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Abstract Global-scale changes in water vapor and responses to surface temperature variability since 1979
are evaluated across a range of satellite and ground-based observations, a reanalysis (ERAS) and coupled and
atmosphere-only CMIP6 climate model simulations. Global-mean column integrated water vapor increased by
1%/decade during 1988-2014 in observations and atmosphere-only simulations. However, coupled simulations
overestimate water vapor trends and this is partly explained by past studies showing that internal climate
variