system. A structural link
shall connect two or more objects or two or more processes, but not an object and a process, except in the
case of an exhibition-characterization link (see 10.3.3). The two kinds of structural links shall be tagged
structural links and fundamental structural links of aggregation-participation, exhibition-characterization,
generalization-specialization, and classification-instantiation.

10.2	 Tagged structural link

10.2.1	 Unidirectional tagged structural link

A unidirectional tagged structural link shall have a user-defined semantics regarding the nature of the
relation from one thing to the other thing. A meaningful tag, in the form of a textual phrase, shall express the
nature of the structural relation between the connecting objects or connecting processes. The tag should
convey that meaning when placed in the OPL sentence.

Graphically, an arrow with an open arrowhead and a tag annotation near the shaft shall denote a
unidirectional tagged structural link.

The syntax of the unidirectional tagged structural link OPL sentence shall be: Source-thing tag Destination-
thing.

NOTE	 Since the tag is a label added to the model by the modeller, in the OPL sentence the tag phrase appears in
bold font to distinguish it from other words implicit in the syntactic construction.

10.2.2	 Unidirectional null-tagged structural link

A unidirectional null-tagged structural link shall be a unidirectional tagged structural link with no tag
annotation, signifying the use of the default unidirectional tag. The default tag shall be "relates to".

The syntax of the unidirectional null-tagged structural link OPL sentence shall be: Source-thing relates to
Destination-thing.

45

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

The modeller should have the option of setting the default unidirectional tag, which does not appear in bold
font letters, for a specific system or a set of systems.

10.2.3	 Bidirectional tagged structural link

Because relations between things are bidirectional, every tagged structural link has a corresponding tagged
structural link in the opposite direction. When the tags in both directions are meaningful and not just the
inverse of each other, they may be annotated by two tags on either side of a single bidirectional tagged
structural link.

Graphically, as depicted in Figure 14 example, a line with harpoon shaped arrowheads on opposite sides at
both ends of the link shall denote a bidirectional tagged structural link. Each tag shall align on the side of
the arrow with the harpoon edge sticking out of the arrowhead, unambiguously determining the direction
in which each relation applies.

The syntax of the resulting tagged structural link shall be two separate unidirectional tagged structural
link OPL sentences, one for each direction.

EXAMPLE	

 Airport serves City.
Highway surrounds City.
Highway passes through Underwater Tunnel.
Underwater Tunnel enables traffic flow in Highway.

Figure 14 — Two kinds of tagged structural links

10.2.4	 Reciprocal tagged structural link

A reciprocal tagged structural link shall be a bidirectional tagged structural link with only one tag or no tag.
In either case, reciprocity shall indicate that the tag of a bidirectional structural link has the same semantics
for each direction of the relation. When no tag appears, the default tag shall be "are related".

The syntax of the reciprocal tagged structural link with only one tag shall be: Source-thing and Destination-
thing are reciprocity-tag.

The syntax of the reciprocal tagged structural link with no tag shall be: Source-thing and Destination-
thing are related.

EXAMPLE	 In Figure 15, on the right is the reciprocal structure link equivalent to the bidirectional tagged
structure link on the left, which has the same tag in each direction.

46

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 a) Bidirectional b) Equivalent reciprocal tagged structural
link

 Engine is attached to Gearbox.
Gearbox is attached to Engine.

Engine and Gearbox are attached.

Figure 15 — Bidirectional and its equivalent reciprocal tagged structural link

NOTE	 As shown in Figure 15, a change in verb or noun form from that of the bidirectional tagged structural link is
usually necessary to accommodate the reciprocal tagged structural link syntax.

10.3	 Fundamental structural relations

10.3.1	 Kinds of fundamental structural relations

The fundamental structural relations are the most prevalent structural relations among OPM things and are
of particular significance for specifying and understanding systems. Each of the fundamental relations shall
elaborate or refine one source thing, the refineable, into a collection of one or more destination things, the
refinees.

The fundamental structural relations shall be:

—	 Aggregation-participation, which designates the relation between a whole and its parts;

—	 Exhibition-characterization, which designates the relation between an exhibitor, a thing exhibiting one
or more features (attributes and/or operations), and the things that characterize the exhibitor;

—	 Generalization-specialization, which designates the relation between a general thing and its
specializations;

—	 Classification-instantiation, which designates the relation between a class of things and a refinee
instance of that class.

Aggregation, exhibition, generalization, and classification shall be the refinement relation identifiers, i.e.
the identifiers associated with the relation as seen from the perspective of the refineable. Participation,
characterization, specialization, and instantiation shall be the corresponding complementary relation
identifiers, i.e. the relation identifiers as seen from the perspective of their refinees.

With the exception of exhibition-characterization, the refinee destination things shall all have the same
Perseverance value as the refineable source thing, i.e. either all are objects with static Perseverance or all
are processes with dynamic Perseverance.

Folding the refines shall be the hiding of those refines of a refineable, and unfolding the refineable shall be
the expressing of the refinees of that refineable (see 14.2.1.2).

Because the fundamental structural relations are bidirectional, the associated OPL paragraph can provide
sentences for each direction. However, since one of these sentences is always the consequence of the other,
the OPL expression of a fundamental structural relation shall be limited to one of the two possible sentences.
The presentation of each kind of fundamental structural relation includes the specification of the default OPL
sentence for only one of the two possible sentences. Table 14 in 10.3.6 summarizes these default sentences.

47

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

The collection of refinees modelled for some refineable in some OPD may be complete or incomplete, i.e.
the graphical figure explicitly depicts, and the corresponding text explicitly expresses, only those things
relevant to the OPD in which the structural link appears.

10.3.2	 Aggregation-participation relation link

The fundamental structural relation aggregation-participation shall mean that a refineable, the whole,
aggregates one or more refinees, the parts.

Graphically, as depicted in Figure 16, a black solid (filled in) triangle with its apex connecting by a line to
the whole and the parts connecting by lines to the opposite horizontal base shall denote the aggregation-
participation relation link.

The syntax of the aggregation-participation relation link shall be: Whole-thing consists of Part-thing1,
Part-thing2, …, and Part-thingn.

EXAMPLE 1	

Resource Description Framework Statement consists of Subject, Predicate, and Object.

Figure 16 — Aggregation-participation relation link

When the representation of the collection of parts at the particular extent of detail is incomplete, the
aggregation-participation relation link shall signify the incomplete representation with an annotation.

Graphically, a short horizontal bar crossing the vertical line below the black triangle shall denote the
incomplete aggregation-participation relation link.

The syntax of the aggregation-participation relation link indicating a partial collection of parts where at
least one part is missing shall be: Whole-thing consists of Part-thing1, Part-thing2,… Part-thingk, and at
least one other part.

EXAMPLE 2	 In Figure 17, Object from Figure 16 is missing. The short horizontal bar crossing the vertical line below
the black triangle denotes the missing thing.

Resource Description Framework Statement consists of Subject, Predicate, and at least one other part.

Figure 17 — Aggregation-participation relation link example with partial refinee set

48

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

EXAMPLE 3	 On the left in Figure 18, the Consuming process consumes the Whole along with its Part B and Part
D, while Part A and Part C remain as separate objects. On the right in Figure 18, the terse version using partial
aggregation shows the Consuming process consumes the Whole and only Part B and Part D, while other parts of the
Whole remain as distinct objects.

Figure 18 — Partial aggregation consumption

A tool should keep track of the set of refinees for each refineable and adjust the symbol and corresponding
OPL sentences (specified below for each fundamental structural relation link) as the modeller changes the
collection of refinees.

10.3.3	 Exhibition-characterization link

10.3.3.1	 Exhibition-characterization relation link expression

The fundamental structural relation exhibition-characterization shall mean that a refineable, the exhibitor,
exhibits one or more features that characterize the exhibitor, the refinees. The features shall characterize
the exhibitor.

A feature shall be a thing. An attribute shall be a feature that is an object. An operation shall be a feature that
is a process. A process exhibitor and an object exhibitor shall each have at least one feature and may have
both attributes, their object features, and operations, their process features.

The exhibition-characterization relation can combine the four exhibitor-feature combinations of object and
process (see Figure 19).

49

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

a) b)

Object Exhibitor exhibits Attribute.
Process Exhibitor exhibits Attribute.

Object Exhibitor exhibits Operation.
Process Exhibitor exhibits Operation.

Figure 19 — The four exhibition-characterization feature combinations

Graphically, a smaller black triangle inside a larger empty triangle with that larger triangle's apex connecting
by a line to the exhibitor and the features connecting to the opposite (horizontal) base shall denote the
exhibition-characterization relation link (see Figure 19).

The syntax of the exhibition-characterization relation link for an object exhibitor with a complete collection
of n attributes and m operations shall be: Object-exhibitor exhibits Attribute1, Attribute2, … , and
Attributen, as well as Operation1, Operator2, … , Operatorm.

The syntax of the exhibition-characterization relation link for a process exhibitor with a complete collection
of n operation features and m attribute features shall be: Process-exhibitor exhibits Operation1,
Operator2, … , Operatorn, as well as Attribute1, Attribute2, …, and Attributem.

NOTE	 In the OPL for exhibition-characterization, for an object exhibitor the list of attributes precedes the list of
operations, while for a process exhibitor the list of operations precedes the list of attributes.

When the representation of the collection of features at the particular extent of detail is incomplete, the
exhibition-characterization relation link shall signify the incomplete representation with an annotation.

Graphically, a short horizontal bar crossing the vertical line below the larger empty triangle denotes the
incomplete exhibition-characterization relation link.

The syntax of the exhibition-characterization relation link for an object exhibitor with a partial collection
of j attribute features and k operation features shall be: Object-exhibitor-thing exhibits Attribute1,
Attribute2, …, Attributej, and at least one other attribute, as well as Operation1, Operator2, …, Operatork,
and at least another operation.

The syntax of the exhibition-characterization relation link for a process exhibitor with a partial collection of
j operation features and k attribute features shall be: Process-exhibitor exhibits Operation1, Operator2,
… , Operatorj, and at least another operation, as well as Attribute1, Attribute2, …, Attributek, and at least
one other attribute.

EXAMPLE	 Figures 20 through 23 show the four exhibitor-feature combinations of object and process.

50

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 a) Material exhibits Spe-
cific Weight.

b) Person exhibits
Age.

c) Chemical Ele-
ment exhibits Atomic
Weight.

d) Laptop exhibits Manu-
facturer.

Figure 20 — Object attribute examples

 a) Airplane exhibits
Flying.

b) Person exhibits
Walking.

c) Printer exhibits
Printing.

d) Dog exhibits Watching.

Figure 21 — Object exhibitor with operation examples

 a) Diving exhibits
Depth.

b) Commanding exhib-
its Language.

c) Printing exhibits
Printer.

d) Striking exhibits Dura-
tion.

Figure 22 — Process exhibitor with attribute examples

51

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 a) Moving exhibits
Accelerating.

b) Fluctuating exhibits
Stabilizing.

c) Transmitting exhib-
its Delaying.

d) Communicating exhibits
Interfering.

Figure 23 — Process exhibitor with operation examples

A tool should keep track of the set of refinees for each refineable and adjust the symbol and corresponding
OPL sentences (specified below for each fundamental structural relation link) as the modeller changes the
collection of refinees.

10.3.3.2	 Attribute state and exhibitor features

10.3.3.2.1	 Attribute state as value

An attribute state, i.e. a state of the object that is the refinee attribute, shall be a value for that attribute. The
static, conceptual model, shall identify all possible values for the attribute. Some may be ranges of values,
while the dynamic, operational instance model shall indicate the actual attribute value at the time of the
attribute's inspection (see EXAMPLE 1 and EXAMPLE 2 in 10.3.5.1.).

10.3.3.2.2	 Expressing exhibitor-feature relation

When expressing features or values for an attribute, the model shall identify the exhibitor of that feature
or value. To specify the exhibitor of the feature, the relation "of" shall occur in OPL sentences between the
feature and its exhibitor.

The syntax for an OPL sentence identifying the exhibitor-feature relation shall be: Feature of Exhibitor …

EXAMPLE 1	 In Figure 27, the OPL sentence indicating the ownership of the attribute Specific Weight by its Metal
Powder Mixture exhibitor is: Specific Weight in gr/cm3 of Metal Powder Mixture ranges from 7,545 to 7,537.

EXAMPLE 2	 In Figure 25, the OPL sentence indicating the ownership of the attribute Travelling Medium by its
Ship exhibitor is: Travelling Medium of Ship is water surface.

10.3.4	 Generalization-specialization and Inheritance

10.3.4.1	 Generalization-specialization relation link

The fundamental structural relation generalization-specialization shall mean that a refineable, the general,
generalizes two or more refinees, which are specializations of the general. The generalization-specialization
relation binds one or more specializations with the same Perseverance as the general, such that both the
general and all its specializations are objects or the general and all its specializations are processes.

Graphically, as shown in the examples of Figure 24, an empty triangle with its apex connecting by a line to
the general and the specializations connecting by lines to the opposite base shall denote the generalization-
specialization relation link

For a complete collection of n specializations of a general that is an object, the syntax of the generalization-
specialization relation link OPL sentence shall be: Specialization-object1, Specialization-object2, …, and
Specialization-objectn are General-object.

52

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

For a complete collection of n specializations of a general that is a process, the syntax of the generalization-
specialization relation link OPL sentence shall be: Specialization-process1, Specialization-process2, …,
and Specialization-processn are General-process.

When the representation of the collection of specializations at the particular extent of detail is incomplete,
the generalization-specialization relation link shall signify the incomplete representation with an
annotation.

Graphically, a short horizontal bar crossing the vertical line below the empty triangle shall denote the
incomplete generalization-specialization relation link.

For an incomplete set of k specializations of a general that is an object, the syntax of the generalization-
specialization relation link OPL sentence shall be: Specialization-object1, Specialization-object2, …,
Specialization-objectk, and other specializations are General-object.

For an incomplete set of k specializations of a general that is a process, the syntax of the generalization-
specialization relation link OPL sentence shall be: Specialization-process1, Specialization-process2, …,
Specialization-processk, and other specializations are General-process.

EXAMPLE	

a) Digital Camera is a Camera. b) Hunting is Food Gathering.

c) Analog Camera and Digital Camera are Cameras. d) Hunting and Fishing are Food Gathering.

Figure 24 — Single and plural specializations of objects and processes

A tool should keep track of the set of refinees for each refineable and adjust the symbol and corresponding
OPL sentences for each fundamental structural relation link as the modeller changes the collection of
refinees.

10.3.4.2	 Inheritance through specialization

Inheritance shall be assignment of OPM elements, things and links, of a general to its specializations.

A specialization thing shall inherit from the general thing through the generalization-specialization link
each of the following four kinds of inheritable elements that exist:

—	 all the parts of a general from its aggregation-participation link;

—	 all the features of the general from its exhibition-characterization link;

—	 all the tagged structural links to which the general connects;

53

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

—	 all the procedural links to which the general connects.

OPM shall provide the opportunity for multiple inheritances by allowing a thing to inherit from more than
one general thing each of the refines - the four inheritable elements (participants, features, tagged structural
links, and procedural links) that exist for that general thing.

The modeller may override any of the participants of the general thing, which are by default inherited by the
specialization, by specifying for any participant inherited from a general, a specialization of that participant
with a different name and a different set of states (see 10.3.4.3 below).

NOTE	 When a generalization-specialization relation link exists, at runtime the specialized thing instance does
not exist in the absence of the more general thing instance that it specializes and from which it inherits each of the
four kinds of inheritable elements.

To create a general from one or more candidate specializations, the inheritable elements common to each of
the candidates shall be migrated to a generalization thing. The manipulation of inheritable elements shall be
as follows:

—	 Combine all of the common features and common participants of the specializations into one newly
created general;

—	 Connect the new general using the generalization-specialization relation link to the specializations;

—	 Remove from the specializations all of the common features and common participants, which the
specializations now inherit from the new general;

—	 Migrate any common tagged structural links and any common procedural link edge that connects to all
the specializations from the specializations to the general.

10.3.4.3	 Specialization restriction through discriminating attribute

The possible values of an attribute inherited from a general may restrict the permissible value of a
specialization. An inherited attribute with different values that constrain distinct values for corresponding
specialization characteristics shall be a discriminating attribute.

NOTE	 A specialization inherits the features, and possible attribute values, of its generalization. Elaborating
the general through refinement allows for a more precise valuation of inherited attributes, including specification
of attribute value appropriate for the specialization's characterization through the exhibition-characterization
refinement that it inherits (see also 10.4.1)

EXAMPLE 1	 Figure 25 shows an OPD in which Vehicle exhibits the attribute Travelling Medium with values
ground, air, and water surface. Travelling Medium is the discriminating attribute of Vehicle, because it constrains
the specializations of Vehicle to values of its Travelling Medium. Vehicle has specializations Car, Aircraft, and Ship,
with the corresponding Travelling Medium values ground, air, and water surface.

54

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 Vehicle exhibits Travelling Medium.
Travelling Medium of Vehicle can be ground, air, and water surface.
Car, Aircraft, and Ship are Vehicles.
Travelling Medium of Car is ground.
Travelling Medium of Aircraft is air.
Travelling Medium of Ship is water surface.

Figure 25 — The discriminating attribute Travelling Medium and its specializations

A general may have more than one discriminating attribute. The maximum number of specializations with
more than one discriminating attribute shall be the Cartesian product of the number of possible values for
each discriminating attribute, where some combination of attribute values can be invalid.

EXAMPLE 2	 Extending the content of Figure 25, another attribute of Vehicle can be Purpose with the two values
civilian and military. Based on these two values, there are two Vehicle specializations: civilian Vehicle and military
Vehicle. Due to multiple inheritance, the result is an inheritance lattice where the number of the most detailed
specializations would be 3 X 2 = 6 as follows: civilian Car, civilian Aircraft, civilian Ship, military Car, military
Aircraft, and military Ship.

10.3.5	 Classification-instantiation link

10.3.5.1	 Classification-instantiation relation link

The fundamental structural relation classification-instantiation shall mean that a refineable, the class,
classifies one or more refinees, the instances of the classification. The classification, which is an object class
or a process class, is a source pattern for a thing connecting with one or more destination things, which
are instances of the source thing's pattern, i.e. the qualities the pattern specifies acquire explicit values to
instantiate the instance thing. This relation provides the modeller with an explicit mechanism for expressing
the relationship between a class and its instances, which the provisioning of values creates.

NOTE 1	 The use of the term instance when considering members of the instance set of a conceptual class are
referred to as 'refinee instances' to distinguish them from 'operational instances' of an operating model. For every
refinee instance, there are one or more operational instances possible.

NOTE 2	 All OPM things expressed in a conceptual model are a class pattern for instances of that thing intended
to occur during model evaluation or operation. By creating a thing in the conceptual model, the modeller is implying
that at least one operational instance of that thing or a specialization of that thing can exist at some time during the
system's operation.

55

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

If the class pattern includes an exhibition-characterization link specifying a refinee attribute with a
permissible range of values, then the corresponding attribute value of each operational instance of a refinee
instance of that class shall be within the value range specification of its class attribute feature.

Graphically, a small black circle inside an otherwise empty larger triangle with apex connecting by a line to
the class thing and the instance things connecting by lines to the opposite base shall denote the classification-
instantiation relation link.

The syntax of the classification-instantiation relation link between an object class and a single instance shall
be: Instance-object is an instance of Class-object.

The syntax of the classification-instantiation relation link between a process class and a single instance
shall be: Instance-process is an instance of Class-process.

The syntax of the classification-instantiation relation link between an object class and n instances shall be;
Instance-object1, Instance-object2, …, Instance-objectn are instances of Class-object.

The syntax of the classification-instantiation relation link between a process class and n instances shall be;
Instance-process1, Instance-process2, …, Instance-processn are instances of Class-process.

NOTE 3	 Since the number of instances of any class can be unknown a priori and can vary during operation of the
system, there is no distinction between complete and incomplete collections of destination things for the classification-
Instantiation relation.

EXAMPLE 1	 In Figure 26, Adult is a class with three attributes: Gender, with possible values female and male,
Height in cm, with possible values 120..240, and Weight in kg, with possible values 40..240. Jack Robinson is an
instance of Adult, with Gender value male, Height in cm value 185 and Weight in kg value 88.

a) Class b) Instance

Adult exhibits Gender, Height in cm, and Weight in Kg.
Gender of Adult can be female or male.
Height in cm of Adult ranges from 120 to 240.
Weight in Kg of Adult range from 40 to 240.

Jack Robinson is an instance of Adult.
Gender of Jack Robinson is male.
Height in cm of Jack Robinson is 185.
Weight in kg of Jack Robinson is 88.

Figure 26 — Classification-Instantiation with value range

EXAMPLE 2	 The OPD on the left hand side of Figure 27 is a conceptual model of Metal Powder Mixture, indicating
that its Specific Weight attribute value can range from 7,545 to 7,537 gr/cm3. On the right side of Figure 27 is an
operational instance (runtime) model of Metal Powder Mixture Instance, indicating that its Specific Weight
attribute value is 7,555 gr/cm3. This value is within the allowable range.

56

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 Metal Powder Mixture exhibits Specific Weight in gr/cm3.
Specific Weight in gr/cm3 of Metal Powder Mixture ranges from 7,545 to 7,537.
Mixture Lot #7545 is an instance of Metal Powder Mixture.
Specific Weight in gr/cm3 of Mixture Lot #7545 is 7,555.

Figure 27 — Attribute state as value: conceptual versus operational models

NOTE 4	 The OPL sentence "Mixture Lot #7545 exhibits Specific Weight in gr/cm3.", is not present in the OPL
of Figure 27 because that sentence is implicit from the expressed fact "Mixture Lot #7545 is an instance of Metal
Powder Mixture.", and therefore Mixture Lot #7545 inherits this attribute from Metal Powder Mixture.

10.3.5.2	 Instances of object class and process class

An object class and a process class shall be two distinct kinds of classes. An instance of a class shall be an
incarnation of a particular identifiable instance of that class with the same classification identifier.

A single refinee object shall be an object instance, while the pattern of object, to which all of the instances
adhere, shall be an object class, the refineable.

A process class shall be a pattern of happening (the sequence of subprocesses), which involves object classes
that are members of the preprocess and postprocess object sets. A process occurrence, which follows this
pattern and involves particular object instances in its preprocess and postprocess object sets, shall be a
process instance. Hence, a process instance shall be a particular occurrence of a process class to which
that instance belongs. Any process instance shall have associated with it a distinct set of preprocess and
postprocess object instance sets.

NOTE	 The power of the process class concept is that it enables the modelling of a process as a template or a
protocol for some transformation that a class of objects undergoes. That transformation includes neither the spatio-
temporal framework nor the particular set of object instances with which the process instance associates.

10.3.6	 Fundamental structural relation link and tagged structural link summary

Table 14 summarizes the fundamental structural relations and links.

57

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Table 14 — Fundamental structural relations and link summary

Structural relation
forward-reverse

(refineable-to-refinee;
bold is the short name)

OPD symbol OPL sentence

Forward

refineable-to-re-
finee

Reverse
(refinee-to-re-

fineable)

Aggregation-Participa-
tion

Whole consists of
Part A and Part B. _

Exhibition-Characteriza-
tion

Exhibitor exhibits
Attribute A as well
as Operation B.

_

Generalization-Speciali-
zation _

Specialization
A and Special-
ization B are
General Thing.

Classification-Instanti-
ation _

Instance A and
Instance B are
instances of
Class.

Unidirectional tagged
[Unidirectional null
tagged]

Source tag-name Destination.
[Source relates to Destination.]

Bidirectional tagged A a-to-b tag B.
B b-to-a tag A.

Reciprocal tagged
[Reciprocal null tagged]

A and B are reciprocal tag.
[A and B are related.]

10.4	 State-specified structural relations and links

10.4.1	 State-specified characterization relation link

A state-specified characterization relation link shall be an exhibition-characterization relation link from
a specialized object that exhibits an attribute value for a discriminating attribute of its generalization,
meaning that the specialized object shall have only that value for the attribute it inherits.

58

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Graphically, the exhibition-characterization relation link triangular symbol, with its apex connecting to the
specialized object and its opposite base connecting to the value shown as a state, shall denote the state-
specified characterization relation link.

NOTE	 While not necessary, the OPD will be more understandable if the exhibition-characterization link of the
general with the discriminating attribute appears in the same OPD as well (see Figure 28).

The syntax of the state-specified characterization relation link shall be: Specialized-object exhibits value-
name Attribute-Name.

EXAMPLE	 Using the state-specified characterization relation link, the OPD in in Figure 28 is significantly more
compact than its equivalent OPD in Figure 25. Here, the discriminating attribute Travelling Medium of Vehicle
with values ground, air, and water surface appears only once, as opposed to four times in Figure 25. The model
for Car, Aircraft, and Ship are specializations of Vehicle, connecting each specialization with a state-specified
characterization relation link to the corresponding Travelling Medium value of ground, air, and water surface
respectively.

 Vehicle exhibits Travelling Medium.
Travelling Medium of Vehicle can be ground, air, and water surface.
Car, Aircraft, and Ship are Vehicles.
Car exhibits ground Travelling Medium.
Aircraft exhibits air Travelling Medium.
Ship exhibits water surface Travelling Medium.

Figure 28 — State-specified characterization link example

10.4.2	 State-specified tagged structural relations

10.4.2.1	 State-specified tagged structural links

A state-specified tagged structural link shall be a tagged structural link between an object state or attribute
value and another object, object state or attribute value, signifying a relation between these two things with
the tag expressing the semantics of the relation. In case of a null tag, i.e. no explicit tag specification, the
corresponding OPL shall use the default null tag (see 10.2.2.).

Three kinds of state-specified tagged structural links shall exist: source state-specified tagged structural
link; destination state-specified tagged structural link; and, source-and-destination state-specified tagged
structural link. Each kind shall include the unidirectional, bidirectional, and reciprocal tagged structural
link, giving rise to seven kinds of state-specified tagged structural relation link and corresponding OPL
sentences, which Table 15 summarizes.

10.4.2.2	 Unidirectional source state-specified tagged structural link

A unidirectional source state-specified tagged structural link shall be a unidirectional tagged structural
link from a specific state of the source object to a destination object without a state specification.

59

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Graphically, an arrow with an open arrowhead connecting from a state of the source object to the destination
object and a tag-name annotation near the shaft shall denote a unidirectional source state-specified tagged
structural link.

The syntax of the unidirectional source state-specified tagged structural link OPL sentence shall be:
Specified-state source-object tag-name Destination-object.

NOTE	 A null tag uses the default tag-name "relates to", not in bold, unless modified by the modeller.

10.4.2.3	 Unidirectional destination state-specified tagged structural link

A unidirectional destination state-specified tagged structural link shall be a unidirectional tagged structural
link from a source object without a state specification to a specific state of the destination object.

Graphically, an arrow with an open arrowhead connecting from a source object to a specific state of the
destination object and a tag-name annotation near the shaft shall denote a unidirectional destination state-
specified tagged structural link.

The syntax of the unidirectional destination state-specified tagged structural link OPL sentence shall be:
Source-object tag-name specified-state Destination-object.

NOTE	 A null tag uses the default tag-name "relates to", not in bold, unless modified by the modeller.

10.4.2.4	 Unidirectional source-and-destination state-specified tagged structural link

A unidirectional source-and-destination state-specified tagged structural link shall be a unidirectional
tagged structural link from a specific state of a source object to a specific state of the destination object.

Graphically, an arrow with an open arrowhead connecting from a specific state of a source object to a specific
state of the destination object and a tag-name annotation near the shaft shall denote a unidirectional source-
and-destination state-specified tagged structural link.

The syntax of the unidirectional source-and-destination state-specified tagged structural link OPL sentence
shall be: Source-specified-state source-object tag-name destination-specified-state Destination-
object.

NOTE	 A null tag uses the default tag-name "relates to", not in bold, unless modified by the modeller.

10.4.2.5	 Bidirectional source-or-destination state-specified tagged structural link

A bidirectional source-or-destination state-specified tagged structural link shall be a bidirectional tagged
structural link with a specific state for either the source or destination object but not both.

Graphically, a line with harpoon shaped arrowheads on opposite sides at both ends of the link, one connecting
to an object or object state and the other connecting to an object state or object respectively, shall denote
a bidirectional tagged structural link. Each tag-name shall align on the side of the arrow with the harpoon
edge sticking out of the arrowhead, unambiguously determining the direction in which each relation applies.

The syntax of the resulting bidirectional source-or-destination state-specified tagged structural link
shall be two separate unidirectional tagged structural link OPL sentences, one for each direction with the
corresponding state specifications.

10.4.2.6	 Bidirectional source-and-destination state-specified tagged structural link

A bidirectional source-and-destination state-specified tagged structural link shall be a bidirectional tagged
structural link with a specific state for both the source and destination object.

Graphically, a line with harpoon shaped arrowheads on opposite sides at both ends of the link, connecting a
specific state of one object to a specific state of another object, shall denote a bidirectional tagged structural
link. Each tag-name shall align on the side of the arrow with the harpoon edge sticking out of the arrowhead,
unambiguously determining the direction to which each relation applies.

60

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

The syntax of the resulting bidirectional source-and-destination state-specified tagged structural link shall
be two separate unidirectional source-and-destination tagged structural link OPL sentences, one for each
direction with the corresponding state specifications and tag-names.

10.4.2.7	 Reciprocal source-or-destination state-specified tagged structural link

A reciprocal source-or-destination tagged structural link shall be a bidirectional source-or-destination
tagged structural link with a specific state for one of the involved objects but not both, and only one
reciprocity-tag or no tag. In either case, reciprocity shall indicate that the tag of a reciprocal source-or-
destination state-specified tagged structural link has the same semantics for each direction of the relation.
When no tag appears, the default tag shall be "are related".

Graphically, a line with harpoon shaped arrowheads on opposite sides at both ends of the link, connecting
a specific state of one object to another object without state specification and depicting only one tag-name
aligning with the arrow, shall denote a reciprocal source-or-destination state-specified tagged structural
link.

The syntax of the reciprocal source-or-destination state-specified tagged structural link with only one tag
shall be either: Source-specified-state Source-object and Destination-object are reciprocity-tag; or,
Source-object and destination-specified-state Destination-object are reciprocity-tag.

10.4.2.8	 Reciprocal source-and-destination state-specified tagged structural link

A reciprocal source-and-destination tagged structural link shall be a bidirectional source-and-destination
tagged structural link with a specific state for both involved objects, and only one reciprocity-tag or no tag.
In either case, reciprocity shall indicate that the tag of a reciprocal source-and-destination state-specified
tagged structural link has the same semantics for each direction of the relation. When no tag appears, the
default tag shall be "are related".

Graphically, a line with harpoon shaped arrowheads on opposite sides at both ends of the link, connecting
a specific state of one object to a specific state of another object and depicting only one tag-name aligning
with the arrow, shall denote a reciprocal source-and-destination state-specified tagged structural link.

The syntax of the reciprocal source-and-destination state-specified tagged structural link with only one
tag-name shall be: Source-specified-state Source-object and destination-specified-state Destination-
object are reciprocity-tag.

The syntax of the reciprocal source-and-destination state-specified tagged structural link with no tag-name
shall be: Source-specified-state Source-object and destination-specified-state Destination-object are
related.

10.4.2.9	 State-specified tagged structural link summary

Table 15 summarizes the state-specified tagged structural relations and inks.

61

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)
Ta
bl
e
15
 —
 S
ta
te
-s
pe
ci
fi
ed
 s
tr
uc
tu
ra
l r
el
at
io
ns
 a
nd
 li
nk
s
su
m
m
ar
y

D
ir

ec
ti

on
al

it
y

So
ur

ce
/D

es
ti

na
ti

on

so
ur
ce
 s
ta
te
-s
pe
ci
fi
ed

de
st
in
at
io
n
st
at
e-
sp
ec
if
ie
d

so
ur

ce
-a

nd
-d

es
ti

na
ti

on
 s

ta
te

-s
pe

ci
-

fi
ed

un
id

ir
ec

ti
on

al

S
A

ta
g-

na
m

e
B

.
B

ta
g-

na
m

e
s

A
.

Sa
 A

 ta
g-

na
m

e
sb

 B
.

bi
di

re
ct

io
na

l
S

A
f-t

ag
-n

am
e

B
.

B
b-

ta
g-

na
m

e
s

A
.

Sa
 A

 f-
ta

g-
na

m
e

sb
 B

.
Sb

 B
 b

-t
ag

-n
am

e
sa

 A
.

re
ci

pr
oc

al

B
an

d
s

A
ar

e
re

ci
p-

ta
g-

na
m

e.
Sa

 A
 a

nd
 s

b
B

ar
e

re
ci

p-
ta

g-
na

m
e.

62

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 Check can be blank, signed, endorsed, or cashed & cancelled.
Check exhibits Keeper.
Keeper can be payer, payee, or financial institution.
Payer Keeper relates to Payer.
Payee Keeper relates to Payee.
Financial institution Keeper relates to Bank. (remaining OPL omitted)

Figure 29 — Associating attribute values with objects via state-specified structural link

EXAMPLE 1	 In the OPD in Figure 29, Keeper is an attribute of Check with values payer, payee, and bank. Each of
these values is also an object in its own right in the model. Three unidirectional, source-state-specified null-tagged
structural links connect each value to its corresponding object. Note that there is no requirement that the name of the
state or value be the same as the name of the related object, as demonstrated by financial institution and Bank.

EXAMPLE 2	 In the OPD in Figure 30, each one of the three Phase values of Water is associated with its
corresponding Temperature value range via three source-and-destination state-specified tagged structural links
whose tag is "exists for the range of".

63

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 Water exhibits Phase and Temperature in Celsius.
Phase can be solid, liquid, or gas.
Temperature in Celsius can be below zero, between zero and 100, or above 100.
Solid Phase exists for the range of below zero Temperature in Celsius.
Liquid Phase exists for the range of between zero and 100 Temperature in Celsius.
Gas Phase exists for the range of above 100 Temperature in Celsius.

Figure 30 — Source-and-destination state-specified tagged structural link

11	 Relationship cardinalities

11.1	 Object multiplicity in structural and procedural links

Object multiplicity shall refer to a requirement or constraint specification, sometimes called a participation
constraint, on the quantity or count of object operational instances associated with a link. Unless a
multiplicity specification is present, each end of a link shall specify only one object operational instance.
Multiplicity specifications may appear in the following situations:

a)	 to specify multiple source or destination object operational instances for a tagged structural link of any
kind;

b)	 to specify a participant object with multiple operational instances in an aggregation-participation link,
where a different participation specification may be attached to each one of the parts of the whole;

c)	 to specify an object with multiple operational instances in a procedural relation.

The specification of object multiplicity may occur as integers or as parameter symbols that resolve to integer
values during model execution and may include arithmetic expressions. The specification may include a
range of values or a set of value ranges.

Graphically, an integer, a range of integers, a parameter symbol, a range of parameter symbols, or set of
integers or parameter symbols, any of which may appear as annotations near the link end to which it applies,
shall denote object multiplicity.

The syntax of an OPL sentence that includes an object with multiplicity shall include the object multiplicity
preceding the object name, with the object name appearing in its plural form if the cardinality specifies
more than one operational instance is possible. The following EXAMPLES present some of the many uses of
object multiplicity on OPL sentences.

EXAMPLE	 Figure 31 shows in the left OPD a participation constraint on the destination end of a unidirectional
tagged structural link. On the right OPD is a participation constraint on the destination (part) end for one of two
objects of an aggregation-participation link.

64

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

a) Factory comprises 3 Shopfloors. b) Printer consists of 3 Color Cartridges, Black
Cartridge, and other parts.

Figure 31 — Object multiplicity examples

Object multiplicity may be a parameter or a range of parameters or a set of two or more ranges of numbers
and/or parameters separated by a comma. A range shall be indicated as qmin .. qmax and shall be closed, i.e.
include the boundaries qmin and qmax. In OPL, the expression of the range symbol ".." shall be "through" and
the expression of the comma that separates two adjacent ranges shall be "or".

The specification of object multiplicity may occur as an optionality parameter using the range symbol, the
asterisk symbol and the question mark symbol in the following manner:

—	 "0..1" shall mean zero or one, using the question mark (?) annotation near the object to which it applies
with an OPL syntax of "an optional " immediately preceding the object;

—	 "0..*" shall mean zero or more, using the asterisk symbol (*) annotation near the object to which it applies
with the OPL syntax of "optional " immediately preceding the object, and

—	 "1..*" shall mean one or more, using the plus symbol (+) annotation near the object to which it applies
with OPL syntax of "at least one " immediately preceding the object

NOTE 1	 The range symbol ".." has two uses in multiplicity specification, one as a separator between two boundary
values, e.g. qmin .. qmax, with interpretation of "through" and one as separator between optional values, e.g. "0..*" , with
interpretation of "or".

NOTE 2	 Care is necessary when specifying cardinality constraints so that the constraint applies to the object as
specified and not a property of that object. If the object has a unit of measure, then multiplicity refers to the count of
single units of that measure, e.g. 32 Water in milliliters.

Table 16 summarizes the options for link annotation.

65

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Table 16 — Link optionality summary

Lower and upper
bounds qmin .. qmax

Participation con-
straint symbol and

OPL phrase
OPD example and corresponding OPL sentence

0..1 ?
an optional

Car has an optional Sunroof.

0..*
*

optional
(+ plural) Car is equipped with optional Airbags.

1..1 (none)

Car is steered by Steering Wheel.

1..* +
at least one

Car carries at least one Spare Tire.

11.2	 Object multiplicity expressions and constraints

Object multiplicity may include arithmetic expressions, which shall use the operator symbols "+", "–", "*", "/",
"(", and ")" with their usual semantics and shall use the usual textual correspondence in the corresponding
OPL sentences.

An integer or an arithmetic expression may constrain object multiplicity. Graphically, expression constraints
shall appear after a semicolon separating them from the expression that they constrain and shall use the
equality/inequality symbols "=", "<", ">", "<=", and ">=", the curly braces "{" and "}" for enclosing set members,
and the membership operator "in" (element of, ∈), all with their usual semantics. As depicted in Figure 32,
the corresponding OPL sentence shall place the constraint phrase in bold font letters after the object to
which the constraint applies in the form ", where constraint".

EXAMPLE 1	

 Machine Center controls 3 to 5 or 8 to 10 Machines.
Machine Center controls 2 or 3*n Machines, where n<=4.

Figure 32 — Object multiplicity examples with ranges and parameters

EXAMPLE 2	 Figure 33 models a Blade Replacing system in which a Jet Engine has b Installed Blades. Two to
four (a number set to k) Aviation Engine Mechanics handle the Blade Replacing process, for which they use k Blade
Fastening Tools. Also, one or two Aerospace Engineers handle the Blade Replacing process. This process yields b
Dismantled Blades, which undergo Blade Inspecting, an environmental process that yields a (which is at most b)
of Inspected Blades. The process consumes a total of b Blades, with i inspected and b–i new. Any number of new
Blades can be obtained by Purchasing them.

66

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 k=2 to 4 Aviation Engine Mechanics handle Blade Replacing.
Jet Engine can be used or refurbished.
Jet Engine consists of b Installed Blades.
1 to 2 Aerospace Engineers handle Blade Replacing.
An optional Aerospace Engineer handles Blade Inspecting.
Blade can be inspected or new.
Blade Replacing requires k Blade Fastening Tools.
Blade Replacing changes Jet Engine from used to refurbished.
Blade Replacing consumes i inspected Blades and b – i new Blades.
Blade Replacing yields b Dismantled Blades.
Blade Inspecting consumes b Dismantled Blades.
Blade Inspecting yields a <= b inspected Blades.
Purchasing yields many new Blades.

Figure 33 — Object multiplicity: arithmetic expressions and constraints example

If an object multiplicity parameter has more than one constraint, they shall appear as a semicolon-separated
list of constraints following the parameter. Any constraint may include any object multiplicity parameter
appearing in the model. Parameter names shall be unique for the entire system model.

EXAMPLE 3	 Figure 34 depicts a way to specify parameterized participation constraints in an OPD and the
corresponding OPL sentences.

67

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 Airplane consists of Body, 2 Wings, and e Engines, where e >= 1, e = b+2*w.
b Engines are attached to Body, where b in {0, 1}.
w Engines are attached to Wing, where 0 <= w <= 3.

Figure 34 — Multiple parameterized constraints example

NOTE 1	 Aggregation-participation is the only fundamental structural relation for which participation constraints
apply.

NOTE 2	 Expressing multiplicity of processes does not use participation constraints. Rather, expressing sequential
repetition of the same process uses a recurrent process with a counter for the number of iterations. Parallel
synchronous processes or asynchronous processes within an in-zoomed process provide other iteration mechanisms.

11.3	 Attribute value and multiplicity constraints

The expression of object multiplicity for structural and procedural links specifies integer values or
parameter symbols that resolve to integer values. In contrast, the values associated with attributes of
objects or processes may be integer or real values, or parameter symbols that resolve to integer or real
values, as well as character strings and enumerated values.

NOTE 1	 Real values accommodate expression using the unit of measure associated with the object.

Graphically, a labelled, rounded-corner rectangle placed inside the attribute to which it belongs shall
denote an attribute value with the value or value range (e.g. integers, real numbers, or string characters)
corresponding to the label name. In OPL text, the attribute value shall appear in bold font without
capitalization.

The syntax for an object with an attribute value OPL sentence shall be: Attribute of Object is value.

The syntax for an object with an attribute value range OPL sentence shall be: Attribute of Object range is
value-range.

NOTE 2	 Attribute value range has the same expressiveness applicable for object multiplicity, except optionality.

A structural or a procedural link connecting with an attribute that has a real number value may specify a
relationship constraint, which is distinct from an object multiplicity.

Graphically, an attribute value constraint is an annotation by a number, integer or real, or a symbol
parameter, near the attribute end of the link and aligning with the link.

12	 Logical operators: AND, XOR, and OR

12.1	 Logical AND procedural links

A group of two or more procedural links of the same kind that originate from, or arrive at, the same process
shall have the semantics of logical AND.

68

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Graphically, the links with AND semantics do not touch each other on the process contour.

The syntax of links with AND semantics shall be a phrase using "and" conjunction in a single OPL sentence
rather than separate sentences for each link

EXAMPLE 1	 Figure 35 (right), the Safe Opening process requires both Safe Owner A and Safe Owner B. In
Figure 35 (left), opening the Safe requires all three keys.

a) b)

Safe can be closed or open.
Safe Opening requires Key A, Key B, and Key C.
Safe Opening changes Safe from closed to open.

Safe can be closed or open.
Safe Owner A and Safe Owner B handle Safe Open-
ing.
Safe Opening changes Safe from closed to open.

Figure 35 — Logical AND for Agent and Instrument Links

EXAMPLE 2	 In Figure 36 (left), Meal Preparing yields all three of the dishes. In Figure 36 (right), Meal Eating
consumes all three dishes.

a) b)

Chef handles Meal Preparing
Meal Preparing yields Starter, Entree, and Dessert.

Meal Eating affects Diner.
Meal Eating consumes Dessert, Entree, and Starter.

Figure 36 — Logical AND for Result and Consumption Links

EXAMPLE 3	 In the OPD on the left of Figure 37, Interest Rate Changing affects the three objects Exchange Rate,
Price Index, and Interest Rate. In the OPD on the right, all three effects of Interest Rate Raising on Exchange Rate,
Price Index, and Interest Rate are explicit via three pairs of input-output-specified effect links.

69

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

a) b)

Central Bank handles Interest Rate Changing.
Interest Rate Changing affects Exchange Rate,
Price Index, and Interest Rate.

Central Bank handles Interest Rate Changing.
Interest Rate can be high or low.
Price Index can be low or high.
Exchange Rate can be high or low.
Interest Rate Raising changes Exchange Rate from
low to high,
 Price Index from low to high, and
 Interest Rate from low to high.

Figure 37 — Logical AND for Effect Link and Input-Output Links Pair

NOTE	 See Clause 13 for impacts of path labels on AND syntax.

12.2	 Logical XOR and OR procedural links

A group of two or more procedural links of the same kind that originate from a common point, or arrive at
a common point, on the same object or process shall be a link fan. A link fan shall follow the semantics of
either a XOR or an OR operator. The link fan end that is common to the links shall be the convergent link end.
The link end that is not common to the links shall be the divergent link end.

The XOR operator shall mean that exactly one of the things at the divergent link end of the link fan exists. If
the divergent link end has objects, then only one exists. If the divergent link end has processes, then only one
occurs.

NOTE	 This use of the XOR operator in OPM is different to some binary XOR operator interpretations, where the
output is 1 for an odd number of inputs and 0 for an even number of inputs.

Graphically, a dashed arc across the links of the link fan with the arc focal point at the convergent end-point
of contact shall denote the XOR operator.

The syntax of a link fan of n things with XOR semantics shall be a single OPL sentence containing a phrase of
the form: exactly one of Thing1, Thing2,…, and Thingn...

The OR operator shall mean that at least one of the two or more things at the divergent end of the link fan
exists. If the divergent link end has objects, then at least one object exists. If the divergent end has processes,
then at least one process occurs.

Graphically, two concentric dashed arcs across the links of the link fan with the focal point at the convergent
end-point of contact shall denote the OR operator.

70

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

The syntax of a link fan of n things with OR semantics shall be a single OPL sentence containing a phrase of
the form: at least one of Thing1, Thing2,…, and Thingn...

EXAMPLE	 In the OPD on the right of Figure 38, using XOR, exactly one of Safe Owner A and Safe Owner B must
be present in order for Safe Opening to occur. In the OPD on the left, using OR, at least one of Safe Owner A and Safe
Owner B must be present in order for Safe Opening to occur. The link fan here is convergent and consists of two agent
links.

a) Logical XOR b) Logical OR

Exactly one of Safe Owner A and Safe Owner B han-
dles Safe Opening.

At least one of Safe Owner A and Safe Owner B han-
dles Safe Opening.

Figure 38 — Examples of Agent link

12.3	 Diverging and converging XOR and OR links

Table 17 shows that when the source things are objects and the destination thing is a process, the
consumption link fan is converging, while when the source things are processes and the destination thing is
an object, the result link fan is converging.

Table 17 — Summary of XOR and OR converging consumption and result links

 XOR OR

Converging con-
sumption link

fan

P consumes exactly one of A, B, or C. P consumes at least one of A, B, or C.

Converging re-
sult link fan

Exactly one of P, Q, or R yields B. At least one of P, Q, or R yields B.

71

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Table 18 shows that when the source thing is an object and the destination things are processes, the
consumption link fan shall be diverging, while when the source thing is a process and the destination things
are objects, the result link fan shall be diverging.

Table 18 — Summary of XOR and OR diverging consumption and result link fans

 XOR OR

Diverging con-
sumption link fan

Exactly one of P, Q, or R consumes B. At least one of P, Q, or R consumes B.

Diverging result
link fan

P yields exactly one of A, B, or C. P yields at least one of A, B, or C.

Since an effect link is bidirectional, the things linked by an effect link fan are both source and destination at
the same time, voiding the definitions of convergent and divergent link fans. Instead, as Table 19 shows, the
distinction shall occur with respect to multiple objects or multiple processes that a link fan connects.

Table 19 — Summary of XOR and OR joint effect link fans

 XOR OR

Multiple
objects effect

link fan

P affects exactly one of A, B, or C. P affects at least one of A, B, or C.

Multiple pro-
cesses effect

link fan

Exactly one of P, Q, or R affects B. At least one of P, Q, or R affects B.

Since an enabler is an object, as shown in Table 20, both agent and instrument link fans shall be divergent
with multiple processes as targets.

72

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Table 20 — Agent and instrument link fans

 XOR OR

Agent link fan

B handles exactly one of P, Q, or R. B handles at least one of P, Q, or R.

Instrument
link fan

Exactly one of P, Q, or R requires B. At least one of P, Q, or R requires B.

Invocation link fans may be diverging or converging for both XOR and OR, as shown in Table 21.

Table 21 — Invocation link fans

 XOR OR

Diverging invo-
cation link fan

P invokes exactly one of Q or R. P invokes at least one of Q or R.

Converging
invocation link

fan

Exactly one of P or Q invokes R. At least one of P or Q invokes R.

12.4	 State-specified XOR and OR link fans

Each one of the link fans in 12.3 shall have a corresponding state-specified version, where the source and
destination may be specific object states or objects without a state specification. Combinations of state-
specified and stateless links as destinations of a link fan may occur.

EXAMPLE	 Figure 39 shows on the left a XOR state-specified instrument link fan and on the right an OR mixed
result link fan where the links are state-specified for objects A and C but not for B.

73

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

a) Exactly one of P, Q, or R requires s2 B. b) P yields at least one of s1 A, B, or s1 C.

Figure 39 — State-specified XOR and OR link examples

12.5	Control-modified link fans

Each one of the XOR link fans for consumption, result, effect, and enabling links and their state-specified
versions shall have a corresponding control-modified link fan: an event link fan and a condition link fan.

Table 22 presents the event and condition effect link fans, as representatives of the basic (non-state-
specified) links version of the modified link fans.

Table 22 — Event and condition effect link fans

Event Condition

B initiates exactly one of P, Q, or R, which affects the
occurring process.

Exactly one of P, Q, or R occurs if B exists, in which case
the occurring process affects B, otherwise these process-

es are skipped.

12.6	 State-specified control-modified link fans

Each one of the control-modified link fans, except the control-modified effect link fan, shall have a
corresponding state-specified control-modified link fan. Since these state-specified versions are more
complicated than their non-state-specified version, Table 23 presents the OPD and OPL of the state-specified
versions and the corresponding stateless version below for each state-specified version.

74

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Table 23 — State-specified and stateless control-modified link fans

Link fan kind Event Control modifier Condition Control modifier

Consumption link
fan S2 B initiates exactly one of P, Q, or R, which

consumes the initiated process.
The stateless case:

B initiates exactly one of P, Q, or R, which con-
sumes the initiated process.

Exactly one of P, Q, or R occurs if B is s2, in
which case the occurring process consumes B,

otherwise these processes are skipped.
The stateless case:

Exactly one of P, Q, or R occurs if B exists, in
which case the occurring process consumes B,

otherwise these processes are skipped.

Agent link fan

S2 B initiates and handles exactly one of P, Q,
or R.

The stateless case:
B initiates and handles exactly one of P, Q, or

R.

B handles exactly one of P, Q, or R if B is s2, oth-
erwise these processes are skipped.

The stateless case:
B handles exactly one of P, Q, or R if B exists,

otherwise these processes are skipped.

Instrument link
fan

S2 B initiates exactly one of P, Q, or R, which
requires s2 B.

The stateless case:
B initiates exactly one of P, Q, or R, which

requires s2 B.

Exactly one of P, Q, or R requires that B is s2,
otherwise these processes are skipped.

The stateless case:
Exactly one of P, Q, or R requires that B exists,

otherwise these processes are skipped.

Each XOR link fan in Table 22 and in Table 23 shall have its OR counterpart (designated by a double-dotted
arc) with a corresponding OPL sentence in which the reserved phrase "at least" replaces "exactly".

12.7	 Link probabilities and probabilistic link fans

A process P with a result link that yields a stateful object B with n states, s1 through sn, without specifying
a particular state shall mean that the probability of generating B at any one particular state shall be 1/n. In
this case, the single result link to the object shall replace the result link fan to each of its states.

EXAMPLE 1	 In the left OPD of Figure 40, the result link from P to B, which has three states, means that P will create
B with equal probability, Pr = 1/3, for creation at each state. The right OPD of Figure 40 shows the more cumbersome
way to express the same situation.

75

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 a) b)

 B can be s1, s2, or s3.
P yields B.

B can be s1, s2, or s3.
P yields exactly one of s1 B, s2 B, or s3 B.

Figure 40 — Equivalence between result link and a set of XOR state-specified result links

Generally, probabilities of following a specific link in a link fan are not equal. Link probability may be a
property value assigned to a link in a XOR diverging link fan that specifies the probability of following
that particular link among the possible links in the fan link. A probabilistic link fan shall be a link fan with
annotations on each fan link for its probability property, where the sum of the probabilities shall be exactly
1.

Graphically, along each fan link with a probability property an annotation shall appear in the form Pr=p,
where p is the link probability numeric value or a parameter, which denotes the probability of the system
execution control to select and follow that particular link of the fan.

The corresponding OPL sentence shall be the XOR diverging link fan sentence without link probabilities
omitting the phrase "exactly one of…" and the phrase "…with probability p" following each participating
thing name with a probability annotation "Pr=p".

EXAMPLE 2	 Figure 41 shows two probabilistic state-specified object creation examples and their deterministic
analogues. In the OPD on the left, process P can create object B in three possible states, s1, s2, or s3, with corresponding
probabilities 0,32, 0,24, and 0,44 indicated along each result link of the result link fan. In the OPD on the right, P can
create one of the objects A, B, or C at state sc1 with the probabilities indicated along each result link of the result link
fan.

a) b)

P yields s1 B with probability 0,32, s2 B with proba-
bility 0,24, or s3 B with probability 0,44.

The analogous deterministic case:
P yields exactly one of s1 B, s2 B, or s3 B.

P yields A with probability 0,3, B with probability q,
or sc1 C with probability 0,7-q.

The analogous deterministic case:
P yields exactly one of A, B, or sc1 C.

Figure 41 — Probabilistic state-specified object creation examples

For a process P with a result link that yields a stateful object B with states s1 through sn, and with initial
state si, P shall create B at state si with probability 1,0. However, if B has m with m < n initial states, P shall
create B at one of the initial states with probability 1/m.

76

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

For a probabilistic result link fan, any one of the resultees may be an object without or with a specified state.
For all the link fans comprising other procedural link kinds (including those with the event and condition
control modifiers), where the targets of the links in the link fan are processes, the source may be an object
or a specified state of an object.

EXAMPLE 3	 The OPD in the top of Figure 42 shows a probabilistic result link fan in which P yields, with specified
probabilities, one of the objects A or B, or C at state sc1, or D at state sd1 or sd2. The OPD in the middle of Figure 42
shows a probabilistic consumption link fan in which A is consumed, with specified probabilities, by one of the
processes P or Q or R. The OPD in the bottom expresses the same, with the additional fact that A must be at state s2.

 a) P yields A with probability 0,3, B with probability 0,2, sc1 C with probability 0,1,
sd1 D with probability 0,25, or sd2 D with probability 0,15.

 b) P with probability p, Q with probability q, or R with probability 1 -p-q consumes A.

 c) P with probability p, Q with probability q, or R with probability 1 -p-q consumes s2
A.

Figure 42 — Objects with and without specified states as resultees and consumees of a probabilistic
link fan

13	 Execution path and path labels

A path label shall be a link property and corresponding annotation aligning a pair of procedural links. When
the process precondition involves an object with path label link connections, and the postprocess object set

77

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

has more than one possibility for destination object, the appropriate postprocess object set destination shall
be the one obtained using a link with the same path label as that used by the preprocess object set.

EXAMPLE 1	 In Figure 43, there are two output links: one from Heating to the state liquid of Water and the other
to state gas. When entering Heating from state ice, it is not clear whether the result state is liquid or gas. The path
labels along the procedural links, resolve this dilemma by uniquely determining the appropriate link on process exit,
as shown by the animated simulation on the right.

 Water can be ice, liquid, or gas.
Following path ice-to-liq, Heating changes Water from ice to liquid.
Following path liq-to-gas, Heating changes Water from liquid to gas.

Figure 43 — Execution path and path labels

NOTE	 A path label is a label on a procedural link that removes the ambiguity arising from multiple outgoing
procedural links by specifying that the link to follow is the one with the same label as the one initiating the process.

EXAMPLE 2	 Figure 44 demonstrates the use of path labels on consumption and result links, followed by the OPL
paragraph.

 Following path carnivore, Food Preparing consumes Meat.
Following path herbivore, Food Preparing consumes Cucumber and Toma-
to.
Following path carnivore, Food Preparing yields Stew and Steak.
Following path herbivore, Food Preparing yields Salad.

Figure 44 — Path labels demonstrated on consumption and result links

78

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

14	 Context management with Object-Process Methodology (OPM)

14.1	 Completing the system diagram (SD)

The definition of system purpose, scope, and function in terms of boundary, stakeholders, preconditions and
postconditions shall be the basis for determining whether other elements, including environmental things,
should appear in the model.

The SD shall be an OPD that models:

—	 the stakeholders, in particular the beneficiaries;

—	 a process to convey the functional value the beneficiary expects to receive;

—	 other environmental and systemic things necessary to create a succinct corresponding OPL paragraph.

The corresponding OPL paragraph should provide the situational context for the system's operation.

Expression of the functional value may be:

—	 explicit, by identifying the source input and destination output states of the beneficiary or the initial and
final values of one or more of its attributes, or

—	 implicit, by indicating that the beneficiary is affected by the system's function.

The SD should contain only the central, important things – those things indispensable for understanding
the function and context of the system. The modeller shall use OPM's refinement mechanisms to expose
gradually the detail concerning the things that are the content of the SD.

EXAMPLE	 In a Manufacturing Facility, the Beneficiary has developed and deployed a Preventive Maintenance
System. The function of the system, Preventive Maintenance Executing, changes the Downtime attribute of the
Manufacturing Facility from "high" to "low". This change adds functional value to the Manufacturing Facility, as it
has more up-time to manufacture products and increase sales and revenues at the cost of investing in developing and
operating the Preventive Maintenance System.

14.2	 Achieving model comprehension

14.2.1	 OPM refinement-abstraction mechanisms

OPM shall provide abstracting and refining mechanisms to manage the expression of model clarity and
completeness. These mechanisms make possible the specification of contextualized model segments as
separate, yet interconnected OPDs, which, taken together, should provide a model of the functional value
providing system. These mechanisms shall enable presenting and viewing the modelled system, and
the elements it contains, in various contexts that are interrelated by the common objects, processes and
relations. The set of clearly specified and compatible interconnected OPD should completely specify the
entire system to an appropriate extent of detail and provide a comprehensive representation of that system
with a corresponding textual statement of the model in OPL.

The OPM refinement-abstraction mechanisms shall be the following three pairs: State expression and
suppression, unfolding and folding, and in-zooming and out-zooming.

14.2.1.1	 State expression and state suppression

Explicitly depicting the states of an object in an OPD may result in a diagram that is too crowded or busy,
making it hard to read or comprehend.

OPM shall provide an option for state suppression, which suppresses the appearance of some or all the states
of an object as represented in a particular OPD when those states are not necessary in that OPD's context.

79

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

The inverse of state suppression shall be state expression, which exposes information concerning possible
object states. The OPL corresponding to an OPD shall express the states of the objects only as the OPD
depicts.

In OPM the modeller may suppress any subset of states. However, the complete set of object states for an
object shall be the union of the states of that same object appearing in all of the OPDs of the entire OPM
model.

Graphically, as depicted in Figure 45, the annotation indicating that an object presents a proper subset (i.e.
at least one but not all) of its states, shall be a small state suppression symbol in the object's right bottom
corner. This symbol appears as a small state with an ellipsis label, which signifies the existence of one or
more states that the view is suppressing, The textual equivalence of the state suppression symbol shall be
the reserved phrase "or other states".

EXAMPLE	

 a) Stateful object with all states ex-
pressed

b) Suppressed version

 A can be s1, s2, s3, s4, or s5.
P changes A from s1 to s3.

A can be s1, s3, or other states.
P changes A from s1 to s3.

Figure 45 — Stateful object with all states expressed and a suppressed version

14.2.1.2	 Unfolding and folding

Unfolding shall be a mechanism for refinement, elaboration, or decomposition. Unfolding shall reveal a
set of things that relate to the unfolded thing. The result of unfolding shall be a hierarchy tree, the root of
which shall be the unfolded thing. Linked to the root shall be the things that constitute the elaboration of the
unfolded thing.

Conversely, folding shall be a mechanism for abstraction or composition, which shall apply to an unfolded
hierarchical tree. Folding shall hide the set of unfolded things, leaving just the root.

Each of the four fundamental structural relation links may apply unfolding and folding. The four kinds of
unfolding-folding pairs shall be:

—	 aggregation unfolding (exposing the parts of a whole), and participation folding (hiding the parts of a
whole);

—	 exhibition unfolding (exposing the exhibitor's features), and characterization folding (hiding the
exhibitor's features);

—	 generalization unfolding (exposing the specializations of the general), and specialization folding (hiding
the general's specializations);

—	 classification unfolding (exposing the class instances), and instantiation folding (hiding the class
instances).

In-diagram unfolding shall occur when the refineable and its refinees appear unfolded in the same OPD.
Because unfolding uses the fundamental structural links, in-diagram unfolding is graphically, syntactically
and semantically equivalent to using fundamental structural links.

80

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

New-diagram unfolding shall occur when the refineable and its refinees appear unfolded in a new OPD.

Graphically, the refineable shall have a thick contour in both the more abstract OPD in which the refineable
appears folded without refinees, and in the new more detailed OPD context, in which the refineable appears
unfolded and connects to its refinees with one or more fundamental structural link.

The corresponding OPL sentence for the new-diagram OPD where the refineable has n refinees shall be:
Refineable unfolds into Refinee1, Refine2,…, and Refinen

NOTE 1	 Unfolding can be more precisely specified as part-unfolding, feature-unfolding, specialization-unfolding,
and instance-unfolding (see A.4.7.2).

The modeller decision whether to use in-diagram or new-diagram unfolding should account for the trade-off
between the clutter added to the current OPD and the need to create a new OPD for displaying the refinees
and associated links amongst them.

NOTE 2	 Unfolding often occurs as a combination of new-diagram and in-diagram unfolding to represent multiple
elaboration or decomposition situations.

NOTE 3	 Partial unfolding can be depicted in the same manner as a partial fundamental structural relation link.

To satisfy a particular contextual relevance for an OPD, a modeller may choose which refinees appear
unfolded. Following the bimodal representation of OPM, the OPL corresponding to the OPD shall express
only those refinees that appear in that OPD.

NOTE 4	 Partial folding is equivalent to partial unfolding where the collections of each are complementary.

NOTE 5	 Unfolding reveals finer structural details rather than behaviour, i.e. no transfer of execution control
occurs, see 14.2.2. However, hierarchical dependencies involving procedural links can result in behavioural changes
associated with use of the unfolded thing.

14.2.1.3	 In-zooming and out-zooming

In-zooming shall be a kind of unfolding that combines aggregation-participation and exhibition-
characterization with additional semantics. For processes, in-zooming enables modelling the subprocesses,
their temporal order, their interactions with objects, and passing of execution control to and from that
context. For objects, in-zooming creates a distinct context that enables modelling of the constituent objects'
spatial or logical order.

Graphically, for both in-diagram and new-diagram process in-zooming, the ellipse of the refineable enlarges
to accommodate the symbols for the refinees, and the links amongst them, which are within the in-zoom
context. In the case of new-diagram in-zooming, the refineable shall have a thick contour in both the more
abstract OPD in which the refinealbe appears without refinees, and in the new more detailed OPD context, in
which the refineable appears surrounding the subprocess refinees and attendant objects.

The corresponding process in-zoom OPL sentence shall be: Process zooms into Subprocess A, Subprocess
B, and Subprocess C, in that sequence

NOTE 1	 In zooming can be more precisely specified by indicating the abstract OPD name and the more detailed
OPD name (see A.4.7.4).

The context of an in-zoomed process shall include the subprocesses, which are parts of the in-zoomed
process, and possibly interim objects that are attributes of the in-zoomed process. The contextual scope of
the in-zoomed process shall be the refineable, its subprocesses, attributes and links as depicted in the OPD.

The execution timeline within the context of an in-zoomed process shall flow from the top of its enlarged
process ellipse symbol to the bottom of that ellipse. This timeline shall depict the sequence of subprocess
invocations. The vertical arrangement of the top point of the subprocess ellipse symbols within the outer
process ellipse shall indicate the nominal execution sequence of the subprocesses within the context of the
process.

Analogous to process in-zooming, object in-zooming shall expose constituent objects as parts of the in-
zoomed object and possibly interim processes that are in-zoomed object operations within the scope of the

81

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

in-zoomed object context. Unlike in-zooming a process, in-zooming an object does not result in a transfer
of execution control. The consequence of new-diagram object in-zooming is a context shift from the object
as part of a larger OPD context to the object as the entire OPD context in which the constituent parts of the
object are exposed and spatially or logically ordered.

Graphically, the rectangle of the in-zoomed object enlarges to accommodate the symbols for the refinees,
and the links amongst them. The arrangement of the object rectangles within the context of the in-zoomed
object enlarged rectangle shall indicate spatial arrangement or logical order of the objects. This enables
ordered enumeration of data, such as in a vector or a matrix.

The corresponding object in-zoom OPL sentence shall be: Object zooms into Subobject A, Subobject B, and
Subobject C, in that sequence.

EXAMPLE 1	 Figure 46 depicts abstract Processing in SD, the SD, and details of Processing in SD1 after zooming into
Processing, showing its two subprocesses.

a) b)

SD SD1

Agent handles Processing.
Processing requires Instrument.
Processing consumes Consumee.
Processing affects Affectee.
Processing yields Resultee.

Processing requires Instrument.
Processing affects Affectee.
Processing zooms into A Subprocessing and B
Subprocessing in that sequence.
Agent handles A Subprocessing.
A Subprocessing consumes Consumee.
B Subprocessing yields Resultee.

Figure 46 — New-diagram in-zooming generic example

EXAMPLE 2	 Figure 47 depicts the Check-Based Paying process of Figure 29 with in-zooming to expose the sequence
of subprocesses and the allocation of links from the process to its subprocesses.

82

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Check exhibits Keeper.
Check can be blank, signed, endorsed, or cashed & cancelled.
State blank of Check is initial.
State cashed & cancelled of Check is final.
Keeper can be payer, payee, or financial	institution.
State payer of Keeper is initial and final.
Payer Keeper relates to Payer.
Payee Keeper relates to Payee.
Financial institution Keeper relates to Bank.
Check-Based Paying zooms into Writing & Signing, Delivering & Accepting, Endorsing
& Submitting, and Cashing & Cancelling in that sequence.
Payer handles Writing & Signing and Delivering & Accepting.
Payee handles Delivering & Accepting and Endorsing & Submitting.
Bank handles Cashing & Cancelling.
Writing & Signing changes Check from blank to signed.
Delivering & Accepting changes Keeper from payer to payee.
Endorsing & Submitting changes Check from signed to endorsed.
Cashing & Cancelling changes Check from endorsed to cashed & cancelled and Keeper
from financial institution to payer.

Figure 47 — Check-Based Paying process with in-zooming to expose its four sequential
subprocesses

NOTE 2	 In-zooming expresses process behaviour that is the result of structural links and procedural links
indicating a dynamic transfer of execution control among OPD models. The operational execution context shifts from
the process to the in-zoomed OPD and then back to the process.

14.2.2	 Control (operational) semantics within an in-zoomed process context

14.2.2.1	 Implicit invocation link

In-zooming a process shall specify a transfer of execution control to subprocesses at a different extent of
detail. Executing a process with an in-zoomed context shall recursively transfer execution control to the
top-most subprocess(es) within that process context, which is in a different OPD in case of new-diagram

83

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

in-zooming. Execution control shall return to the in-zoomed process after its final enabled subprocess
completes.

The implicit invocation link shall be a set of invocation links between a process and an in-zoom subprocess,
two subprocesses within the context of an in-zoomed process, or an in-zoomed subprocess and its process.
Similar to its explicit counterpart, the implicit invocation link shall signify the invocation of a subsequent
process or concurrently beginning processes.

Upon arriving at an in-zoomed process context, execution control shall immediately transfer to the
subprocess(es) with the highest ellipse (oval) top-most point within this process in-zoom context. The
implicit invocation link from a process to its top-most in-zoom subprocess transfers execution control.
Along the process timeline, the completion of a source subprocess immediately invokes the subsequent
subprocess(es) using the implicit invocation link. Upon completion of the subprocess with an ellipse top-
most point that is lowest within this in-zoom context, execution control shall return to the in-zoomed
process along the implicit invocation link.

Since invocation is an event, satisfaction of the precondition for each subprocess is necessary to allow that
subprocess to perform.

When two or more subprocesses have their top-most ellipse points at the same height, then an implicit
invocation link shall initiate each process and they shall start in parallel upon individual precondition
satisfaction. The process that completes last shall initiate the next process or set of parallel subprocesses.

Graphically, no symbol explicitly denotes the implicit invocation link. The top-to-bottom vertical
arrangement of the top-most point of the subprocess ellipse symbols within the context of the in-zoomed
process shall denote an implicit invocation link between successive subprocesses in that arrangement.

The syntax of an implicit invocation link OPL sentence shall be: Process zooms into Subprocess A and
Subprocess B, in that sequence.

EXAMPLE	 In the OPD on the left hand side of Figure 48, Cleaning invokes Coating, so Cleaning affects Product
first and then Coating affects Product. The invocation link dictates this process sequence. In the equivalent OPD on
the right-hand side of Figure 48, Finishing zooms into Cleaning and Coating, with the former's ellipse top point above
the latter's, so when Finishing starts, execution control immediately transfers to Cleaning, and when Cleaning ends,
the implicit invocation link invokes Coating. The two OPDs are semantically equivalent, except that the one on the left
does not have Finishing as an enclosing context, making it less expressive from a system viewpoint while using more
graphical elements.

 a) Invocation link b) Implicit invocation link

 Cleaning affects Product.
Cleaning invokes Coating.
Coating affects Product.

Finishing affects Product.
Finishing zooms into Cleaning and Coating, in that
sequence.

Figure 48 — Invocation link and implicit invocation link

14.2.2.2	 Implicit parallel invocation link set

Graphically, when the ellipse top points of two or more subprocesses within the scope of an in-zoomed
process are at the same height (with possible allowable tolerance), these subprocesses shall begin in parallel,

84

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

subject to precondition satisfaction for both. In this situation, there is a set of implicit invocation links from
the source process of the implicit invocation link to each one of the parallel processes.

The heights of the enclosed subprocesses' ellipse top points induce a partial order among these subprocesses.
Subprocesses whose ellipse top points are at the same height start in parallel. When the last one of these
subprocesses ends, i.e. process synchronization occurs, execution control shall attempt to invoke the next
subprocess. If there are two or more subprocesses with a lower ellipse-top point at the same height, the
execution control invokes them in parallel. If there are no more subprocesses to invoke, execution control
returns to the in-zoomed refineable process.

The syntax of the implicit parallel invocation link OPL sentence shall be: Process zooms into parallel
Subprocess A and Subprocess B.

Processing zooms into A, parallel B and C, D, and parallel E, F, and G, in that sequence.

Figure 49 — Partial subprocesses order and implicit parallel invocation link set

EXAMPLE	 Figure 49 shows subprocesses with the following partial order: A, (B, C), D, (E, F, G). B and C start upon
completion of A. D starts upon completion of the longer process from among B and C. E, F, and G start upon completion
of D. Execution control returns to Processing upon completion of the longer process from among E, F, and G.

14.2.2.3	 Implicit invocation link summary

Table 24 summarizes the implicit invocation links.

85

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Table 24 — Implicit invocation link summary

Name Semantics Sample OPD and OPL Source Destination

Implicit
invocation
link

Upon subpro-
cess comple-
tion within
the context of
an in-zoomed
process, the
subprocess
immediately
invokes the
one(s) below it.

Initiating
process, whose
ellipse top
point is above
the initiated
process

Initiated pro-
cess, whose
ellipse top
point is
below the
ellipse top
point of the
initiating
process

Product Terminating zooms into Product Finishing
and Product Shipping, in that sequence.

Parallel
Implicit
invocation
link set

Top: Subpro-
cesses A and B
initiate in par-
allel as soon
as Processing
starts.
Bottom:
Subprocesses B
and C initiate in
parallel as soon
as subprocess A
ends.

Initiating pro-
cess, whose el-
lipse top point
is above the
set of initiat-
ed processes,
whose ellipse
top points are
at the same
height (within
a pre-deter-
mined toler-
ance).

A set of initi-
ated process-
es, whose
ellipse top
points are
at the same
height (with-
in tolerance)
and below
the initiat-
ing process
ellipse top
point

Processing zooms into parallel A and B.

Processing zooms into A and parallel B and C, in that
sequence.

14.2.2.4	 Link distribution across context

14.2.2.4.1	 Semantics of link distribution

Graphically, a procedural link attached to the contour of an in-zoomed process has distributive semantics.
Leaving a link attached to the contour of the in-zoomed process shall mean that the link is distributed and
attached to each one of the subprocesses. The contour of the in-zoomed process has semantics analogous to
that of algebraic parentheses following a multiplication symbol, which distribute the multiplication operator
to the expressions inside the parentheses.

EXAMPLE 1	 In Figure 50, the OPDs on the left and right are equivalent, but the one on the left is clearer and less
cluttered. An agent link from A to P means that A handles the subprocesses P1, P2, and P3. An instrument link from B
to P means that the subprocesses P1, P2, and P3 require B. Analogously in algebra, suppose the agent (or instrument)
link was a multiplication operator, A was a multiplier and in-zooming was addition, such that P = P1 + P2 + P3, and P
was a multiplicand, then A*P = A*(P1 + P2 + P3) = A*P1 + A*P2 + A*P3.

86

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 a) b)

 A handles P.
P requires B.
P zooms into P1, P2, and P3, in that sequence.

P zooms into P1, P2, and P3, in that sequence.
A handles P1, P2, and P3.
P1, P2, and P3 require B

Figure 50 — In-zooming link distribution

If an enabler connects to the outer contour of an in-zoomed contour it shall connect to at least one of its
subprocesses. Consumption and result links shall not be attached to the outer contour of an in-zoomed
process because this violates temporal logical conditions. With a distributed consumption link, an attempt
would be made to consume an already-consumed object by a subprocesses that is not the first to perform.
Similarly, a distributed result link would attempt to create an already existing object instance.

The modeller needs to be careful when more than one process creates the same object, i.e. more than one
operational instance of the object exists, or more than one process affect or consume the same object. OPM
modelling tools need to track the number of operational instances of an object.

EXAMPLE 2	 In Figure 51 the OPD on the left contains invalid consumption and result links, as annotated in the OPL.
The consumption link gives rise to the OPL sentence "P consumes C." Applying link distribution, the consequence is
the three OPL sentences "P1 consumes C.", "P2 consumes C.", and "P3 consumes C.". However, since P1 consumes C
first according to its temporal order, the same instance of C does not exist when P2 or P3 performs and therefore P2
and P3 cannot consume C again. Similarly, the same operational instance of B results only once. The OPD on the right
depicts validity links by specifying which of the subprocesses of P consumes C (P1) and which one yields B (P2).

87

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 a) b)

 A handles P.
P requires D.
P zooms into P1, P2, and P3, in that sequence.
P consumes C. – NOT VALID!
P yields B. – NOT VALID!
P3 affects B.

A handles P.
P requires D.
P zooms into P1, P2, and P3, in that sequence.
P1 consumes C.
P2 yields B.
P3 affects B.

Figure 51 — Link distribution restriction for consumption and result links

Since attaching a consumption or result link to an in-zoomed process is invalid, when a process is in-zoomed,
all the consumption and result links that were attached to it shall be attached initially or by default to its
first subprocess.

A modelling tool should automatically establish default semantics, which the modeller may modify.

EXAMPLE 3	 In Figure 51 as soon as the modeller in-zooms P and inserts P1 into its context, the destination end of
the consumption link from C migrates from P to P1. Similarly, the source end of the result link to B also migrates from
P to P1. When the modeller adds P2, the modeller can migrate the destination end of the consumption link and/or the
source end of the result link from P1 to P2, as Figure 51 shows.

14.2.2.4.2	 Event link constraint

An event link shall not cross the boundary of an in-zoomed process from the outside of that process to
initiate any one of its subprocesses at any level, because this amounts to an attempt to interfere with the
prescribed temporal order of the synchronous in-zoomed process.

If the skipped process is within an in-zoom context and there is a subsequent process in this context,
execution control initiates that process, otherwise execution control transfers back to the in-zoomed
process.

14.2.2.4.3	 Split state-specified transforming links

When a process that changes an object from an input state to an output state is in-zoomed, the OPD, either in-
diagram or new-diagram, becomes underspecified. To restore specification, the modeller shall attach both
the state-specified input link and the state-specified output link to one of the subprocesses in a temporally-
feasible manner. Splitting the input-output specified link pair in two shall signify the split state-specified
transforming link pair.

88

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Graphically, two links to an object with two or more states connecting across a process contour to different
subprocesses with one state-specified input link and one state-specified output link shall denote the split
state-specified transforming link.

EXAMPLE 1	 In Figure 52 the OPD in the middle is underspecified because P1 or P2 can each change A from s1 to s2,
or P1 can change A from s1 and P2 can change A to s2. The OPD on the right models this last case, giving rise to a new
split input link from s1 of A to P1 and a new split output link from P2 to s2. Table 25 provides more detail regarding
the right most OPD of Figure 52.

a) b) c)

A can be s1 or s2. A can be s1 or s2. A can be s1 or s2.

P changes A from s1 to s2. P zooms into P1 and P2, P zooms into P1 and P2,

 in that sequence. in that sequence.

 P changes A from s1 to s2. P1 changes A from s1.

 – UNDERSPECIFIED! P2 changes A to s2.

Figure 52 — Split state-specified transforming link to resolve under specification

Table 25 — Split input-output specified effect link pair

Name Semantics Sample OPD & OPL Source Destination

Split input-output
specified effect link
pair
The top arrow: split
input-specified effect
link
The bottom arrow:
split output-specified
effect link

An early subprocess
of an in-zoomed
process takes an ob-
ject out of its input
state.
A late subprocess of
the same in-zoomed
process changes the
object to be in its
output state.

The top arrow:
Input state of
an affected
object
The bottom
arrow: Late
subprocess of
an in-zoomed
process

The top arrow:
Early subpro-
cess of an in-
zoomed process
The bottom
arrow: Output
state of the
affected objectP1 changes A from s1.

P2 changes A to s2.

NOTE 1	 There are no control-link versions of the split input-specified effect link.

NOTE 2	 An object can have the role of an instrument in an abstract OPD and a transformee in another descendent,
more detailed and concrete OPD. At the abstract OPD, the process does not appear to affect the object, because the
object's initial state is the same as its final state. Therefore, at the abstract OPD the object is an instrument, as indicated
by an instrument link. However, at a descendent, more concrete OPD, that same process does appear to change the
state of that object from the initial state and then back to the initial state.

89

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

EXAMPLE 2	 In Figure 53 the left SD (SD: Dish Washing System), a Dishwasher object is an instrument to Dish
Washing process, since no change in state of the Dishwasher is visible at that extent of abstraction. In the descendent
OPD (SD1: Dish Washing in-zoomed), Dish Washing zooms into Dish Loading (of a dirty Dish Set), Cleaning (which
changes Dish Set from dirty to clean), and Unloading (of a clean Dish Set). Loading changes the state of Dishwasher
from empty to loaded, while Unloading changes it back from loaded to empty, so empty is both the initial and final
state (brown link emphasis). While the Dishwasher is an instrument in the SD, at the more detailed descendent OPD,
the Dishwasher is an affectee—it becomes loaded and then empty again. The only effect visible in the SD is the effect
on Dish Set.

a) b)

SD: Dish Washing System

Household User handles Dish Washing.
Dish Washing requires Dishwasher.
Dish Washing consumes Soap.
Dish Washing affects Dish Set.

SD1: Dish Washing in-zoomed

Dish Washer consists of Soap Compartment and
other parts.
Dishwasher can be empty or loaded.
 State empty of Dishwasher is initial and final.
 Soap Compartment can be empty or loaded.
 State empty of Soap Compartment is initial.
Dish Set exhibits Cleanliness.
 Cleanliness of Dish Set can be dirty or clean.
 State dirty of Cleanliness of Dish Set is initial.
 State clean of Cleanliness of Dish Set is final.
Household User handles Dish Washing.
Dish Washing zooms into Dish Loading, Detergent
Inserting, Dish Cleaning & Drying, and Dish Un-
loading, in that sequence.
 Dish Loading changes Dishwasher from empty to
loaded.
 Detergent Inserting requires Soap.
 Detergent Inserting changes Soap Compartment
from empty to loaded.
 Dish Cleaning & Drying requires Dishwasher.
 Dish Cleaning & Drying consumes Soap.
 Dish Cleaning & Drying changes Cleanliness of
Dish Set from dirty to clean.
 Dish Unloading changes Dishwasher from loaded
to empty.

Figure 53 — Role of abstraction with split state transforming links

90

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

14.2.2.4.4	 Operational instances of involved object set

As a consequence of link distribution, the following constraints shall apply to operational instances of
transformees:

—	 each consumee operational instance in the preprocess object set of a process shall cease to exist at the
beginning of the most detailed subprocess of that process, which consumes the operational instance, and
the operational instance is not in the postprocess object set of that process;

—	 each affectee operational instance in the preprocess object set of a process that changes that operational
instance as a consequence of the process performance shall exit from its input state, the state from which
it changes, at the beginning of the most detailed subprocess that changes the affectee;

—	 each affectee operational instance in the postprocess object set of a process that changes that operational
instance as a consequence of the process performance shall enter its output state at the completion of the
most detailed subprocess that changes the affectee;

—	 each resultee operational instance in the postprocess object set of a process shall begin existence at
the completion of the most detailed subprocess that yields the resultee operational instance and the
operational instance is not in the preprocess object set of that process.

NOTE	 A stateful object B for which the execution of process P has the effect of changing the state of B, exits from
the input state at the beginning of the most detailed subprocess of P that changes B, and enters the output state at
the end of the same subprocess of P or some subsequent subprocess of P. Since process P execution takes a positive
amount of time, that object B is in transition between states, from its input state to its output state: it has left its input
state but has not yet arrived at its output state.

14.2.2.5	 Synchronous vs. asynchronous process refinement

Since the aggregation-participation fundamental structural relation does not prescribe any "partial order"
of process performance, the modelling of synchronous process refinement shall use in-zooming.

EXAMPLE 1	 The system in Figure 53 is synchronous: there is a fixed, well-defined order of each subprocess within
the in-zoom context of Dish Washing.

The modelling of asynchronous process refinement shall use the aggregation-participation fundamental
structural link either through in-diagram aggregation unfolding or as a new-diagram aggregation unfolding
of the process.

EXAMPLE 2	 Figure 54 depicts a portion of a Home Safety System that carries out the function Home Safety
Maintaining, which includes the subprocesses Burglary Handling, Fire Protecting, and Earthquake Alarming.
Since the order of these three subprocesses is unknown, the OPD uses in-diagram aggregation unfolding with an
aggregation-participation link from this function rather than an in-zoomed version of Home Safety Maintaining.
Home Safety Maintaining in-zooms to a recurring systemic process, Monitoring & Detecting, for which Detection
Module is an instrument and Threat Appearing is an environmental process.

91

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 Home Safety Maintaining consists of Burglary Handling, Fire Protecting, and Earthquake
Alarming.
Detection Module exhibits Detection Treat.
Detection Treat can be burglary, fire, or earthquake.
Burglary Detected Threat initiates Burglary Handling, which requires burglary Detected
Threat.
Fire Detected Threat initiates Fire Protecting, which requires fire Detected Threat.
Earthquake Detected Threat initiates Earthquake Alarming, which requires earthquake
Detected Threat

Figure 54 — Home Safety Maintaining is an asynchronous system

14.2.2.6	 Expressing the contextual texture of a system

14.2.2.6.1	 Navigating the contexts of a system

14.2.2.6.1.1	 OPD process tree

An OPD process tree, also called OPD tree, shall be a directed tree graph with root of SD, the SD, and the other
OPDs as nodes with their OPD labels. The directed edges of an OPD tree shall have labels with each edge
pointing from the parent OPD, which contains the refineable element, to a child OPD containing refinees,
which elaborates a process in the parent OPD via new-diagram in-zooming for synchronous subprocesses or
new-diagram aggregation unfolding for asynchronous subprocesses.

14.2.2.6.1.2	 OPD object tree

Unlike the OPD process tree that has a single root, the OPD object tree is more like a forest of many trees,
each stemming from a distinct refineable object that unfolds or in-zooms to reveal detail. Rather than
identifying the possible flow of execution control found in the OPD process tree, the OPD object tree shall
encapsulate the information about an object as a hierarchic structure. The system execution should maintain
dependencies among OPD object tree elements and between OPD object trees.

NOTE	 OPM tools provide rules for model construction that enforce the maintenance of dependencies during
model creation.

14.2.2.6.1.3	 OPM diagram labels

The OPM system name shall be the name of the OPM model that specifies the system. An OPD name is the
name that identifies each OPD in the OPD process tree.

SD shall be the label designation for the root OPD in the OPD tree hierarchy. This SD occupies tier 0 in the
OPD hierarchy tree and shall have exactly one OPD; higher numbered tiers, i.e. those corresponding to
successive refinements, may have one or more OPDs. SD shall contain one and only one systemic process,

92

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

which represents the overarching system function that delivers functional value to stakeholders. SD may
contain one or more environmental processes.

14.2.2.6.1.4	 OPD process tree edge label

Since each elaborated process in an OPD process tree has a unique name, each edge label shall refer to the
refinement of that process into another OPD. Each edge in the OPD process tree shall have a label. That label
shall express a refinement relation that corresponds to the implicit invocation link or unfolding relation.
Considering each OPD to be an object and the entire OPD process tree to be a single OPD, each edge shall be
a unidirectional tagged structural link with a tag of "is refined by in-zooming Refineable Name in ", or "is
refined by unfolding Refineable Name in".

An OPD refinement OPL sentence shall be an OPL sentence describing the refinement relation between a
refineable present in a tierN OPD and the tierN+1 refinement OPD.

The syntax of an in-zoomed OPD refinement OPL sentence shall be: "TierN OPD label is refined by in-
zooming Refineable Process Name in "TierN+1 OPD Label."

The syntax of an unfolded OPD refinement OPL sentence shall be: "TierN OPD label is refined by unfolding
Refineable Process Name in "TierN+1 OPD Label."

NOTE	 Several OPD in C.6 show the use of edge label syntax.

14.2.2.6.1.5	 System map and model views

A system map shall be an OPD process tree that explicitly depicts the element (things and links) content of
each OPD (node). Because the system map may become very large and unwieldy, mechanisms shall allow
access to model content and the associations among elements. These mechanisms, collectively referred to as
model views consisting of model facts, shall include a list of all things and the OPDs in which they appear, the
OPD process tree, and the OPD object trees.

In addition, an OPM tool set should provide a mechanism for creating views, as OPDs with associated OPL
sentences, of objects and processes that meet specific criteria. These views may include the critical path for
minimal system execution duration, or a list of system agents and instruments, or an OPD of objects and
processes involved in a specific kind of link or set of links.

EXAMPLE	 An OPD can be created by a) refining (unfolding or in-zooming) an object or b) collecting and presenting
in a new OPD things that appear in various OPDs for expressing assignment of system sub-functions to system-module
objects.

14.2.2.6.2	 Whole system OPL specification

An OPL paragraph shall be the collection of OPL sentences that together specify in text the semantic
expression of the corresponding OPD.

An OPL paragraph name, using the OPD name, may precede the first OPL sentence of each OPL paragraph.

An OPM system model shall be the collection of successive OPL paragraphs corresponding to the collection
of OPDs present.

An entire OPL specification of a system should begin with an OPL specification starting title. The OPL
paragraphs follow the title in successive blocks, each beginning on a new line with the corresponding OPD
and the OPL paragraph sentences following.

The sequence of OPL paragraphs should begin with the SD and generally follow breadth-first, unless the
modeller identifies a different sequence.

EXAMPLE	 Table 26 contains the entire OPL specification of the OPM model in Figure 53.

93

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Table 26 — Whole system OPL for Dish Washing System

OPL specification of Dish Washing System
SD: Dish Washing System
Household User handles Dish Washing.
Dish Washing requires Dishwasher.
Dish Washing consumes Soap.
Dish Washing affects Dish Set.

SD is refined by in-zooming Dish Washing in SD1.

SD1: Dish Washing in-zoomed
Dish Washer consists of Soap Compartment and other parts.
Dishwasher can be empty or loaded.
 State empty of Dishwasher is initial and final.
 Soap Compartment can be empty or loaded.
 State empty of Soap Compartment is initial.
Dish Set exhibits Cleanliness.
 Cleanliness of Dish Set can be dirty or clean.
 State dirty of Cleanliness of Dish Set is initial.
 State clean of Cleanliness of Dish Set is final.
Household User handles Dish Washing.
Dish Washing zooms into Dish Loading, Detergent Inserting, Dish Cleaning & Drying, and Dish Unloading, in
that sequence.
 Dish Loading changes Dishwasher from empty to loaded.
 Detergent Inserting requires Soap.
 Detergent Inserting changes Soap Compartment from empty to loaded.
 Dish Cleaning & Drying requires Dishwasher.
 Dish Cleaning & Drying consumes Soap.
 Dish Cleaning & Drying changes Cleanliness of Dish Set from dirty to clean.
 Dish Unloading changes Dishwasher from loaded to empty.

End of OPL specification of Dish Washing System

14.2.3	 OPM fact consistency principle

The fact consistency OPM principle stipulates that:

a)	 a model fact appearing in one OPD shall be true for the entire collection of OPDs within the OPM system
model;

b)	 no OPD in the OPD process tree or an OPD object tree shall contain a model fact that contradicts a model
fact in the same OPD or in another OPD.

A fact in one OPD may be a refinement or an abstraction of a fact in a different OPD within the same OPM
system model.

NOTE	 This principle does not preclude the possibility of representing any model element any number of times in
as many OPDs as the modeller wishes. Since a link cannot exist without the things it links, if a link is present then the
two things on its ends need to be present as well.

EXAMPLE	 It is not possible for one OPD to express the fact that "P yields A." and for the same or another OPD
in the same OPD tree to express the fact that "P consumes A." However, it is permissible for one OPD to express the
fact that "P affects A." and for another OPD in the same OPD tree to express the fact that "P changes A from s1 to s2."
because the latter fact is a refinement, not a contradiction of the former.

94

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

14.2.4	 Abstraction ambiguity resolution for procedural links

14.2.4.1	 Abstraction and procedural link precedence

Out-zooming abstracts a collection of related things, the refinees and associated links, into a refineable.
When the modeller performs the abstraction, the procedural links between refinees and things that are
not refinees, shall migrate to the context of the OPD that depicts the refineable. This migration may cause a
situation in which two or more procedural links of different kinds link an object and a process. According to
the procedural link uniqueness OPM principle (see 8.1.2) an object or an object state shall link to a process by
only one procedural link. To sustain this principle, the modeller shall resolve the conflict between candidate
links to determine which remains or which new link replaces the candidates in the abstract OPD. The loss of
detail information is consistent with the notion of abstraction.

EXAMPLE	 Figure 55 demonstrates the problem of procedural link abstraction. In SD1, the result link from P1 to B
is more significant than the effect link from P2 to B, so when SD1 is out-zoomed to SD, the result link prevails.

Figure 55 — Abstracting procedural links

Semantic strength and link precedence are two concepts to guide the determination of which links to retain
and which to hide when an OPD is out-zoomed or folded.

Semantic strength of a procedural link shall be the significance of the information that the link carries.
Information concerning a change in existence, either creation or elimination, is more significant than
information about change to an existing thing. The relative semantic strength of the two conflicting
procedural links shall determine link precedence. When two or more procedural links compete to remain
represented in an OPD abstraction of refinement, the link that prevails is the one with the highest semantic
strength.

NOTE	 The concept of link precedence allows the modeller to resolve conflicts in representation amongst OPD
contexts and guides the modeller in establishing appropriate procedural links at the various extents of detail.

14.2.4.1.1	 Precedence among transforming links

Transforming links include result, effect, and consumption links. Since object creation and consumption are
semantically stronger, i.e. they have higher semantic strength than affecting the object by changing its state,
result and consumption links have precedence over effect links, as demonstrated in Figure 55. However,
since result and consumption links are semantically equivalent, when they compete, the prevailing link shall
be the effect link because the effect link allows both creation and elimination as effects.

Table 27 shows transforming link precedence: P in the upper left corner is out-zoomed. The column
headings show the three possible transforming links between P1 and B, while the row headings show the
three possible links between P2 and B. The table cells show the prevailing link between B and P after P is
out-zoomed. Specifically, Table 27 shows how conflicts between effect, result, and consumption links are
resolved. For example, if B-to-P1 Link is consumption (middle column) and B-to-P1 Link is result (bottom
row), then after P is out-zoomed, the link between B and P is effect link. Cells marked as "Invalid" indicate
the impossibility of the combination. For example, inspecting the centre cell, we note that if P1 consumes B,
B no longer exists when P2 later tries to consume it again. Hence, the combination of two consumption links
is invalid.

95

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Table 27 — Transforming link precedence: Resolving conflicts between effect, result, and
consumption links

Zoomed-out process P: B
-to-P1 Link ↑

B-to-P2 Link ↓

Invalid

Invalid

Invalid Invalid

14.2.4.1.2	 Precedence among transforming and enabling links

Transforming links are semantically stronger than enabling links, because transforming links denote
creation, consumption, or change of the linked object, while the enabling links only denote enablement. A
transforming link shall have precedence over an enabling link as shown in Figure 56.

Within the enabling links, an agent link shall have precedence over an instrument link because in artificial
systems the humans are central to the process, they must ensure the system’s proper operation. In addition,
wherever there is human interaction, an interface should exist and this information should be available to
the modeller of a refineable so that they can plan accordingly.

Figure 56 — Link precedence for transforming and enabling links

Summarizing the semantic strength of the procedural non-control links, the primary order of precedence
shall be: consumption = result > effect > agent > instrument, where the = and > refer to the semantic strength
of the links. State-specified links shall have higher precedence than basic links that do not specify states.

14.2.4.1.3	 Secondary precedence among same-kind non-control links and control links

Each non-control link kind has a corresponding event and condition link that are useful for determining
finer, secondary precedence distinction within each kind of procedural link. The relative semantic strength
for the secondary order of precedence within each member of the primary order of precedence shall have
the event link of stronger semantic strength than its corresponding non-control link, while the condition
link shall have a weaker semantic strength than its corresponding non-control link.

The semantic strength of an event link shall be stronger than the semantic strength of its corresponding non-
control link because any event link has semantics of both its corresponding non-control link plus the event
capable of initiating a process. The semantic strength of a conditional link shall be weaker than the semantic
strength of its corresponding non-control link because the condition modifier weakens the precondition
satisfaction criteria for the connecting process.

96

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

14.2.4.1.4	 Summary of the procedural links semantic strength

Summarizing the semantic strength of the procedural links based on the distinction between primary and
secondary precedence, the complete order of precedence shall be:

 1. consumption event > consumption

 2. consumption = result

 3. result > consumption condition

 4. consumption condition > effect event

 5. effect event > effect

 6. effect > effect condition

 7. effect condition > agent event

 8. agent event > agent

 9. agent > agent condition

 10. agent condition > instrument event

 11. instrument event > instrument

 12. Instrument > instrument condition

97

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Annex A
(normative)

Object-Process Language (OPL) formal syntax in Extended Bachus-

Naur form (EBNF)

A.1	 General

Object-Process Language (OPL) is a subset of English that shall express textually the OPM specification that
the OPD set expresses graphically.

OPL is a dual-purpose language. First, it serves domain experts and system architects engaged in analyzing
and designing a system, such as an electronic commerce system or a Web-based enterprise resource
planning system. Second, it provides a firm basis for automatically generating the designed application.

OPL is the textual counterpart of the graphic OPM system specification, corresponding to the diagrammatic
description in the OPD set. OPL shall be an automatically generated textual description of the system in
a subset of natural English. Devoid of the idiosyncrasies and excessive cryptic details that characterize
programming languages, OPL sentences shall be understandable to people without technical or programming
experience.

Because of the extensive variety in model expression enabled by OPM, the OPL syntax expression in
EBNF below is necessarily incomplete, e.g. the opportunities for statements regarding probability in
12.7 and execution path management in Clause 13 are lacking EBNF expressions. The enormous variety
of participation constraints, especially those expressible as mathematical formulae, do not have formal
specification in Annex A.

A.2	 OPL in the context of OPD

This Annex provides a formal specification of the OPL conforming to ISO/IEC 14977, which results from
the various OPD graphical constructions found in Clause 7 through Clause 14. To aid the reader, this Annex
references the corresponding OPD sub-clauses where appropriate and Annex headings help to partition the
EBNF according to syntactic forms for modelling elements.

NOTE	 With appropriate use of the graph grammar described in Annex C, and the symbols described in Annex A
(this Annex), sentences constructed in OPL are translatable into OPD figures.

A.3	 Preliminaries

A.3.1	 EBNF syntax

The following syntax uses the notation of EBNF as described in ISO 149771). The normal character
representing each operator of Extended BNF and its implied precedence shall be (highest precedence at the
top):

 * repetition-symbol
 - except-symbol
 , concatenate-symbol
 | definition-separator-symbol
 = defining-symbol
 ; terminator-symbol

1)	 ISO/IEC 14977 is a freely available standard that can be downloaded free of charge from https://​isotc​.iso​.org/​
livelink/​livelink/​fetch/​2000/​2489/​Ittf​_Home/​Public​lyAvailabl​eStandards​.htm

98

﻿
© ISO 2024 – All rights reserved

https://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm
https://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm

ISO 19450:2024(en)

The normal precedence shall be over-ridden by the following bracket pairs:

 ‘ first-quote-symbol ’
 “ second-quote-symbol ”
 (* start-comment-symbol end-comment-symbol *)
 (start-group-symbol end-group-symbol)
 [start-option-symbol end-option-symbol]
 { start-repeat-symbol end-repeat-symbol }
 ? special-sequence-symbol ?

NOTE 1	 A space character enclosed in quotes as in “ “ denotes that a literal space character is required, otherwise
space characters and line endings (so-called white space) have no significance.

NOTE 2	 A meta identifier can occur on both the left and right sides of a rule, so enabling recursion.

NOTE 3	 The first-quote-symbol identifies syntactic elements of OPL variable labels, which are the names and values
appearing in OPD graphical models and OPL sentences. These particular syntactic elements are found only in the Base
declarations subclause below (A.3.2).

NOTE 4	 The second-quote-symbol identifies syntactic elements of OPL constants, which are words and phrases
appearing in OPL sentences as interpretations of the graphical element configurations and link tags in an OPD.

NOTE 5	 Beginning with A.3.2 and through the remainder of Annex A, all text, except headings, conforms to
ISO/IEC 14977.

A.3.2	 Base declarations
(* Region OPL EBNF *)
(* Region Base declarations: The following base declarations define certain strings: *)

non zero digit = ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’ ;
decimal digit = ‘0’ | non zero digit ;
positive integer = non zero digit, {decimal digit} ;
positive real number = {decimal digit}, ".", decimal digit, {decimal digit} ;
upper case letter = ‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’ | ‘G’ | ‘H’ | ‘I’ | ‘J’ | ‘K’ | ‘L’ |
‘M’
| ‘N’ | ‘O’ | ‘P’ | ‘Q’ | ‘R’ | ‘S’ | ‘T’ | ‘U’ | ‘V’ | ‘W’ | ‘X’ | ‘Y’ | ‘Z’ ;
lower case letter = ‘a’ | ‘b’ | ‘c’ | ‘d’ | ‘e’ | ‘f’ | ‘g’ | ‘h’ | ‘i’ | ‘j’ | ‘k’ | ‘l’ |
‘m’
| ‘n’ | ‘o’ | ‘p’ | ‘q’ | ‘r’ | ‘s’ | ‘t’ | ‘u’ | ‘v’ | ‘w’ | ‘x’ | ‘y’ | ‘z’ ;
letter = upper case letter | lower case letter ;
string character = letter | decimal digit | ‘_’ | ‘-‘ | '&' | ‘/’ | ‘ ‘ ;
(* note that a string character can be a space *)
name = letter, {string character} ; (* note that the first character is a
letter *)
capitalized word = upper case letter {string character} ;
non capitalized word = lower case letter {string character} ;
non capitalized phrase = non capitalized word, { ' ', (non capitalized word | capitalized
word) } ;
type identifier = " boolean"
 | " string"
 | number type
 | " enumerated" ;
prefix = " unsigned" ;
number type = [prefix], " integer"
 | " float"
 | " double"
 | " short"
 | " long" ;
participation limit = positive integer | positive real number ;
participation constraint = lower single
 | upper single
 | lower plural
 | upper plural
 | ("0" | participation limit, [" to ", participation limit]) ;
expression constraint = " where ", name, ((logical operation, value name)
 | (logical begin set, (name | value name), { ", ", [(name | value
name)] },
 logical end set)) ;
lower single = "a " | "an " | "an optional " | "at least one " ;

99

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

upper single = "A " | "An " | "An optional " | "At least one " ;
lower plural = "optional " | "many " ;
upper plural = "Optional " | "Many " ;
range clause = " is ", value name | " ranges from ", value name, " to ", value name ;
logical operation = "=" | "<" | ">" | "<=" | " >=" ;
logical begin set = " in { " ;
logical end set = " }" ;

(* participation constraints have many forms of expression and the Base Declarations do not
include all of those forms. *)

(* Reserved words and symbols found in OPL statements are delimited by second quote symbols *)

(* EndRegion: Base declarations *)

A.3.3	 OPL special sequences
(* Region: special sequences – This region defines all special sequences like New Line, Plural
objects and processes *)

new line = ? application specific character sequence resulting in a line feed followed by
return to first
 character position on the line ? ;
measurement unit = ? any specified or commonly understood measurement of time, space,
quantity, or
 quality? ;
value name = ? a number or name appropriate for the associated measurement unit? ;
singular object name = ? capitalized singular noun phrase ? ; (* see 7.1.2 *)
plural object name = ? capitalized plural noun phrase ? ;
singular process name = ? capitalized gerund phrase ? | ? capitalized singular noun phrase ? ;
plural process name = ? capitalized gerund phrase ? | ? capitalized plural noun phrase ? ;
(* see 7.2.2 *)
parent OPD = ? OPD from which a new-diagram in-zooming or new diagram unfolding occurs ? ;
child OPD = ? OPD resulting from a new-diagram in-zooming or new diagram unfolding ? ;
max duration time units = ? value of maximum duration in time units for process execution ? ;
min duration time units = ? value of minimum duration in time units for process execution ? ;

(* EndRegion: Special Sequences *)

A.4	 OPL syntax

A.4.1	 OPL document structure
(* Region OPL document *)

OPL paragraph = OPL sentence, { new line, OPL sentence} ;
OPL sentence = OPL formal sentence, "." ;
OPL formal sentence = thing description sentence
 | procedural sentence
 | structural sentence
 | context management sentence ;

A.4.2	 OPL identifiers
(* Region: Identifiers – This region defines all identifiers used throughout the grammar *)

object identifier = singular object name, [" in ", measurement unit], [range clause]
 | singular object name, " object", [" in ", measurement unit], [range
clause]
 | plural object name, [" in ", measurement unit], [range clause]
 | plural object name, " objects", [" in ", measurement unit], [range
clause] ;
process identifier = singular process name
 | singular process name, " process"
 | plural process name
 | plural process name, " processes" ;
thing identifier = object identifier
 | process identifier ; (* see 7.1 and 7.2 *)
state identifier = non capitalized word ;
tag expression = non capitalized phrase ;

100

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

(* EndRegion: Identifiers *)

A.4.3	 OPL lists
(* Region: Lists – This region defines various lists: object list, process list, object with
optional state list *)

process list = process identifier
 | process identifier, [{", ", process identifier}], " and ", process
identifier ; (* see 12.1 *)
process Or list = process identifier, [{", ", process identifier}], " or ", process
identifier ;
process Xor list at beginning = "One of ", process Or list ;
process Xor list at end = "one of ", process Or list ;

object list = object identifier
 | object identifier, [{", ", object identifier}], " and ", object
identifier ; (* see 12.1 *)
object with optional state = [state identifier], " ", object identifier ;
(* object with optional state may replace object identifier in many OPL expressions using
object identifier *)

object with optional state list = object with optional state
 | object with optional state, [{", ", object with optional state}],
" and ", object with optional state ;

object Or list = object with optional state, [{", ", object with optional state}], " or ",
object with optional state ;
 (* see 12.2 *)
object Or list nostates = object identifier, [{", ", object identifier}], " or ", object
identifier ;

object Xor list at beginning = "One of ", object Or list ;
object Xor list at end = "one of ", object Or list ;
object nostates Xor list at end = "one of ", object Or list ;

state list = state identifier
 | state identifier, [{", ", state identifier}], " and ", state
identifier ;
state Or list = state identifier, [{", ", state identifier}], " or ", state identifier ;
state Xor list at end = "one of ", state Or list ;

(* EndRegion: Lists *)

A.4.4	 OPL Thing description

A.4.4.1	 Thing description sentence

(* Region: Thing Description – This region defines all thing description sentences *)

thing description sentence = generic property sentence
 | type description sentence
 | state description sentence ;

A.4.4.2	 Generic property sentence

generic property sentence = thing identifier,
 " is ", [essence], [affiliation], [perseverance];(* see 7.3.3 *)
essence = "Informatical" | "Physical" ; (* Physical is the non-
default value of
Essence, the default value of which
is Informatical. *)
affiliation = "Systemic" | "Environmental" ; (* Environmental is the
non-default
value of Affiliation, the default value
of which is Systemic. *)
perseverance = "Persistent" | "Transient" ; (* Transient is the non-
default value
of Perseverance, the default value of
which is Persistent. *)

101

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

A.4.4.3	 Type description sentence

type description sentence = object identifier, " is of type ", type identifier ;

A.4.4.4	 State description sentence

state description sentence = state enum sentence
 | initial states sentence
 | final states sentence
 | default state sentence
 | combined state sentence ; (* see 7.3.5 *)
state enum sentence = object identifier, " is ", state identifier
 | object identifier, " can be ",
state identifier, [{", ", state identifier}], " and ", state identifier
 | object identifier, " can be ",
state identifier, [{", ", state identifier}], " and other states" ;
initial states sentence = single initial states sentence
 | multiple initial states sentence ;
single initial states sentence = "State ", state identifier, " of ", object identifier, " is
initial" ;
multiple initial states sentence = "States ", state list " of ", object identifier, " are
initial" ;
final states sentence = single final state sentence
 | multiple final state sentence ;
single final state sentence = "State ", state identifier, " of ", object identifier, " is
final" ;
multiple final state sentence = "States ", state list, " of ", object identifier, " are final"
;
default state sentence = "State " state identifier, " of ", object identifier, " is default" ;
combined state sentence = object identifier, {" is initially ", [state identifier | state
identifier,
{" and ", state identifier}], " and finally ", state OR list } ;
input state = state identifier ; (* the state or states of the associated object in a
process precondition set *)
output state = state identifier ; (* the state or states of the associated object in a process
postcondition set *)
active process identifier = process identifier ;
(* EndRegion: Thing Description *)

A.4.5	 OPL Procedural sentences

A.4.5.1	 Procedural sentence

(* Region: Procedural sentences. – This region defines all procedural sentences *)

procedural sentence = transforming sentence
 | enabling sentence
 | control sentence ; (* see 8.1.1 *)

A.4.5.2	 OPL Transformations

A.4.5.2.1	 Transforming sentence

(* Region: Transforming sentences – This region defines consumption, result, effect and change
sentences, and their variations *)

transforming sentence = consumption sentence
 | result sentence
 | effect sentence
 | change sentence ; (* see 9.1.1 and 9.3.3 *)

A.4.5.2.2	 Consumption sentence

consumption sentence = (process identifier, " consumes ", object with optional state list)
 | consumption select sentence ; (* see 9.1.2 *)
consumption select sentence = consumption Or sentence
 | consumption Xor sentence ; (* see 12.3 *)
consumption Or sentence = consumption source Or sentence
 | consumption destination Or sentence ;
consumption source Or sentence = process identifier, " consumes at least one of ", object Or
list ;

102

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

consumption destination Or sentence = "At least one of ", process Or list,
" consumes ", object with optional state ;

consumption Xor sentence = consumption source Xor sentence
 | consumption destination Xor sentence ;
consumption source Xor sentence = process identifier, " consumes exactly ", object Xor list at
end ;
consumption destination Xor sentence = "Exactly ", process Xor list at beginning, " consumes
",
object with optional state ;

A.4.5.2.3	 Result sentence

result sentence = (process identifier, " yields ", object with optional state list)
 | result select sentence ; (* see 9.1.3 *)
result select sentence = result Or sentence
 | result Xor sentence ; (* see 12.3 *)
result Or sentence = result source Or sentence
 | result destination Or sentence ;
result source Or sentence = "At least one of ", process Or list, " yields ", object with
optional state ;
result destination Or sentence = process identifier, " yields at least one of ", object Or
list ;
result Xor sentence = result source Xor sentence
 | result destination Xor sentence ;
result source Xor sentence = "Exactly ", process Xor list at beginning, " yields ", object
with optional state ;
result destination Xor sentence = process identifier, " yields exactly ", object Xor list at
end ;

A.4.5.2.4	 Effect sentence

effect sentence = (process identifier, " affects ", object list)
 | effect select sentence ; (* see 9.14 *)
effect select sentence = effect Or sentence
 | effect Xor sentence ;
effect Or sentence = effect object Or sentence
 | effect process Or sentence ; (* see 12.3 *)
effect object Or sentence = process identifier, " affects at least one of ", object Or list
Nostates ;
effect process Or sentence = "At least one of ", process Or list, " affects ", object
identifier ;
effect Xor sentence = effect object Xor sentence
 | effect process Xor sentence ;
effect object Xor sentence = process identifier, " affects exactly ", object nostates Xor list
at end ;
effect process Xor sentence = "Exactly ", process Xor list at beginning, " affects ", object
identifier ;

A.4.5.2.5	 Change sentence

change sentence = in out specified change sentence
 | input specified change sentence
 | output specified change sentence ; (* see 9.3.3.1 *)
in out specified change sentence = (process identifier, " changes ", in out object change
list)
 | in out specified change select sentence ; (* see 9.3.3.2 *)
in out object change list = in out object change phrase
 | in out object change phrase, [{", ", in out object change phrase}],
 " and ", in out object change phrase ;
in out object change phrase = object identifier, " from ", input state, " to ", output state ;
in out specified change select sentence = in out specified change Or sentence
 | in out specified change Xor sentence ;
in out specified change Or sentence = (process identifier, " changes ", Or in out object
change list)
 | (process Or list, " changes ", in out object change phrase)
 | in out specified change state Or sentence ;
Or in out object change list = in out object change phrase, [{", ", in out object change
phrase}],
" or ", in out object change phrase ;
in out specified change state Or sentence = (process identifier, " changes ", object
identifier,

103

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

" from ", state Or list, " to ", state identifier)
 | (process identifier, " changes ", object identifier,
" from ", state identifier, " to ", state Or list) ;
in out specified change Xor sentence = in out specified change object Xor sentence
 | in out specified change process Xor sentence
 | in out specified change state Xor sentence ;
in out specified change Object Xor sentence = process identifier, " changes one of ",
Or In out object change list ;

in out specified change process Xor sentence = process Xor list at beginning, " changes ",
in out object change phrase ;
in out specified change state Xor sentence = (process identifier, " changes ", object
identifier,
" from ", state Xor list at end, " to ", state identifier)
 | (process identifier, " changes ", object identifier, " from ", state
identifier, " to ",
 state Xor list at end) ;

input specified change sentence = (process identifier, " changes ", input object change list
)
 | input specified change select sentence ; (* see 9.3.3.3 *)
input object change phrase = object identifier, " from ", input state ;
input object change list = input object change phrase
 | input object change phrase, [{", ", input object change phrase }], "
and ",
input object change phrase ;
input specified change select sentence = input specified change Or sentence
 | input specified change Xor sentence ;
input specified change Or sentence = (process identifier, " changes ", Or input object change
list)
 | (process Or list, " changes ", input object change phrase)
 | (process identifier, " changes ", object identifier, " from ", state Or
list) ;
Or input object change list = input object change phrase, [{", ", input object change phrase
}], " or ",
input object change phrase ;
input specified change Xor sentence = (process identifier, " changes one of ", Or input object
change list)
 | (process Xor list at beginning, " changes ", input object change phrase
)
 | (process identifier, " changes ", object identifier, " from ", state Xor
list at end) ;

output specified change sentence = (process identifier, " changes ", output object change list
)
 | output specified change select sentence ; (* see 9.3.3.4 *)
output object change list = output object change phrase
 | output object change phrase, [{", " output object change phrase }], "
and ",
output object change phrase ;
output object change phrase = object identifier, " to ", output state ;
output specified change select sentence = output specified change Or sentence
 | output specified change Xor sentence ;
output specified change Or sentence = (process identifier, " changes ", Or output object
change list)
 | (process Or list, " changes ", output object change list)
 | (process identifier, " changes ", object identifier, " to ", state Or
list) ;
Or output object change list = output object change phrase, [{", ", output object change
phrase }], " or ",
output object change phrase ;
output specified change Xor sentence = (process identifier, " changes one of ", Or output
object change list)
 | (process Xor list at beginning, " changes ", output object change phrase
)
 | process identifier, " changes ", object identifier, " to ", state Xor
list at end ;
(* EndRegion: Transforming sentences *)

104

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

A.4.5.3	 OPL Enablers

A.4.5.3.1	 Enabling sentences

(* Region: Enabling sentences – This region defines Agent and Instrument sentences and their
possible variations *)

enabling sentence = agent sentence
 | instrument sentence ; (* see 9.2.1 *)

A.4.5.3.2	 Agent sentence

agent sentence = (object with optional state list, " handle ", process identifier)
 | agent select sentence ; (* see 9.2.2 and 12.3 *)

agent select sentence = agent Or sentence
 | agent Xor sentence ;
agent Or sentence = agent source Or sentence
 | agent destination Or sentence ;
agent source Or sentence = "At least one of ", object Or list, "handles", process identifier ;
agent destination Or sentence = object with optional state, "handles at least one of ",
process Or list ;
agent Xor sentence = agent source Xor sentence
 | agent destination Xor sentence ;
agent source Xor sentence = "Exactly ", object Xor list at beginning, " handles ", process
identifier ;
agent destination Xor sentence = object with optional state, " handles exactly ", process Xor
list at end ;

A.4.5.3.3	 Instrument sentence

instrument sentence = (process identifier, " requires ", object with optional state list)
 | instrument select sentence ; (* see 9.2.3 and 12.3 *)

instrument select sentence = instrument Or sentence
 | instrument Xor sentence ;
instrument Or sentence = instrument source Or sentence
 | instrument destination Or sentence ;
instrument source Or sentence = process identifier, " requires at least one of ", object Or
list ;
instrument destination Or sentence = "At least one of ", process Or list, " requires ",
object with optional state ;
instrument Xor sentence = instrument source Xor sentence
 | instrument destination Xor sentence ;
instrument source Xor sentence = process identifier, " requires exactly ", object Xor list at
end ;
instrument destination Xor sentence = "Exactly ", process Xor list at beginning, " requires ",
object with optional state ;

(* EndRegion: Enabling sentences *)

A.4.5.4	 OPL Flow of control

A.4.5.4.1	 Control sentence

(* Region : Control sentences – This region defines all sentences related to flow of control
in the system *)
control sentence = event sentence
 | condition sentence
 | invocation sentence
 | exception sentence ; (* see 9.5.1 *)

A.4.5.4.2	 Event sentence

event sentence = consumption event sentence
 | effect event sentence
 | agent event sentence
 | instrument event sentence ; (* see 9.5.2 *)
consumption event sentence = object with optional state, " initiates ", process identifier,
 ", which consumes ", object identifier ;
 (* see 12.5 and 12.6 for additional syntax for link fans *)

105

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

effect event sentence = simple effect event sentence
 | in out specified effect event sentence
 | input specified effect event sentence
 | output specified effect event sentence ;
simple effect event sentence = object identifier, " initiates ", process identifier, ", which
affects ",
 object identifier ;
in out specified effect event sentence = input state, object identifier, " initiates ",
process identifier,
 ", which changes ", in out object change phrase ;
input specified effect event sentence = input state, object identifier, " initiates ", process
identifier,
 ", which changes ", object identifier, " from ", input state ;
output specified effect event sentence = object identifier, " in any state initiates ",
process identifier,
 ", which changes ", object identifier, " to ", output state ;
agent event sentence = object with optional state, " initiates and handles ", process
identifier ;
instrument event sentence = object with optional state, " initiates ", process identifier,
 ", which requires " object with optional state ;

A.4.5.4.3	 Condition sentence

condition sentence = condition transforming sentence
 | condition enabling sentence ;
condition transforming sentence = conditional consumption sentence
 | conditional state specified consumption sentence
 | conditional effect sentence ; (* see 9.5.3.1 and 9.5.3.3 *)
conditional consumption sentence = (process identifier, " occurs if ", object identifier,
 " exists, in which case ", object identifier, " is consumed, otherwise
 ", process identifier, " is skipped ")
 | ("If ", object identifier, " exists then ", process identifier, "
occurs and consumes ",
 object identifier, ", otherwise bypass ", process identifier) ;
conditional state specified consumption sentence = (process identifier, " occurs if ", object
identifier,
 " is ", input state, ", in which case ", object identifier, " is
consumed, otherwise
 ", process identifier, " is skipped ")
 | ("If ", input state, object identifier, " exists then ", process
identifier,
 " occurs and consumes ", object identifier, ", otherwise bypass ",
 process identifier) ;

conditional effect sentence = simple conditional effect sentence
 | in out specified conditional effect sentence
 | input specified conditional effect sentence
 | output specified condition effect sentence ;
simple conditional effect sentence = (process identifier, "occurs if ", object identifier,
 " exists, in which case ", process identifier, " affects ", object
identifier,
 ", otherwise ", process identifier, " is skipped ")
 | ("If ", object identifier, " exists then ", process identifier, "occurs
and affects ",
 object identifier, ", otherwise bypass ", process identifier) ;
in out specified conditional effect sentence = (process identifier, " occurs if there is ",
 input state, object identifier, ", in which case ", process
identifier, " changes ",
 in out object change phrase, ", else ", process identifier,
 " is skipped ")
 | (process identifier, " occurs if there is ",
 input state, object identifier, ", in which case ", process
identifier, " changes ",
 in out object change phrase,
 ", otherwise bypass ", process identifier) ;
input specified conditional effect sentence = (process identifier, " occurs if there is ",
 input state, object identifier, " in which case ", process identifier,
" changes ",
 object identifier, " from ", Input state, ", else ", process
identifier, " is skipped ")
 | (process identifier, " occurs if there is ", input state, object
identifier,

106

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 " in which case ", process identifier, " changes ", object identifier,
" from ",
 Input state, ", otherwise bypass ", process identifier) ;
output specified conditional effect sentence = (process identifier, " occurs if ",
 object identifier, " exists, in which case ", process identifier, "
changes ",
 object identifier, " to ", output state, ", otherwise ", process
identifier,
 " is skipped ")
 | (process identifier, " occurs if ", object identifier, " exists, in
which case ", process
 identifier, " changes ", object identifier, " to ",
 output state, ", otherwise bypass ", process identifier) ;
condition enabling sentence = conditional agent sentence
 | conditional instrument sentence ; (* see 9.5.3.2 *)
conditional agent sentence = (process identifier, " occurs if ", object with optional state,
 " exists, else ", process identifier, " is skipped")
 | (process identifier, " occurs if ", object with optional state,
 " exists, else bypass ", process identifier) ;
conditional instrument sentence = (process identifier, " occurs if ", object with optional
state,
 " exists, else ", process identifier, " is skipped")
 | (process identifier, " occurs if ", object with optional state,
 " exists, else bypass ", process identifier) ;

A.4.5.4.4	 Invocation sentence

invocation sentence = (process identifier, " invokes ", process list)
 | (process identifier, " invokes itself ")
 | invocation select sentence ; (* see 9.5.2.5 and 12.3 *)
invocation select sentence = invocation Or sentence
 | invocation Xor sentence ;
invocation Or sentence = ("At least one of ", process Or list, " invokes ", process
identifier)
 | (process identifier, " invokes at least one of", process Or list) ;
invocation Xor sentence = ("Exactly one of ", process Or list, " invokes ", process
identifier)
 | (process identifier, " invokes exactly ", process Xor list at end);

A.4.5.4.5	 Exception sentence

exception sentence = overtime exception sentence
 | undertime exception sentence ; (* see 9.5.4 *)
overtime exception sentence = active process identifier, " occurs if duration of ", process
identifier,
 " exceeds ", max duration time units ;
undertime exception sentence = active process identifier, " occurs if duration of ", process
identifier,
 " falls short of ", min duration time units ;

(* EndRegion: Control sentences *)

(* EndRegion: Procedural sentences *)

A.4.6	 OPL Structural sentences

A.4.6.1	 Structural sentence

(* Region: Structural sentences - This region defines all sentences that connect things in
static, time-independent, long-lasting relations *)

structural sentence = tagged structural sentence
 | aggregation sentence
 | characterization sentence
 | exhibition sentence
 | specialization sentence
 | instantiation sentence ; (* see 10.1 *)

107

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

A.4.6.2	 OPL tagged structures

A.4.6.2.1	 Tagged structural sentence

tagged structural sentence = unidirectional tagged structural sentence
 | bidirectional tagged structural sentence ;

A.4.6.2.2	 Unidirectional tagged structural sentence

unidirectional tagged structural sentence = single link unidirectional tagged sentence
 | forked tagged structural sentence ; (* see 10.2.1 and 11.2 *)
single link unidirectional tagged sentence = nullTag unidirectional object tagged structural
sentence
 | nullTag unidirectional process tagged structural sentence
 | non nullTag unidirectional object tagged structural sentence
 | non nullTag unidirectional process tagged structural sentence ;
 (* see 10.2.2 and 11.2 *)
nullTag unidirectional object tagged structural sentence = [participation constraint, " "],
 source object, uniDirNullTag, [participation constraint, " "],
destination object ;
nullTag unidirectional process tagged structural sentence = [participation constraint, " "],
 source process, uniDirNullTag, [participation constraint, " "],
destination process ;
non nullTag unidirectional object tagged structural sentence = [participation constraint, "
"], source object, " ",
 forward tag, " ", [participation constraint, " "], destination object,
 [expression constraint] ;
non nullTag unidirectional process tagged structural sentence = [participation constraint, "
"], source process,
 " ", forward tag, " ", [participation constraint, " "], destination
process ;
forked tagged structural sentence = forked nullTag object tagged structural sentence
 | forked nullTag process tagged structural sentence
 | forked non nullTag object tagged structural sentence
 | forked non nullTag process tagged structural sentence ;
forked nullTag object tagged structural sentence = [participation constraint, " "], source
object, uniDirNullTag,
 object tine set ;
forked nullTag process tagged structural sentence = [participation constraint, " "], source
process,
 uniDirNullTag, process tine set ;
forked non nullTag object tagged structural sentence = [participation constraint, " "], source
object, " ",
 forward tag, " ", object tine set ;
forked non nullTag process tagged structural sentence = [participation constraint, " "],
source process, " ",
 forward tag, " ", process tine set ;
object tine set = tine object | ((tine object, [{", ", tine object }], " and ", (tine
object | "more")),
 [(", ordered by ", order criteria) | (", in that sequence")])
;
process tine set = tine process | ((tine process, [{", ", tine process }], " and ", (tine
process | "more")),
 [(", ordered by ", order criteria) | (", in that sequence")])
;
order criteria = name ;
tine object = [participation constraint, " "], object with optional state ;
source object = object with optional state ;
destination object = object with optional state ;
tine process = [participation constraint, " "], process identifier ;
source process = process identifier ;
destination process = process identifier ;
uniDirNullTag = " relates to "
 | " relate to "
 | user defined uniDirNullTag ;
forward tag = tag expression ;
user defined uniDirNullTag = tag expression ;

108

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

A.4.6.2.3	 Bidirectional tagged structural sentences

bidirectional tagged structural sentence = asymmetric bidirectional object tagged structural
sentence
 | asymmetric bidirectional process tagged structural sentence
 | symmetric bidirectional object tagged structural sentence
 | symmetric bidirectional process tagged structural sentence ;
(* see 10.2.3 and 11.2 *)

asymmetric bidirectional object tagged structural sentence =
 ([participation constraint, " "], source object, bidir forward
tag,
 [participation constraint, " "], destination object,
[expression constraint])
 | ([participation constraint, " "], destination object, bidir backward
tag,
 [participation constraint, " "], source object, [expression
constraint]) ;
asymmetric bidirectional process tagged structural sentence =
 ([participation constraint, " "], source process, bidir forward
tag,
 [participation constraint, " "], destination process)
 | ([participation constraint, " "], destination process, bidir backward
tag,
 [participation constraint, " "], source process) ;
symmetric bidirectional object tagged structural sentence =
 ([participation constraint, " "], source object, " and ", [
participation constraint, " "],
 destination object, " are ", biDirNullTag)
 | ([participation constraint, " "], source object, " and ",
 [participation constraint, " "],
 destination object), " are ", symmetric tag ;
symmetric bidirectional process tagged structural sentence =
 ([participation constraint, " "], source process,
 " and ", [participation constraint, " "], destination process, "
are ", biDirNullTag)
 | ([participation constraint, " "], source process,
 " and ", [participation constraint, " "], destination process), "
are ", symmetric tag ;

symmetric tag = tag expression ;
bidir forward tag = tag expression ;
bidir backward tag = tag expression ;
biDirNullTag = " related"
 | user defined biDirNullTag ;
user defined biDirNullTag = tag expression ;

A.4.6.3	 OPL fundamental structures

A.4.6.3.1	 Aggregation sentences

aggregation sentence = object forked aggregation sentence
 | process forked aggregation sentence ; (* see 10.3.2 *)
object forked aggregation sentence = whole object, " consists of ", object parts list ;
process forked aggregation sentence = whole process, " consists of ", process parts list ;
object parts list = part object
 | (part object, [{ ", ", part object } , " and ", (part object | " at
least one other part")]) ;
process parts list = part process
 | (part process, [{ ", ", part process }, " and ",
(part process | " at least one other part")]) ;
whole object = object identifier ;
part object = [participation constraint, " "], object identifier ;
whole process = process identifier ;
part process = [participation constraint, " "], process identifier ;

A.4.6.3.2	 Characterization sentences

characterization sentence = object forked characterization sentence
 | process forked characterization sentence ; (* see 10.3.3 *)
object forked characterization sentence = basic object forked characterization sentence

109

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 | partial object forked characterization sentence
 | AsWellAs object forked characterization sentence
 | partial AsWellAs object forked characterization sentence ;
basic object forked characterization sentence = object identifier, " exhibits ", (attribute
list | operator list) ;
partial object forked characterization sentence = object identifier, " exhibits ",
 ((attribute list, ", and at least one other attribute ")
 | (operator list, ", and at least one other operator")) ;
AsWellAs object forked characterization sentence = object identifier, " exhibits ", attribute
list, ", as well as ",
 operator list ;
partial AsWellAs object forked characterization sentence = object identifier, " exhibits ",
attribute list,
 ", and at least one other attribute", ", as well as ", operator list,
 ", and at least one other operator" ;

attribute = object identifier ;
operator = process identifier ;
attribute list = object list ;
operator list = process list ;

process forked characterization sentence = basic process forked characterization sentence
 | partial process forked characterization sentence
 | partial AsWellAs process forked characterization sentence
 | AsWellAs process forked characterization sentence ;
basic process forked characterization sentence = process identifier, " exhibits ",
(operator list | attribute list) ;
partial process forked characterization sentence = process identifier, " exhibits ",
 ((operator list, ", and at least one other operator ")
 | (attribute list, ", and at least one other attribute")) ;

AsWellAs process forked characterization sentence = process identifier, " exhibits ", operator
list, ",
 as well as ", attribute list ;
partial AsWellAs process forked characterization sentence = process identifier, " exhibits ",
operator list,
 ", and at least one other operator", ", as well as ", attribute list,
 ", and at least one other attribute" ;

A.4.6.4	 Exhibition sentences

exhibition sentence = object exhibition sentence
 | process exhibition sentence ; (* see 10.3.3.2.2 and 11.3 *)
object exhibition sentence = feature, " of ", object identifier, (range clause | " is ",
 ((attribute list | operator list) | (attribute list, " as well
as ", operator list))) ;
process exhibition sentence = feature, " of " , process identifier, " is ", ((operator list
| object list)
 | (operator list, " as well as ", attribute list)) ;

feature = attribute | operator ;

A.4.6.5	 Specialization sentences

specialization sentence = object specialization sentence
 | process specialization sentence
 | state specialization sentence ; (* see 10.3.4 *)

object specialization sentence = basic object specialization sentence
 | multiple object specialization sentence
 | partial object specialization sentence
 | Xor object specialization sentence
 | multiple object inheritance specialization sentence ;

basic object specialization sentence = special object, " is a ", general object ;
multiple object specialization sentence = special object list, " are ", general object ;
partial object specialization sentence = special object list, " and other specializations are
", general object ;
Xor object specialization sentence = basic Xor object specialization sentence
 | comma separated Xor object specialization sentence ;
basic Xor object specialization sentence = special object, " can be either ", general object,
" or ",

110

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 general object ;
comma separated Xor object specialization sentence = special object, " can be one of ",
general object,
 { ", ", general object }, " or ", general object ;
multiple object inheritance specialization sentence = special object, " is ", general object
list ;

general object = object identifier ;
special object = object identifier ;
general object list = " a ", object identifier, [{ " a ", object identifier }], " and a ",
object identifier ;
special object list = object list ;

process specialization sentence =basic process specialization sentence
 | multiple process specialization sentence
 | partial process specialization sentence
 | Xor process specialization sentence
 | multiple process inheritance specialization sentence ;
basic process specialization sentence = special process, " is ", general process ;
multiple process specialization sentence = special process list, " are ", general process ;
partial process specialization sentence = special process list, " and other specializations
are ",
 general process ;
Xor process specialization sentence = basic Xor process specialization sentence
 | comma separated Xor process specialization sentence ;
basic Xor process specialization sentence = special process, " can be either ", general
process, " or ",
 general process ;
comma separated Xor process specialization sentence = special process, " can be one of ",
general process,
 { ", ", general process }, " or ", general process ;
multiple process inheritance specialization sentence = special process, " is ", general
process list ;

general process = process identifier ;
special process = process identifier ;
general process list = " a", process identifier, [{ " a ", process identifier }] " and a ",
process identifier ;
special process list = process list ;

state specialization sentence = basic state specialization sentence
 | multiple state specialization sentence
 | partial state specialization sentence ;
basic state specialization sentence = state specified object, " is a ", state specified object
;
multiple state specialization sentence = state specified object list, " are ", state specified
object ;
partial state specialization sentence = state specified object list, " and other
specializations are
 ", state specified object ;

state specified object = state identifier, " ", object identifier ;
state specified object list = state specified object
 | state specified object, [{ ", ", state specified object }], " and ",
 state specified object ;

A.4.6.6	 Instantiation sentences

instantiation sentence = object instantiation sentence
 | process instantiation sentence ; (* see 10.3.5 *)

object instantiation sentence = basic object instantiation sentence
 | multiple object instantiation sentence ;
basic object instantiation sentence= instance object, " is an instance of ", object class ;
multiple object instantiation sentence = instance object list, " are instances of ", object
class ;

process instantiation sentence = basic process instantiation sentence
 | multiple process instantiation sentence ;
basic process instantiation sentence = instance process, " is an instance of ", process class
;
multiple process instantiation sentence = instance process list, " are an instance of ",

111

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

process class ;

instance object = object identifier ;
instance process = process identifier ;
object class = object identifier ;
process class = process identifier ;
instance object list = object list ;
instance process list = process list ;

(* EndRegion: Structural sentences *)

A.4.7	 OPL Context management

A.4.7.1	 Context management sentence

(* Region: Context management sentences - This region defines all sentences that manage OPD
context shifts *)

context management sentence = unfolding sentence
 | folding sentence
 | in Zooming sentence
 | out Zooming sentence ; (* see 14.2.1 *)

(* in diagram object and process unfolding are equivalent to corresponding structural
sentences *)

A.4.7.2	 Unfolding sentences

unfolding sentence = object unfolding sentence
 | process unfolding sentence ;
object unfolding sentence = underspecified object unfolding sentence
 | whole object unfolding sentence
 | general object unfolding sentence
 | class object unfolding sentence
 | exhibitor object unfolding sentence ;

underspecified object unfolding sentence = object identifier, " unfolds into ", attribute
list,
 [" as well as ", operator list] ;
whole object unfolding sentence = whole object, " from ", parent OPD, " part-unfolds in ",
child OPD,
 " into ", object parts list ;
general object unfolding sentence = general object, " from ", parent OPD, " specialization-
unfolds in ",
 child OPD, " into ", special object list ;
class object unfolding sentence = object class, " from ", parent OPD, " instance-unfolds in ",
child OPD,
 " into ", instance object list ;
exhibitor object unfolding sentence = object identifier, " from ", parent OPD, " feature-
unfolds in ", child OPD,
 " into ", attribute list, [" as well as ", operator list] ;

process unfolding sentence = underspecified process unfolding sentence
 | whole process unfolding sentence
 | general process unfolding sentence
 | class process unfolding sentence
 | exhibitor process unfolding sentence ;
underspecified process unfolding sentence = process identifier, " unfolds into ", operator
list,
 [", as well as ", attribute list] ;
whole process unfolding sentence = whole process, " from ", parent OPD, " part-unfolds in ",
child OPD,
 " into ", process parts list ;
general process unfolding sentence = general process, " from ", parent OPD, " specialization-
unfolds in ",
 child OPD, " into ", special process list ;
class process unfolding sentence = process class, " from ", parent OPD, " instance-unfolds in
", child OPD,
 " into ", instance process list ;
exhibitor process unfolding sentence = process identifier, " from ", parent OPD, " feature-
unfolds in ",

112

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 child OPD, " into ", operator list, [" as well as ", attribute list
] ;

A.4.7.3	 Folding sentences

folding sentence = object folding sentence
 | process folding sentence ;

(* a folding sentence is only relevant for an OPD object or process for which unfolding
produces a child OPD and is the OPL equivalent to the graphical bold contour designation *)

object folding sentence = object identifier, " is folding of ", child OPD ;
process folding sentence = process identifier, " is folding of ", child OPD;

A.4.7.4	 In zoom sentence

in zooming sentence = process in zoom sentence
 | object in zoom sentence ;
process in zoom sentence = in diagram process in zoom sentence
 | new diagram process in zoom sentence ;

in diagram process in zoom sentence = (process identifier, " zooms into ", process list, "in
that sequence",
 [", as well as ", object in zoom list])
 | (process identifier, " zooms into parallel ", process list, [", as
well as ",
 object in zoom list])
 | (process identifier, " zooms into ", process list, " and parallel ",
process list,
 ", in that sequence", [", as well as ", object in zoom list]) ;
new diagram process in zoom sentence = (process identifier, " from ", parent OPD, " zooms in
", child OPD,
 " into ", process list, "in that sequence", [", as well as ", object
in zoom list])
 | (process identifier, " from ", parent OPD, " zooms in ", child OPD, "
into parallel ",
process list, [", as well as ", object in zoom list])
 | (process identifier, " from ", parent OPD, " zooms in ", child OPD, "
into ",
 process list, " and parallel ", process list, ", in that sequence",
 [", as well as ", object in zoom list]) ;

object in zoom sentence = in diagram object in zoom sentence
 | new diagram object in zoom sentence ;

in diagram object in zoom sentence = (object identifier, " zooms into ", object list, "in
that sequence",
 [", as well as ", process in zoom list]) ;
new diagram object in zoom sentence = (object identifier, " from ", parent OPD, " zooms in ",
child OPD,
 " into ", object list, "in that sequence", [", as well as ", process
in zoom list]) ;
object in zoom list = object identifier, [{ ", ", object identifier }, " and ", object
identifier, ", in that sequence"] ;
process in zoom list = process identifier, [{", ", process identifier }, " and ", process
identifier,
 ", in that sequence"] ;

A.4.7.5	 Out zooming sentence

out zooming sentence = process out zoom sentence
 | object out zoom sentence ;
(* an out zoom sentence is only relevant for an OPD process or object for which in zooming
produces a child OPD and is the OPL equivalent to the graphical bold contour designation *)

process out Zoom sentence = process identifier, " is out zoom from ", child OPD ;
object out Zoom sentence = object identifier, " is out zoom from ", child OPD ;

(* EndRegion: Context management sentences *)
(* EndRegion: OPL document *)
(* EndRegion: OPL EBNF *)

113

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Annex B
(informative)

Guidance for Object-Process Methodology (OPM)

B.1	 General

In view of the rapid development of complex and complicated systems, the need for an intuitive yet formal
way of documenting standards for and designs of new systems, or knowledge about existing systems
becomes ever more apparent. This need, in turn, requires a solid infrastructure for recording, storing,
arranging, and presenting the accumulated knowledge and the creative ideas that build on this knowledge.

Conceptual modelling refers to the practice of representing system-related knowledge. The outcome of this
activity is a conceptual model. Conceptual modelling, which usually precedes mathematical and physical
modelling, is the primary activity required not only for engineering systems to be understood, designed,
and managed, but also for authoring standards that are as complete and as coherent as possible. Modelling is
essential and gives rise to model-based systems engineering (MBSE).

Understanding physical, biological, artificial, and social systems and devising standards related to them
requires a well-founded, formal, yet intuitive methodology and language that is capable of modelling
these complexities in a coherent, straightforward manner. The same modelling paradigm, the heart of the
methodology, should serve for both designing new systems and for studying and improving existing systems.
The paradigm should apply to artificial as well as natural systems, and faithfully represent physical and
informatical things of the modelled domain. OPM provides the means to address these aspirations.

NOTE	 The remainder of Annex B assumes the reader is familiar with the content of the normative clauses of this
document.

B.2	 Thing importance OPM principle

Major system-level processes can be as important as, or even more important than objects in the system
model. In particular, OPM specifies that the top-level process of an OPM model of a system is the system's
function, the value-providing process that embodies the system's purpose and use. Hence, a process must be
amenable for modelling independent of any particular set of objects involved in its occurrence.

The relative importance of a thing T in an OPM system model is generally proportional to the highest OPD in
the OPD hierarchy where T appears.

B.3	 What a new OPD should contain

A good OPD set is readable and easy to follow and comprehend. The following rules of thumb are helpful in
deciding when to create a new OPD and ways to keep OPDs as easy to read and grasp as possible:

—	 the OPD should not stretch over more than one page or one average-size monitor screen;

—	 the OPD should not contain more than 20–25 things;

—	 things must not occlude each other, i.e. they are either completely contained within higher-level things,
e.g. in case of zooming, or have no overlapping area;

—	 the diagram should not contain too many links – roughly the same as the number of things;

—	 a link should not cross the area occupied by a thing;

—	 the number of links crossing each other should be minimized.

114

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

B.4	 Element representation OPM principle

An OPM model element appearing in one OPD may appear in any other OPD as the same element. This
principle allows the possibility of representing any model element (thing or link) any number of times in
as many OPDs as the modeller finds useful. Since a link cannot exist without the things it links, for a link to
appear in an OPD, the two things that it links must be present as well

Although a modeller may include any number of things in any OPD, for reasons of clarity and clutter
avoidance, it is often highly desirable to include in an OPD only those elements that are necessary to grasp a
certain aspect or view of the system.

B.5	 Multiple thing copies convention

To avoid long and winding links that cross from one side of the OPD to another and clutter it, an OPD may
contain multiple copies of the same thing. This multiple thing copies convention complements the element
representation OPM principle. Just as an OPM model element appearing in one OPD may appear in any
OPD, an OPM element may appear more than once in any OPD. Accordingly, for the sake of avoiding OPD
clutter by long, crisscrossing links, a thing may appear at another place in the same OPD using a shorter
link. To facilitate recognition of the repetition, the modeller may replace thing symbol by a corresponding
duplicate thing symbol – a small object or process slightly showing behind the repeated thing as illustrated
in Figure B.1. However, the modeller should use this alternative sparingly as it requires the model reader to
notice and keep in mind the longer links that do not appear explicitly in the current OPD context.

Figure B.1 — Duplicate object and duplicate process symbols

B.6	 Naming guidelines

B.6.1	 Importance of name selection

Selecting appropriate labelling names for OPM model elements, i.e. the objects, processes, and links, is
important because the labels affect the ease of communication to and comprehension of the model by the
intended audience and the logical flow and sense-making of the corresponding OPL sentences.

B.6.2	 Object naming

A name for an object should be singular. Convert plural names to a singular form. The recommended way to
convert an object with several members is to add the word "Set" (usually for inanimate objects) or "Group"
(usually for humans) after the singular form.

EXAMPLE 1	 "Ingredients" (e.g. of a cake) becomes "Ingredient Set", while "Customers" becomes "Customer Group".

Because object names must be unique within the system model, the modeller may use the name of a
refineable as a prefix for its refinee names or may use the name of the refineable as a suffix preceded by "of"
after the refinee name. Either of these naming schemes allows contextual distinctions when referring to
refinees with similar semantics.

Object names may be phrases with more than one word, as in Apple Cake or Automobile Crash.

EXAMPLE 2	 If a modeller wants Size as an attribute of both Clock Set and Watch Set, then to distinguish between
the two Size attributes the former can be Clock Set Size and the latter Watch Set Size or the former can be Size of
Clock Set and the latter Size of Watch Set.

115

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

An implementation of OPM should notify the modeller when an attempt to include an object as a refinee in
more than one context occurs so that the modeller may determine the appropriateness of the inclusion.

An implementation may establish a default syntax to resolve refinee names.

B.6.3	 Process naming

A process name is a phrase whose last word should be the gerund form of a verb, i.e. a verb with the "ing"
suffix. If there are several choices, such as in Construction vs. Constructing, the latter is preferable.

The following variations for process naming exist:

—	 the verb version, which is simply the gerund form of the verb, namely verb + ing, as in Making or
Responding;

—	 the noun-verb version, which is a concatenation of a noun (an OPM object) with the gerund, namely noun
+ verb + ing, as in Cake Making or Crash Responding;

—	 the adjective-verb version, which is a concatenation of an adjective with the gerund form of the verb,
namely adjective + verb + ing, as in Quick Making or Automated Responding; and,

—	 The adjective-noun-verb version, which is a concatenation of an adjective with a noun with the gerund,
namely adjective + noun + verb + ing, as in Quick Cake Making or Automatic Crash Responding.

In the latter cases, the adjective qualifies the process (the gerund, which is a noun). However, the adjective
may also qualify the object (the noun), as in Sweet Cake Making or Fatal Crash Responding.

The name of the function, as well as the names of all OPM processes, should consist of no more than four
capitalized words ending with a gerund verb form, e.g. Large City Population Securing.

Because process names must be unique, the modeller may use the name of a refineable as a suffix preceded
by "of" after the refine name. The naming scheme allows contextualized distinctions when referring to
refines with similar semantics.

B.6.4	 State naming

The names of states should reflect the various relevant situations in which their "owning" object can occur
at any given point in time. Preferred state names are passive forms of the owning object rather than the
gerund form.

EXAMPLE	 If a Product is painted and then inspected, its states should be painted and inspected, rather than
painting and inspecting. Painting is the process that changes Product from its unpainted to its painted state, and
Inspecting changes Product from its painted state to its inspected state. While Painting of the Product occurs, it
has left its unpainted state for as long as Painting takes place and it is in transition between states and has not yet
entered its painted state until Painting is complete.

116

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Annex C
(informative)

Modelling OPM using OPM

C.1	 OPM models of OPM

The OPD in Figure C.1 represents aspects of OPM as OPM models. Subclause C.4 elaborates specific elements.
Subclause C.5 presents a model relating to the treatment of links during unfolding and in-zooming.
Subclause C.6 presents a model for evaluating process invocation, performance, and completion.

This set of sub-clauses expresses OPM as a set of OPD together with the corresponding OPL. For this
presentation, the modeller has chosen to limit the model contents to relatively simple OPM usage, i.e.
compound links are minimal and there is no attempt to unify the individual OPD into a single OPM model.
However, some advanced OPL expressions that limit the redundancy of text and aid in clarifying otherwise
distinct but related model facts do occur.

C.2	 OPM model structure

117

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 OPM Model specifies System.
OPM Model consists of OPD Set and OPL Spec.
 OPL Spec consists of at least one OPL Paragraph.
 OPD Set consists of at least one OPD.
 OPD Set graphically specifies OPL Spec.
 OPL Spec textually specifies OPD Set.
 OPD consists of at least one OPD Construct.
 OPL Paragraph consists of at least one OPL Sentence.
 OPD graphically specifies OPL Paragraph.
 OPL Paragraph textually specifies OPD.
 OPD Construct graphically specifies OPL Sentence.
 OPL Sentence textually specifies OPD Construct.
 OPD Construct consists of Thing Set and Link Set.
Thing Set consists of two to many Things.
Link Set consists of at least one Link.
Thing exhibits Name.
OPL Sentence consists of three to many Phrases and at least one Punctuation Mark.
Phrase consists of at least one Word.
OPL Reserved Phrase and Name of Thing are Phrases.
Link graphically specifies Reserved Phrase.
Reserved Phrase textually specifies Link.
Thing can be in-zoomed to create OPD.

Figure C.1 — OPM model structure

Figure C.1, is a model of the structure of an OPM model that depicts the conceptual aspects of OPM as parallel
hierarchies of the graphic and textual OPM modalities and their correspondence to produce equivalent model
expressions. An OPD Construct is the graphical expression of the corresponding textual OPL Sentence,
which express the same model fact. An OPD and its corresponding OPL Paragraph are collections of model
facts that a modeller places into the same model context.

118

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

C.3	 OPD Construct model

 OPD Construct consists of Thing Set and Link Set.
Thing and Link are Elements.
Thing Set consists of 2 to many Things.
Link Set consists of at least one Link.
Thing Set exhibits Size of Thing Set.
Link Set exhibits Size of Link Set.
Size of Thing Set can be 2 or >=3.
Size of Link Set can be 1 or >=2.
Basic Construct is an OPD Construct.
Basic Construct exhibits 1 Size of Link Set.
Basic Construct exhibits 2 Size of Thing Set.

Figure C.2 — Model of OPD Construct and Basic Construct

Figure C.2, elaborates the OPD Construct concept. The purpose of this model is to distinguish Basic
Construct from another possible OPD Construct. A Basic Construct is a specialization of OPD Construct,
which consists of exactly two Things connected by exactly one Link, The non-basic constructs include,
among others, those with link fans or more than two refinees.

EXAMPLE 1	 In Figure C.1, the two objects OPM Model and OPD Set together with the aggregation-participation
link from the former to the latter constitute a basic construct. The OPL sentence that is equivalent to this basic
construct is: OPM Model consists of OPD Set.

EXAMPLE 2	 In Figure C.1, the three objects OPM Model, and OPD Set, and OPL Spec together with the aggregation-
participation link from OPM Model to OPD Set and OPL Spec constitute a compound construct. The OPL sentence that
is equivalent to this basic construct is: OPM Model consists of OPD Set and OPL Spec.

NOTE	 An object-state link is implicit between an object and each one of its states. Graphically, this link expression
occurs by placing the state inside the object rectangle, effectively linking the state with the object. Therefore, an object
with two or more states is an OPD Construct, and an object with one state is a Basic Construct. A stateless object is
not a construct at all, as it has not even an implicit link.

In some situations, the syntax of two constructs combine easily into a compound OPL sentence that reduces
redundancy in the text as shown in the next model variation for OPD Construct.

A modeller can add a process to the model of Figure C.2 to indicate that the OPD Construct exhibits Connecting
as shown in Figure C.3. By adding states disconnected and connected of Thing Set, the purpose of the
model thus includes the action of transforming a disconnected Thing Set to a connected Thing Set using
the Link Set as an instrument of connection.

119

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 OPD Construct consists of Link Set and Thing Set.
OPD Construct exhibits Connecting.
 Link Set consists of at least one Link.
 Link Set exhibits Cardinality.
 Cardinality of Link Set can be 1 or >=2.
 Thing Set exhibits Cardinality.
 Thing Set consists of 2 to many Things.
 Cardinality of Thing Set can be 2 or >=3.
 Link and Thing are Elements.
 Connecting requires Link Set.
 Connecting changes Thing Set from disconnected to connected.
State disconnected of Thing Set is initial.
State connected of Thing Set is final.
Basic Construct is an OPD Construct.
Basic Construct exhibits 1 Cardinality of Link Set and 2 Cardinality of Thing Set.

Figure C.3 — OPD Construct and Basic Construct construction

120

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

C.4	 OPM Element models

 Thing and Link are Elements.
Link connects 2 Things.
Link consists of Source, Destination, and Connector.
Connector consists of Line, Symbol, an optional Tag, and an optional Path Label.
Tag and Path Label are Phrases.
Source and Destination are Linked Things.
Linked Thing is a Thing.
Linked Thing exhibits Symbol and Multiplicity.
Multiplicity exhibits Symbol and Lower&Upper Bound.
Lower&Upper Bound can be 0..1, 0..*, 1..1, or 1..*.
Lower&Upper Bound is by default 1..1.
Symbol of Multiplicity can be ?, *, NONE, or +.
? Symbol of Multiplicity denotes 0..1 Lower&Upper Bound.
* Symbol of Multiplicity denotes 0..* Lower&Upper Bound.
NONE Symbol of Multiplicity denotes 1..1 Lower&Upper Bound.
+ Symbol of Multiplicity denotes 1..* Lower&Upper Bound.

Figure C.4 — OPM model of OPM Element

The model in Figure C.4 is only valid for basic constructs because Link connects 2 Things and not more
than two.

121

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 Process and Object are Things.
Object exhibits State Set.
State Set exhibits Size.
Cardinality of State Set can be s=0 or s>= 1.
State Set consists of optional States.
Stateless Object and Stateful Object are Objects.
Stateless Object exhibits s= 0 Size of State Set.
Stateful Object exhibits s>= 1 Size of State Set.
Stateful Object represents s State-Specific Objects.
State-Specific Object Set consists of s State-Specific Objects.
State-Specific Object refers to State.

Figure C.5 — OPM model of Thing

Figure C.5 is a model for an OPM Thing, showing its specialization into Object and Process. A set of States
characterize Object, which can be empty, in a Stateless Object, or non-empty in the case of a Stateful Object.
A Stateful Object with s States gives rise to a set of s stateless State-Specific Objects, one for each State. A
particular State-Specific Object refers to an object in a specific state. Modelling the concept of State-Specific
Object as both an Object and a State enables us to simplify the conceptual model by referring to an object
and any one or its states by simply specifying Object.

EXAMPLE	 In Figure C.6 Product is a stateful object with 5 states, from which five distinct specializations of
Product are derived, each referring to a distinct state of Product. Thus, the State-Specific Product called Tested
Product refers to the state tested of Product. Of course, the same object, Tested Product, refers also to Product
itself, because being a state; “tested” has no meaning without reference to the object of which it is a state. This way,
there are five State-Specific Products, each being a specialization of Product and capturing a specific state of
Product. Figure 7 depicts the available annotations for three specific states.

122

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 Product can be designed, manufactured, tested, purchased, or used.
Product derives State-Specific Product Set.
State-Specific Product Set consists of 5 State-Specific Products.
State-Specific Product is a Product.
State-Specific Product refers to the current state of Product.
Designed Product, Manufactured Product, Tested Product, Purchased Product, and
Used Product are State-Specific Products.
Designed Product refers to Product's state designed.
Manufactured Product refers to Product's state manufactured.
Tested Product refers to Product's state tested.
Purchased Product refers to Product's state purchased.
Used Product refers to Product's state used.

Figure C.6 — Example of state-specific object

123

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 State Set consists of at least one State, optional Initial States, optional Final States, and
an optional Default State.
State exhibits Designation and Symbol.
Designation can be initial, final, or default.
Initial State, Final State, and Default State are States.
Initial State exhibits initial Designation and bold-contour rountangle Symbol of
State.
Final State exhibits final Designation and double-contour rountangle Symbol of
State.
Default State exhibits default Designation and rountangle pointed to by open arrow
Symbol of State.

Figure C.7 — OPM model of stateful object and state

124

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 Thing and Link are Elements.
Link connects 2 Things.
Link exhibits Linked Pair.
Linked Pair consists of 2 Things.
Linked Pair can be object-object, object-state, state-state, process-object, pro-
cess-state, or process-process.
Structural Link and Procedural Link are Links.
Object-Object Link and State-State Link are Structural Links.
Object-State Link is an Object-Object Link.
Object-Object Link exhibits object-object Linked Pair.
Object-State Link exhibits object-state Linked Pair.
State-State Link exhibits state-state Linked Pair.
Process-Object Link and Process-Process Link are Procedural Links.
Process-State Link is a Process-Object Link.
Process-Object Link exhibits process-object Linked Pair.
Process-State Link exhibits process-state Linked Pair.
Process-Process Link exhibits process- process Linked Pair.

Figure C.8 — OPM model of links

The model in Figure C.8 is only valid for basic constructs because Link connects 2 Things and not more
than two.

125

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 Thing exhibits Perseverance, Essence, and Affiliation.
 Perseverance can be transient or persistent.
 Essence can be physical or informatical.
 Affiliation can be systemic or environmental.
Object and Process are Things.
Process exhibits transient Perseverance.
Object exhibits persistent Perseverance.
Physical Process, Informatical Process, Systemic Process, and Environmental Pro-
cess are Processes.
Physical Object, Informatical Object, Systemic Object, and Environmental Object are
Objects.
Physical Process and Physical Object exhibit physical Essence.
Informatical Process and Informatical Object exhibit informatical Essence.
Systemic Process and Systemic Object exhibit systemic Affiliation.
Environmental Process and Environmental Object exhibit environmental Affilia-
tion.

Figure C.9 — OPM model of Thing generic properties

Figure C.9, depicts Thing and its Perseverance, Essence, and Affiliation generic properties modelled as
attribute refinees of an exhibition-characterization link. Perseverance is the discriminating attribute
between Object and Process. Essence is the discriminating attribute between Physical Object and
Physical Process on the one hand, Informatical Object, and Informatical Process on the other hand.
Affiliation is the discriminating attribute between Systemic Object and Systemic Process on the one
hand, Environmental Object, and Environmental Process on the other hand.

126

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 Thing exhibits Symbol.
Symbol of Thing consists of Shape, Depth, and Contour.
Shape can be ellipse or rectangle.
Depth can be shaded or non- shaded.
Contour can be solid or dashed.
Process and Object are Things.
Process exhibits ellipse Shape.
Object exhibits rectangle Shape.
Physical Process, Informatical Process, Systemic Process, and Environmental Pro-
cess are Processes.
Physical Object, Informatical Object, Systemic Object, and Environmental Object are
Objects.
Physical Process and Physical Object exhibit shaded Depth.
Informatical Process and Informatical Object exhibit non-shaded Depth.
Systemic Process and Systemic Object exhibit solid Contour.
Environmental Process and Environmental Object exhibit dashed Contour.

Figure C.10 — OPM model of Thing symbolic representation

Figure C.10 depicts an OPM model for the graphical representation of OPM things showing a Symbol refine
attribute and three parts of a Symbol: Shape, Depth, and Contour. Shape is the part that enables the
distinction between Object and Process. Depth is the part that enables the distinction between Physical
Object and Physical Process on the one hand, Informatical Object and Informatical Process on the other

127

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

hand. Contour is the part that enables the distinction between Systemic Object and Systemic Process on
the one hand, Environmental Object and Environmental Process on the other hand. Since the states of an
object bind to the object, the Essence and Affiliation associated with a particular state Object are the same
as that of Object.

Figure C.11 is a variation of the model in Figure C.10 in which the three parts of the Symbol attribute of
Thing appear as eight values, one for each of the possible Thing configurations. Here, and in several other
model figures of this Annex, the actual symbols appear at the bottom of the OPD. In this case, the symbol is
below its respective model object and the value of Symbol of Thing. These eight symbols at the bottom of
the OPD are illustrative and thus distinct from the OPD itself. Figure C.11, enhances the Symbol refinee of
Figure C.10 by enumerating the eight states of Symbol, which are the Cartesian product of the 2x2x2 values
of the Depth, Contour, and Shape refinee attributes of Symbol.

128

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 Thing exhibits Symbol.
Symbol of Thing consists of Depth, Contour, and Shape.
Symbol of Thing can be shaded dashed rectangle, shaded solid ellipse, non-shaded
dashed ellipse, non-shaded solid ellipse, non-shaded solid rectangle, non-shaded
dashed rectangle, shaded solid rectangle, or shaded dashed rectangle.
Object and Process are Things.
Physical Process, Informatical Process, Systemic Process, and Environmental Pro-
cess are Processes.
Physical Object, Informatical Object, Systemic Object, and Environmental Object are
Objects.
Physical Systemic Process is a Physical Process and a Systemic Process.
Physical Systemic Process exhibits shaded solid ellipse Symbol of Thing.
Physical Environmental Process is a Physical Process and an Environmental Pro-
cess.
Physical Environmental Process exhibits shaded dashed ellipse Symbol of Thing.
Informatical Environmental Process is an Informatical Process and an Environmen-
tal Process.
Informatical Environmental Process exhibits non-shaded dashed ellipse Symbol of
Thing.
Informatical Systemic Process is an Informatical Process and a Systemic Process.
Informatical Systemic Process exhibits non-shaded solid ellipse Symbol of Thing.
Physical Environmental Object is a Physical Object and an Environmental Object.
Physical Environmental Object exhibits shaded dashed rectangle Symbol of Thing.
Physical Systemic Object is a Physical Object and a Systemic Object.
Physical Systemic Object exhibits shaded solid rectangle Symbol of Thing.
Informatical Environmental Object is an Informatical Object and an Environmental
Object.
Informatical Environmental Object exhibits non-shaded dashed rectangle Symbol of
Thing.
Informatical Systemic Object is an Informatical Object and a Systemic Object.
Informatical Systemic Object exhibits non-shaded solid rectangle Symbol of Thing.
Symbol of Thing consists of Depth, Contour and Shape.

Figure C.11 — OPM model of the eight Thing symbol representations

129

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 Basic Construct consists of Link and 2 Things.
Link connects 2 Things.
Structural Link and Procedural Link are Links.
Basic Structural Construct and Basic Procedural Construct are Basic Constructs.
Basic Structural Construct consists of Structural Link and 2 Objects.
Basic Procedural Construct consists of Procedural Link, Object, and Process.
Structural Link connects 2 Objects.
Procedural Link connects a Process and an Object.

Figure C.12 — Basic Construct elaboration

The model in Figure C.12 is only valid for basic constructs because Link connects 2 Things and not more
than two.

130

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 Basic Structural Construct consists of Refineable, Refinee, and Structural Link.
Refineable and Refinee are Things.
Whole, Exhibitor, General, and Class are Refineables.
Part, Feature, Specialization, and Instance are Refinees.
Structural Link exhibits Semantics.
Semantics can be aggregation-participation, exhibition-characterization, generaliza-
tion-specialization, classification-instantiation, or user-defined.
Aggregation-Participation Link, Exhibition-Characterization Link, Generaliza-
tion-Specialization Link, Classification-Instantiation Link, and Tagged Structural
Link are Structural Links.
Aggregation-Participation Link exhibits aggregation-participation Semantics.
Exhibition-Characterization Link exhibits exhibition-characterization Semantics.
Generalization-Specialization Link exhibits generalization-specialization Semantics.
Classification-Instantiation exhibits classification-instantiation Semantics.
Tagged Structural Link exhibits user-defined Semantics.
Aggregation- Participation Construct, Exhibition-Characterization Construct, Gener-
alization-Specialization Construct, Classification-Instantiation Construct and Tagged
Structural Construct are Basic Structural Constructs.
Aggregation-Participation Construct consists of Aggregation-Participation Link,
Whole, and Part.
Exhibition- Characterization Construct consists of Exhibition- Characterization Link,
Exhibitor, and Feature.
Generalization- Specialization Construct consists of Generalization- Specialization
Link, General, and Specialization.
Classification-Instantiation Construct consists of Classification-Instantiation Link,
Class, and Instance.
Tagged Structural Construct consists of Tagged Structural Link and 2 Things.

Figure C.13 — OPM model of Basic Structural Construct

131

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 Basic Procedural Construct consists of Object, Process, and Procedural Link.
Procedural Link exhibits Semantics.
Semantics of Procedural Link can be transformation, enablement, transformation &
control, and enablement & control.
Transformee and Enabler are Objects.
Controlling Transformee is a Transformee.
Controlling Enabler is an Enabler.
Transforming Link and Enabling Link are Procedural Links.
Transforming & Control Link is a Transforming Link.
Enabling & Control Link is an Enabling Link.
Transforming Link exhibits transformation Semantics of Procedural Link.
Enabling Link exhibits enablement Semantics of Procedural Link.
Transforming & Control Link exhibits transformation & control Semantics of Proce-
dural Link.
Enabling & Control Link exhibits enablement & control Semantics of Procedural Link.
Transformation Construct and Enablement Construct are Basic Procedural Con-
structs.
Transformation Construct consists of Transforming Link, Transformee, and Process.
Enablement Construct consists of Enablement Link, Enabler, and Process.
Transformation & Control Construct is a Transformation Construct.
Enablement & Control Construct is an Enablement Construct.
Transformation & Control Construct consists of Transforming & Control Link, Con-
trolling Transformee, and Process.
Enablement & Control Construct consists of Enablement & Control Link, Controlling
Enabler, and Process.

Figure C.14 — OPM model of Basic Procedural Construct

132

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 Transformation Construct consists of Transformee, Process, and Transforming Link.
Transforming Link exhibits Symbol and Semantics.
Symbol of Transforming Link can be unidirectional closed arrowhead or bidirection-
al closed arrowhead pair.
Semantics of Transforming Link can be consumption, effect, or result.
Consumption Link, Effect Link, and Result Link are Transforming Links.
Effect Link exhibits effect Semantics of Transforming Link.
Result Link exhibits result Semantics of Transforming Link.
Consumee, Affectee, and Resultee are Transformees.
Consumption Construct, Result Construct, and Effect Construct are Transformation
Constructs.
Consumption Construct consists of Consumption Link, Process, and Consumee.
Effect Construct consists of Effect Link, Process, and Affectee.
Result Construct consists of Result Link, Process, and Resultee.
Consumption Link exhibits unidirectional closed arrowhead Symbol of Transforming
Link and consumption Semantics of Transforming Link.
Effect Link exhibits bidirectional closed arrowhead consumption pair of Transform-
ing Link and effect Semantics of Transforming Link.
Result Link exhibits unidirectional closed arrowhead Symbol of Transforming Link
and result Semantics of Transforming Link.
State-Specified Consumption Construct is a Consumption Construct.
State-Specified Result Construct is a Result Construct.

133

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Figure C.15 — OPM model of Transformation Construct

Figure C.16 complements Figure C.15 by adding information about the directionality of the arrowhead
symbols that connect an object with the process. Adding this information to Figure C.15 can clutter the
model figure and make it more difficult to comprehend.

 Transformation Construct consists of Transformee, Process, and Transforming Link.
Consumption Link, Effect Link, and Result Link are Transforming Links.
Consumption Construct, Result Construct, and Effect Construct are Transformation
Constructs.
Consumption Construct consists of Consumption Link, Process, and Consumee.
Effect Construct consists of Effect Link, Process, and Affectee.
Result Construct consists of Result Link, Process, and Resultee.
Consumption Link connects from Consumee.
Consumption Link connects to Process.
Effect Link connects Affectee and Process.
Result Link connects to Resultee.
Result Link connects from Process.

Figure C.16 — OPM model of Transformation Construct link directionality

134

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 Enablement Construct consists of Enabler, Process, and Enabling Link.
Enabling Link exhibits Semantics and Symbol.
Enabling Link connects from Enabler.
Enabling Link connects to Process.
Semantics of Enabling Link can be Agent or Instrument.
Symbol of Enabling Link can be black lollipop or white lollipop.
Agent and Instrument are Enablers.
Agent Link and Instrument Link are Enabling Links.
Agent Link exhibits agent Semantics of Enabling Link and black lollipop Symbol of
Enabling Link.
Instrument Link exhibits instrument Semantics of Enabling Link and white lollipop
Symbol of Enabling Link.
Agent Construct and Instrument Construct are Enablement Constructs.
Agent Construct consists of Agent, Process, and Agent Link.
Instrument Construct consists of Instrument, Process, and Instrument Link.
State-Specified Agent Construct is an Agent Construct.
State-Specified Instrument Construct is an Instrument Construct.

Figure C.17 — OPM model of Basic Enablement Construct

135

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 State-Specified Agent Construct consists of State-Specified Agent, Process, and Agent
Link.
State-Specified Agent is a State-Specified Enabler.
State-Specified Enabler is a State-Specified Object.
Agent Link connects State-Specified Agent and Process.

Figure C.18 — OPM model of state-specified agent construct with mapped example

Figure C.18 depicts two OPM models with the top of the figure expressing essential associations for a State-
Specified Agent Construct and the bottom of the figure expressing a corresponding model construct. The
former provides a metamodel for the latter. The broad arrows map the conceptual parts of the construct to
the OPD symbols of the example. Below the OPD in the example is the corresponding OPL.

For instructional purposes, similar mapping figures may express the correspondence between models of
OPM construct conceptual models and corresponding OPM models in application.

C.5	 In-zooming and out-zooming models

C.5.1	 In-zooming and out-zooming mechanisms

Both new-diagram in-zooming and new-diagram out-zooming create a new OPD context from an existing
OPD context. New-diagram in-zooming starts with an OPD of relatively less details and adds elaboration or
refinement as a descendant OPD that applies to a specific thing in the less detailed OPD. New-diagram out-
zooming starts with an OPD of relatively more details and removes elaboration or refinement to produce a
less detailed, more abstract thing in an ancestor context.

New-diagram in-zooming elaborates a refineable present in an existing OPD, say SDn, by creating a new
OPD, SDn+1, which elaborates the refineable by adding subprocesses, associated objects, and relevant links.
The new-diagram in-zooming and in new-diagram out-zooming processes are inverse operations.

Figure C.19 depicts the New-Diagram In-Zooming and New-Diagram Out-Zooming processes. The model
on the right uses in-diagram in-zooming of the model on the left to elaborate the two processes, one for

136

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

creating a new-diagram in-zoomed context and one for creating a new-diagram out-zoomed context. New-
Diagram In-Zooming begins with Content Showing, followed by Link Refining. New-Diagram Out-
Zooming begins with Link Abstracting, the inverse process of Link Refining, followed by Content Hiding,
the inverse process of Content Showing.

a) b)

New-Diagram In-Zooming requires SDn.
New-Diagram In-Zooming yields SDn+1.
New-Diagram Out-Zooming yields SDn.
New-Diagram Out-Zooming requires SDn+1.

New-Diagram In-Zooming zooms into Content
Showing
 and Link Refining in that sequence,
 as well as Semi-Zoomed OPD.
Content Showing requires SDn.
Content Showing yields Semi-Zoomed OPD.
Link Refining consumes Semi-Zoomed OPD.
Link Refining yields SDn+1.
New-Diagram Out-Zooming zooms into Link Ab-
stracting
 and Content Hiding in that sequence,
 as well as Semi-Zoomed OPD.
Link Abstracting requires SDn+1.
Link Abstracting yields Semi-Zoomed OPD.
Content Hiding consumes Semi-Zoomed OPD.
Content Hiding yields SDn.

Figure C.19 — New-Diagram In-Zooming and New-Diagram Out-Zooming models

Semi-Zoomed OPD is an interim object created and subsequently consumed during New Diagram In-
Zooming or New-Diagram Out-Zooming. Semi-Zoomed OPD appears only within the contexts of New-
Diagram In-Zooming and New-Diagram Out-Zooming.

Figure C.20 shows New-Diagram In-Zooming and New-Diagram Out-Zooming with unfolding of SDn,
SDn+1, and Semi-zoomed OPD from Figure C.19. New-Diagram In-Zooming and New-Diagram Out-
Zooming operate on a particular instance of SDn shown at the middle top of Figure C.20, where the SDn
detail is one of many possibilities. In this case, SDn includes P, which is the refineable process, as well as four
objects connected to P with different kinds of links: the consumee C, the agent A, the instrument D, and the
resultee B.

137

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

The in-diagram in-zooming of Semi-Zoomed OPD makes clear that it is an interim representation created
and consumed during New Diagram In-Zooming as well as during New Diagram Out-Zooming. The Semi-
Zoomed OPD is the same in both situations.

Content Showing is the first of the two New-Diagram In-Zooming subprocesses. During Content Showing,
the boundary of P expands to make room for showing its content—the model subprocesses P1, P2, and P3, as
well as the interim model object BP. The result of Content Showing is the unfolding of object Semi-Zoomed
OPD. As an interim object, recognizable only in the context of New-Diagram In-Zooming, the second
subprocess, Link Refining, consumes it while creating SDn+1. During Link Refining, the procedural links
attached to the contour of P migrate to the appropriate subprocesses as determined by the modeller. Thus,
since P1 consumes C, the consumption link arrowhead migrates from P to P1. The agent A handles both
P1 and P2, so in SDn+1 two agent links, one to P1 and the other to P2, replace the single one in SDn from
A to P. P3 requires D, so the instrument link moves from P to P3. Finally, since BP results from P1 and P3
consumes it, the corresponding result and consumption links are added, making BP an internal object of P,
an object that is only recognizable within the context of P, like P1, P2, and P3. Notice that BP is to P as Semi-
Zoomed OPD is to New-Diagram In-Zooming.

Figure C.20 — New-Diagram In-Zooming and New-Diagram Out-Zooming elaboration

C.5.2	 Simplifying an OPD

In-diagram out-zooming can combine with new-diagram in-zooming to simplify an already-modelled OPD
that the modeller deems overly complicated. In-diagram out-zooming followed by new-diagram in-zooming
is an option when the modeller realizes that the current OPD is overloaded with details. In-diagram out-
zooming reduces the cognitive load necessary to understand the complicated OPD at the expense of adding a
new OPD to the OPD set, which is the result of the subsequent new-diagram in-zooming.

Figure C.21 demonstrates in-diagram out-zooming followed by new-diagram out-zooming. On the left is the
original OPD Set with three OPDs: SD, SD1 and SD1.1. The modeller deems SD1 overly complicated. To ease
the complication, as shown in the middle, the modeller selects P1, P2, and P3, along with BP for replacement
by P123 using new-diagram out-zooming. On the right is the new OPD Set with four OPDs renumbered to
reflect the new hierarchy. The new SD1 is less complicated than the original SD1, having five fewer elements
(three processes, one object, and two links removed; one process—P123—added). P123 undergoes new-
diagram out-zooming in the new SD1.1, and this new OPD is inserted into the process hierarchy, pushing the
old SD1.1 to become the new SD1.1.1.

138

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

[1] Original OPD Set with three
OPDs

[2] P123 (grey background] is the
collection of things considered for

out-zooming

[3] New OPD Set with four re-num-
bered OPDs

Figure C.21 — Simplifying an OPD

In-diagram out-zooming begins by selecting the set TO of things to out-zoom in the currently complicated
OPD for in-zooming in a new OPD. Assuming a new single process, PA, replaces the TO set, each procedural
link that extends to a member of TO needs to connect to the new process, PA, and to an object that is not a
member of the set TO. PA is a new abstract process that replaces the members of TO and becomes a new
model element. PA becomes in-zoomed in a new OPD and the OPD set labelling needs to reflect the new OPD
hierarchy.

In the middle of Figure C.21 the processes P1, P2, and P3, along with the object BP are the four members
of TO, which are surrounded by P123. The consequence of creating P123 is the disappearance of the four
members of TO from the new SD1. Each link that crosses the grey-white boundary of the middle graphic now
connects to the boundary of P123 in the new SD1. The objects connecting to the boundary of P123 in the
new SD1 then connect to the appropriate subprocesses in the new SD1.1 The object BK cannot be a member
of TO because if BK occurs in P123 its links create two procedural links connecting two processes directly,
P4 to P123 and P123 to P5. OPM does not define the semantics of these links and the model would violate
the specification that every procedural link (except the invocation and time exception links) connects an
object to a process.

139

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

C.6	 OPM Process Performance Controlling model

C.6.1	 OPM Process Performance Controlling System – SD

 Involved Object Set consists of Preprocess Object Set and Postprocess Object Set.
Preprocess Object Set exhibits Size.
Size of Preprocess Object Set is r>=0.
Postprocess Object Set exhibits Size.
Size of Postprocess Object Set is s>=0.
Involved Object Set exhibits Size.
Size of Involved Object Set is r+s>=0.
Process Performance Controlling affects Involved Object Set.
Executable Process is environmental.
Executable Process invokes Process Performance Controlling.
Process Performance Controlling yields one of Success Message or Failure Message.
Abort Message and Cancel Message are Failure Messages.

Figure C.22 — Process Performance Controlling system diagram (SD)

140

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

C.6.2	 Process Performance Controlling in-zoomed as SD1

 Process Performance Controlling zooms into Process Initiating and Process Perform-
ing in that sequence, as well as Postcondition.
Preprocess Object Set consists of Consumee Set, Affectee Set, and Enabler Set.
Postprocess Object Set consists of Resultee Set and Affectee Set.
Executable Process is environmental.
Executable Process invokes Process Initiating.
Process Performance Controlling exhibits Process Status.
Process Status can be idle, started (t=0), aborted, or completed (t=n).
Process Status is initially idle and finally completed (t=n) or aborted.
Postcondition can be false or true.
Postcondition is initially false.
Process Initiating requires Preprocess Object Set.
Process Initiating changes Process Status from idle to one of idle or started (t=0).
Process Initiating yields false Postcondition and Cancel Message.
Process Performing occurs if Enabler Set exists, otherwise Process Performing is
skipped.
Process Performing affects Postcondition and Affectee Set.
Process Performing changes Process Status from started (t=0) to one of aborted or com-
pleted (t=n).
Process Performing yields Resultee Set and either Success Message or Abortion Mes-
sage.

Figure C.23 — Process Performance Controlling from SD in-zoomed in SD1

141

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

C.6.3	 Process Initiating in-zoomed as SD1.1

 Process Initiating from SD1 zooms in SD1.1 into Precondition Evaluating and parallel
Cancelling and Starting, in that sequence, as well as Precondition.
Process Status can be idle, started (t=0), or other states.
Process Status is initially idle.
Postcondition can be false or true.
Postcondition is initially false.
Executable Process is environmental.
Executable Process invokes Precondition Evaluating.
Precondition Evaluating yields Precondition.
Precondition can be true or false.
Precondition is initially false.
Process Initiating requires Preprocess Object Set.
Precondition Evaluating changes Process Status from idle.
Cancelling occurs if Precondition is false, otherwise Cancelling is skipped.
Cancelling changes Process Status to idle.
Cancelling yields Cancel Message.
Cancellation Message exhibits Failure time.
Cancelling sets the value of Failure time to t=0.
Failure time of Cancel Message is t=0.
Starting occurs if Precondition is true, otherwise Starting is skipped.
Starting changes Process Status to started (t=0).
Starting yields false Postcondition and Process State at started (t=0).

Figure C.24 — Process Initiating in-zoomed as SD1.1

142

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

C.6.4	 Precondition Evaluating in-zoomed as SD1.1.1

143

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 Precondition Evaluating from SD1.1 zooms in SD1.1.1 into Enabler Set Checking, Con-
sumee & Affectee Set Checking, Precondition Refuting, and Precondition Confirming
in that sequence, as well as Enabler Set Check Result and Consumee & Affectee Set Check
Result.
Preprocess Object Set consists of Enabler Set and Consumee & Affectee Set.
Process Status can be idle, started (t=0), or other states.
Process Status is initially idle.
Precondition can be false or true.
Precondition is initially false.
Executable Process is environmental.
Executable Process invokes Enabler Set Checking.
Enabler Set Checking requires that Enabler Set exists, otherwise Enabler Set Checking is
skipped.
Enabler Set Checking changes Process Status from idle.
Enabler Set Check Result can be positive or negative.
Enabler Set Check Result is initially positive.
Enabler Set Checking affects Enabler Set Check Result.
Consumee & Affectee Set Checking occurs if Enabler Set Check Result is positive
and Consumee & Affectee Set exists, otherwise Consumee & Affectee Set Checking is
skipped.
Consumee & Affectee Set Check Result can be positive or negative.
Consumee & Affectee Set Check Result is initially positive.
Consumee & Affectee Set Checking affects Consumee & Affectee Set Check Result.
Precondition Refuting requires that either Enabler Set Check Result is negative or Con-
sumee & Affectee Check Result is negative, otherwise Precondition Refuting is skipped.
Precondition Refuting changes Process Status to idle.
Precondition Confirming occurs if Consumee & Affectee Set Check Result is positive,
otherwise Precondition Confirming is skipped.
Precondition Confirming changes Precondition from false to true and Process Status to
started (t=0).

Figure C.25 — Precondition Evaluating in-zoomed – SD1.1.1

144

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

C.6.5	 Transformee Set Checking in-zoomed as SD1.1.1.1

 Consumee & Affectee Set Checking from SD1.1.1 zooms in SD1.1.1.1 into Consumee Set
Checking, Affectee Set Checking, and Transformee Set Disqualifying in that sequence, as
well as Affectee Set Check Result and Consumee Set Check Result.
Enabler Set Check Result can be negative or positive.
Enabler Set Check Result is initially positive.
Consumee & Affectee Set Check Result can be negative or positive.
Consumee & Affectee Set Check Result is initially positive.
Consumee & Affectee Set consists of Consumee Set and Affectee Set.
Consumee & Affectee Set Checking occurs if Enabler Set Check Result is positive, other-
wise Consumee & Affectee Set Checking is skipped.
Consumee Set Check Result can be negative or positive.
Consumee Set Check Result is initially positive.
Consumee Set Checking occurs if Consumee Set exists, otherwise Consumee Set Check-
ing is skipped.
Consumee Set Checking affects Consumee Set Check Result.
Affectee Set Checking occurs if Consumee Set Consumee Set Check Result is positive
and Affectee Set exists, otherwise Affectee Set Checking is skipped.
Affectee Set Checking affects Affectee Set Check Result.
Affectee Set Check Result can be negative or positive.
Transformee Set Disqualifying occurs if either Affectee Set Check Result is negative or
Consumee Set Check Result is negative.
Transformee Set Disqualifying changes Consumee & Affectee Set Check Result from
positive to negative.

Figure C.26 — Transformee Set Checking in-zoomed – SD1.1.1.1

145

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

C.6.6	 Process Performing in-zoomed as SD1.2

 Process Performing from SD1 zooms in SD1.2 into Initial Process Performing, Main
Process Performing, and Final Process Performing in that sequence.
Process Status can be idle, started (t=0), operating (t<n), aborted, completing (t=n),
completed (t=n), or other states.
Process Status is finally completed (t=n).
Postcondition can be false or true.
Postcondition is initially false.
Affectee Set consists of optional Affectees.
Affectee can be input state or output state.
Affectee is initially input state and finally output state.
Initial Process Performing changes Process Status from started (t=0) to operating
(t<n), Postcondition from false, and Affectee from input state.
Initial Process Performing consumes Consumee Set.
Process Performing requires Enabler Set.
Main Process Performing yields an optional Abort Message.
Main Process Performing changes Process Status from operating (t<n) to one of com-
pleting (t=n) or aborted.
Final Process Performing changes Process Status from completing (t=n) to completed
(t=n), Postcondition to true, and Affectee to output state.
Final Process Performing yields Success Message and Resultee Set.

Figure C.27 — Process Performing in-zoomed – SD1.2

146

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

C.6.7	 Initial Process Performing in-zoomed as SD1.2.1

 Initial Process Performing from SD1.2 zooms in SD1.2.1 into parallel Input State Exiting
and Consumee Set Consuming.
Preprocess Object Set consists of Enabler Set, Affectee Set, and Consumee Set.
Affectee Set consists of optional Affectees.
Affectee can be input state or output state.
Affectee is initially input state and finally output state.
Process Status can be started (t=0), operating (t<0), or other states.
Postcondition can be false or true.
Postcondition is initially false.
Initial Process Performing requires Enabler Set.
Input State Exiting changes Affectee from input state.
One of Consumee Set Consuming or Input State Exiting changes Process Status from
started (t=0) to operating (t<n) and Postcondition from false.

Figure C.28 — Initial Process Performing in-zoomed – SD1.2.1

147

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

C.6.8	 Main Process Performing in-zoomed as SD1.2.2

148

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

 Main Process Performing from SD1.2 zooms in SD1.2.2 into Elapsed Time & Duration
Comparing, Enabler & Affectee Set Checking, Aborting & Notifying, Process Execut-
ing & Time Incrementing, and Finalizing, in that sequence, as well as Time Comparison
Result and Set Approval.
Executable Process exhibits Executable Process Instruction Set and Overtime Excep-
tion Handling.
Executable Process, Executable Process Instruction Set, and Overtime Exception Han-
dling are environmental.
Process Status can be aborted, completed (t=n), operating (t<n) or other states.
Process Status is finally aborted or completed (t=n).
Postcondition can be false or true.
Postcondition is initially false.
Main Process Performing exhibits Elapsed Time in Time Unit and Duration in Time
Unit.
Abortion Message exhibits Elapsed Time in Time Unit.
Elapsed Time in Time Unit is e.
Duration in Time Unit is d.
Elapsed Time & Duration Comparing requires Elapsed Time in Time Unit and Duration
in Time Unit.
Elapsed Time & Duration Comparing changes Postcondition from false.
Elapsed Time & Duration Comparing yields Time Comparison Result.
Time Comparison Result can be e<d, e=d, or e>d.
Time Comparison Result is initially e<d or e=d and finally e=d or e>d.
Enabler & Affectee Set Checking requires Enabler Set and Affectee Set.
Enabler & Affectee Set Checking occurs if Time Comparison Result is e<d, in which case
Enabler & Affectee Set Checking consumes Time Comparison Result, otherwise Enabler
& Affectee Set Checking is skipped.
Enabler & Affectee Set Checking yields Set Approval.
Set Approval can be granted or denied.
Aborting & Notifying occurs if Set Approval is denied, in which case Aborting & Notify-
ing consumes Set Approval, otherwise Aborting & Notifying is skipped.
Aborting & Notifying changes Process Status from operating (t<n) to aborted and Post-
condition to false.
Aborting & Notifying yields Abort Message.
Finalizing occurs if Time Comparison Result is e=d, in which case Finalizing consumes
Time Comparison Result, otherwise Finalizing is skipped.
Finalizing changes Process Status from operating (t<n) to completed (t=n) and Postcon-
dition to true.
Process Executing & Time Incrementing requires Executable Process Instruction Set.
Process Executing & Time Incrementing occurs if Set Approval is granted, in which case
Process Executing & Time Incrementing consumes Set Approval, otherwise Process
Executing & Time Incrementing is skipped.
Process Executing & Time Incrementing changes the value e of Elapsed Time in Time
Unit.
Process Executing & Time Incrementing invokes Elapsed Time & Duration Comparing.
Overtime Exception Handling consumes e>d Time Comparison Result.

Figure C.29 — Main Process Performing in-zoomed – SD1.2.2

149

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

C.6.9	 Final Process Performing in-zoomed as SD1.2.3

 Final Process Performing from SD1.2 zooms in SD1.2.3 into Resultee Set Generating,
Output State Entering, and Success Notifying, in that sequence.
Postprocess Object Set consists of Resultee Set and Affectee Set.
Affectee Set consists of optional Affectees.
Affectee can be input state or output state.
Affectee is initially input state and finally output state.
Process Status can be completed (t=n), completing (t=n), or other states.
Process Status is finally completed (t=n).
Postcondition can be false or true.
Postcondition is initially false.
Resultee Set Generating yields Resultee Set.
Output State Entering changes Affectee to output state.
Success Notifying changes Postcondition to true and .Process Status from completing
(t=n) to completed.
Success Notifying yields Success Message.

Figure C.30 — Final Process Performing in-zoomed – SD1.2.3

150

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Annex D
(informative)

OPM dynamics and simulation

D.1	 OPM executability

An OPM model provides for executability, the ability to simulate a system by executing its model via
animation in a properly designed software environment.

D.2	 Change and effect

A change of an object is an alteration in the state of that object. More specifically, a change of an object
is reflected by replacing its current state by another state. The only thing that can cause this change is
a process. The process causes the change by taking as input an object at some state, and outputting it in
another state. Hence, a change of an object means a change in the state at which the object is at.

Stateful objects can be affected, i.e. their states can change. This change mechanism underlines the intimate,
inseparable link between objects and processes. This change in state is the effect of the process on the object.

Effect, is therefore defined as the change in the state of an object that a process causes.

While the terms "change" and "effect" are almost synonymous, there is a subtle difference in their usage.
Effect is used to refer to what the process does to the object, and change refers to what happens to the object
as a result of the process occurrence.

D.3	 Existence and transformation

Change is only one possibility of what can happen to an object when a process acts on it. A process affects
an object to change it, but it can also do things that are more drastic: it can generate an object or consume
it. The term transformation covers these three additional modes by which a process can act on an object:
construction, effect, and consumption.

Construction is synonymous with creation, generation, or yielding. Effect is synonymous with change or
switch, and consumption is synonymous with elimination, termination, annihilation, or destruction. The
effect of a process on an object is to change that object from one of its states to another, but the object
still exists, and it keeps maintaining the identity it had before the process occurred. Construction and
consumption change the very existence of the object and are therefore more profound transformations than
effect.

When a process constructs (yields, generates, creates, or results in) an object, the meaning is that the object,
which had not previously existed, has undergone a radical transformation. This transformation made it
stand out and become identifiable and meaningful in the system. It now deserves treatment and reference as
a new, separate entity.

When a process consumes (eliminates or destroys) an object, the meaning is that the object, which
had previously existed, and was identifiable and meaningful in the system, has undergone a radical
transformation. Consequently, the object no longer exists in the system and is no longer identifiable.

D.4	 Timeline OPM principle

By default, the execution timeline within an in-zoomed process begins at the graphical top and ends at the
graphical bottom, unless there is indication to deviate from the timeline. Such indications include the special

151

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

OPM internal events within the scope of the process that can cause loops, and the process whose name is
or ends with the phrase Exception Exiting. Regardless of its graphical position, if this process is invoked,
the context process, i.e. the in-zoomed process within which this process is embedded, exits promptly and
unconditionally.

The top-most point of the process ellipse serves as a reference point, so a process whose reference point is
higher than its peer(s) starts earlier. If the reference points of two or more processes are at the same height
(within a few graphical units, e.g. pixels, of tolerance), these processes start simultaneously and in parallel.

D.5	 Timed events

The events presented so far were object or state events: they happened when a specific object became
existent or entered a specific state. In contrast, timed events depend on the arrival of a specific time in the
system, as shown below.

A state event can represent a time event, as Figure D.1 and D2 demonstrate.

Figure D.1 — Legal system model change from minor to adult at the age of 18 years

Figure D.2 — The System Clock event initiating Legal Status Changing

D.6	 Object history and the lifespan diagram

At any point in time, an object can be in one of its states, or exists in transition between two states.

A lifespan diagram is a diagram showing for any point in time during the life of the system what objects
exists in the system, what state each object is at, and what processes are active.

152

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Key
1 name
2 type
3 painting
4 colour
5 car

Figure D.3 — Car Painting four lifespan diagrams example

The four lifespan diagrams shown at Figure D.3 record the history of the car painting system as time
progresses. These four lifespan diagrams are displayed stacked vertically to facilitate their inspection. In
the first diagram, only the first time period is displayed. Painting is not active, and the Car is white.

In the second diagram, the first three time periods are displayed. In the third period, Painting is active, and
the Car is no longer white. The same happens in the fourth period, as shown in the third diagram. Finally, in
the fifth period, shown in the bottom diagram, Painting is no longer active, and the Car is red.

Figure D.4 — Executing the OPM model for Automatic Crash Responding

Figure D.4 presents three OPCAT screenshots, showing three stages of executing an OPM model. The
screenshot on the left hand side shows the system before the Automatic Crash Responding process occurs.
At this stage, Vehicle Occupants Group is at its input state, possibly injured, and this is marked by the
state being solid (coloured brown).

The middle screenshot shows the process in action, marked as solid (coloured blue). During the time that the
process Automatic Crash Responding is active (i.e. when it executes), the object Vehicle Occupants Group

153

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

is in transition from its input state, possibly injured, to its output state, being helped. This is marked by
both states being semi-solid.

Observing the animation in action, the input state is gradually fading out while the output state is becoming
solid. At the same time, two red dots travel along the input-output link pair, denoting the "control" of the
system, or where the system is at each time point. One red dot travels from the input state to the affecting
process. At the same time, the second dot travels from that process along the output link to the output state.

Finally, the screenshot on the right shows the system after the Automatic Crash Responding process had
terminated. At this stage, Vehicle Occupants Group is at its output state, being helped.

The animated execution of the system model has several benefits. First, it is a dynamic visualization aid that
helps both the modeller and the target audience follow and understand the behaviour of the system over
time. Second, like a debugger of a programming language, it facilitates verification of the system's dynamics
and spotting logical design errors in its flow of execution control. Therefore, frequently animating the
system model during its construction is highly recommended.

D.7	 Process duration

System time unit is the default time unit used for specifying all duration kinds of all the processes in the
system unless there is an explicit different time unit for a specific process, in which case that time unit
overrides the system time unit.

A compact way to express the relevant process property values in an OPD uses exhibition-characterization
and specialization links. Assuming that the following are relevant process properties, EXAMPLE 1 expresses
two ways to graphically configure the properties:

—	 the time measurement unit;

—	 time duration parameters, which can be one of the following:

—	 three values, standing for the minimal, expected, and maximal duration, respectively,

—	 two values, standing for the minimal and maximal duration, respectively, or

—	 one value, standing for both the minimal and maximal durations;

—	 the duration distribution name and its one or more parameters.

The following are possible probability distributions and their parameter(s):

—	 Normal, mean=xx; sd=yy;

—	 Uniform, a=xx, b=yy;

—	 Exponential, lambda=xx.

NOTE	 The time measurement unit of seconds, abbreviated as sec, is the customary default and often omitted.

EXAMPLE 1	 Figure D.5 is a metamodel of Processing Duration with property values. On the left is the complete
metamodel. The process on the right shows a compact way to record all the data on the left, except for the (actual)
Duration, which is a run-time property. The Duration Distribution in this example is normal with mean 45,6 min and
standard deviation 7,3 min.

154

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Processing exhibits 30,0, 45,6, and 60,0 min Minimal Duration, Expected Duration, and Maximal Du-
ration, respectively and normal Duration Distribution with parameters mean=45,6 and sd=70,0.

Figure D.5 — Processing Duration with property values

EXAMPLE 2	 Figure D.6 is a process representation using Figure D.5. semantics.

a) b) c)

Processing exhibits 8,0 and
10,0 hour

Minimal Duration and Maximal
Duration, respectively, and expo-

nential Duration Distribution
with parameter lambda=5,6.

Processing exhibits normal Dura-
tion

Distribution with parameters
mean=1,63 and sd=0,16 ms.

Processing exhibits uniform
Distribution with parameters a=3

and b=5 days.

Figure D.6 — Process duration examples

EXAMPLE 3	 In Figure D.7, Processing {instance id=1} Duration is 63,3 min, hence Overtime Exception Handling
occurs.

155

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Processing exhibits 30,0, 45,6, and 60,0 min Minimal Duration, Expected Duration, and Maximal Dura-
tion, respectively, and uniform Duration Distribution with parameters a=5,0 and b=70,0.
Either Processing or Overtime Exception Handling affects Affectee.
Overtime Exception Handling occurs if duration of Processing exceeds 60,0 min.
Overtime Exception Handling affects Affectee.

Figure D.7 — Overtime exception example

EXAMPLE 4 In Figure D.8, Processing {instance id=2} Duration is 23,4 min, hence Undertime Exception Handling
occurs.

Processing exhibits 30,0, 45,6, and 60,0 min Minimal Duration, Expected Duration, and Maximal Du-
ration, respectively, and uniform Duration Distribution with parameters a=5,0 and b=70,0.
Either Processing or Undertime Exception Handling affects Affectee.
Undertime Exception Handling occurs if duration of Processing falls short of 60,0 min.
Undertime Exception Handling affects Affectee.

Figure D.8 — Undertime exception example

156

﻿
© ISO 2024 – All rights reserved

ISO 19450:2024(en)

Bibliography

[1]	 ISO/IEC 14977, Information technology — Syntactic metalanguage — Extended BNF

[2]	 ISO/TC 184/SC 5 N1070 Object Process Methodology Study Group – Interim Report 2010

[3]	 ISO/TC 184/SC 5 N1111 Object Process Methodology Study Group – Final Report 2011

[4]	 Bibliowicz A., A Graph Grammar-Based Formal Validation of an Object-Process Diagram, M. Sc.
Thesis, Technion, Israel, 2008.

[5]	 Bibliowicz A., Dori D., A Graph Grammar-Based Formal Validation of Object-Process Diagrams.
Software and Systems Modeling, 11, (2) pp. 287-302, 2012.

[6]	 CRAWLEY, E.F., MALMQVIST, J., ÖSTLUND, S., and BRODEUR, D. R., Rethinking Engineering Education:
The CDIO Approach. Springer, 2007.

[7]	 Dori D., Object-Process Methodology - A Holistic Systems Paradigm. Berlin : Springer Verlag, 2002

[8]	 Dori D., Words from Pictures for Dual Channel Processing: A Bimodal Graphics-Text Representation
of Complex Systems. Communications of the ACM, 51(5), pp. 47-52, 2008.

[9]	 Dori D., Feldman R., Sturm A., From conceptual models to schemata: An object-process-based data
warehouse construction method, Information Systems 33 (6), pp. 567-593, 2008.

[10]	 Dori D., Object-Process Analysis: Maintaining the Balance between System Structure and Behavior.
Journal of Logic and Computation, 5, 2, pp. 227-249, 1995.

[11]	 Dori D., Object-Process Methodology – A Holistic Systems Paradigm, Springer Verlag, Berlin,
Heidelberg, New York, 2002 (ISBN 3-540-65471-2; Foreword by Edward Crawley.

[12]	 Dori D., Reinhartz-Berger I., Sturm A., LNCS 2813, pp. 570-572, 2003

[13]	 Dori D. The International Journal on Very Large Data Bases (VLDB), 13, 2, pp. 120-147, 2004.

[14]	 Estefan J., Survey of Model-Based Systems Engineering (MBSE) Methodologies 2 . Differentiating
Methodologies from Processes, Methods, and Lifecycle Models. Jet Propulsion, 25, 1–70, 2008.
Retrieved from https://​www​.omgsysml​.org/​MBSE​_Methodology​_Survey​_RevB​.pdf

[15]	 Grobshtein Y., Dori D., Generating SysML Views from an OPM Model: Design and Evaluation.
Systems Engineering, 14 (3), pp. 327-340, 2011.

[16]	 Myersdorf D., Dori D., The R&D Universe and Its Feedback Cycles: an Object-Process Analysis.
R&D Management, 27, 4, pp. 333-344, 1997

[17]	 Oliver D. W., Andary J. F., Frisch H. Model-based systems engineering. In Handbook of Systems
Engineering and Management, pp. 1361-1400, 2009.

[18]	 Osorio C. A., Dori D., Sussman J., COIM: An Object-Process Based Method for Analyzing Architectures
of Complex, Interconnected, Large-Scale Socio-Technical Systems. Systems Engineering 14(3), 2011.

[19]	 Peleg M., Dori D., The Model Multiplicity Problem: Experimenting with Real-Time Specification
Methods. IEEE Transaction on Software Engineering, 26, 8, pp. 742-759, 2000.

[20]	 Peleg M., J., and, D., A Methodology for Eliciting and Modeling Exceptions. (4), pp. 736-747, 2009.

[21]	 OPCAT, Enterprise Systems Modeling Laboratory, Technion, Haifa, Israel, http://​esml​.iem​.technion​.ac​
.il/​opm/​

157

﻿
© ISO 2024 – All rights reserved

https://www.omgsysml.org/MBSE_Methodology_Survey_RevB.pdf
http://esml.iem.technion.ac.il/opm/
http://esml.iem.technion.ac.il/opm/

ISO 19450:2024(en)

[22]	 Ramos A. L., Ferreira J. V., Barceló J., LITHE: An Agile Methodology for Human-Centric Model-
Based Systems Engineering. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems
and Humans, 2012.

[23]	 Reichwein A., Paredis C. Overview of Architecture Frameworks and Modeling Languages for
Model-Based Systems Engineering. Proceedings of the ASME 2011 International Design Engineering
Technical Conferences Computers and Information in Engineering Conference, 1-9, 2011.

[24]	 Reinhartz-Berger I., Dori D., A Reflective Metamodel of Object-Process Methodology: The System
Modeling Building Blocks. In Business Systems Analysis with Ontologies, Green P., Rosemann M.,
(Eds.), Idea Group, Hershey, PA, USA, pp. 130-173, 2005.

[25]	 Sharon A., de Weck O., Dori D., Model-Based Design Structure Matrix: Deriving a DSM from an
Object-Process Model. Systems Engineering, pp. 1-14, 2012.

[26]	 Somekh J., Choder M., Dori D., Conceptual Model-Based Systems Biology: Mapping Knowledge and
Discovering Gaps in the mRNA Transcription Cycle. PLoS ONE, 7(12): e51430. doi:​10​.1371/​journal​
.pone​.0051430, Dec. 20, 2012.

[27]	 Soffer P., Golany B., Dori D., Modeling ERP, A Comprehensive Approach. Information Systems
28, 6, pp. 673-690, 2003.

[28]	 Sturm A., Dori D., Shehory O., An Object-Process-Based Modeling Language for Multi-Agent
Systems. IEEE Transactions on Systems, Man, and Cybernetics – Part C: Applications and Reviews,
40 (2) pp. 227-241, 2010.

[29]	 Sturm A., Dori D., Shehory O., Application-Based Domain Analysis Approach and Its Object-
Process Methodology Implementation. International Journal of Software Engineering and Knowledge
Engineering, 19, 1, February 2009.

[30]	 Yaroker Y., Perelman V., and DORi, D., An OPM Conceptual Model-Based Executable Simulation
Environment: Implementation and Evaluation. Systems Engineering, 16(4), pp. 381-390, 2013.

158

﻿
© ISO 2024 – All rights reserved

iso.org

ICS 25.040.40
Price based on 158 pages

© ISO 2024
All rights reserved

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Symbols
	5 Conformance
	6 Object-Process Methodology (OPM) principles and concepts
	6.1 OPM modelling principles
	6.1.1 Modelling as a purpose-serving activity
	6.1.2 Unification of function, structure, and behaviour
	6.1.3 Identify functional value
	6.1.4 Function versus behaviour
	6.1.5 System boundary setting
	6.1.6 Clarity and completeness trade-off

	6.2 OPM fundamental concepts
	6.2.1 Bimodal representation
	6.2.2 OPM modelling elements
	6.2.3 OPM things: objects and processes
	6.2.4 OPM links: procedural and structural
	6.2.5 OPM context management
	6.2.6 OPM model implementation (informative)

	7 OPM thing syntax and semantics
	7.1 Objects
	7.1.1 Description
	7.1.2 Representation

	7.2 Processes
	7.2.1 Description
	7.2.2 Representation

	7.3 OPM things
	7.3.1 OPM thing defined
	7.3.2 Object-process test
	7.3.3 OPM thing generic properties
	7.3.4 Default values of thing generic properties
	7.3.5 Object states

	8 OPM link syntax and semantics overview
	8.1 Procedural link overview
	8.1.1 Kinds of procedural links
	8.1.2 Procedural link uniqueness OPM principle
	8.1.3 State-specified procedural links

	8.2 Operational semantics and flow of execution control
	8.2.1 Event-Condition-Action control mechanism
	8.2.2 Preprocess object set and postprocess object set
	8.2.3 Skip semantics of condition versus wait semantics of non-condition links

	9 Procedural links
	9.1 Transforming links
	9.1.1 Kinds of transforming links
	9.1.2 Consumption link
	9.1.3 Result link
	9.1.4 Effect link
	9.1.5 Basic transforming links summary

	9.2 Enabling links
	9.2.1 Kinds of enabling links
	9.2.2 Agent and agent link
	9.2.3 Instrument and instrument link
	9.2.4 Basic enabling links summary

	9.3 State-specified transforming links
	9.3.1 State-specified consumption link
	9.3.2 State-specified result link
	9.3.3 State-specified effect links
	9.3.4 State-specified transforming links summary

	9.4 State-specified enabling links
	9.4.1 State-specified agent link
	9.4.2 State-specified instrument link
	9.4.3 State-specified enabling links summary

	9.5 Control links
	9.5.1 Kinds of control links
	9.5.2 Event links
	9.5.3 Condition links
	9.5.4 Exception links

	10 Structural links
	10.1 Kinds of structural links
	10.2 Tagged structural link
	10.2.1 Unidirectional tagged structural link
	10.2.2 Unidirectional null-tagged structural link
	10.2.3 Bidirectional tagged structural link
	10.2.4 Reciprocal tagged structural link

	10.3 Fundamental structural relations
	10.3.1 Kinds of fundamental structural relations
	10.3.2 Aggregation-participation relation link
	10.3.3 Exhibition-characterization link
	10.3.4 Generalization-specialization and Inheritance
	10.3.5 Classification-instantiation link
	10.3.6 Fundamental structural relation link and tagged structural link summary

	10.4 State-specified structural relations and links
	10.4.1 State-specified characterization relation link
	10.4.2 State-specified tagged structural relations

	11 Relationship cardinalities
	11.1 Object multiplicity in structural and procedural links
	11.2 Object multiplicity expressions and constraints
	11.3 Attribute value and multiplicity constraints

	12 Logical operators: AND, XOR, and OR
	12.1 Logical AND procedural links
	12.2 Logical XOR and OR procedural links
	12.3 Diverging and converging XOR and OR links
	12.4 State-specified XOR and OR link fans
	12.5 Control-modified link fans
	12.6 State-specified control-modified link fans
	12.7 Link probabilities and probabilistic link fans

	13 Execution path and path labels
	14 Context management with Object-Process Methodology (OPM)
	14.1 Completing the system diagram (SD)
	14.2 Achieving model comprehension
	14.2.1 OPM refinement-abstraction mechanisms
	14.2.2 Control (operational) semantics within an in-zoomed process context
	14.2.3 OPM fact consistency principle
	14.2.4 Abstraction ambiguity resolution for procedural links

	Annex A (normative) Object-Process Language (OPL) formal syntax in Extended Bachus-Naur form (EBNF)
	Annex B (informative) Guidance for Object-Process Methodology (OPM)
	Annex C (informative) Modelling OPM using OPM
	Annex D (informative) OPM dynamics and simulation
	Bibliography

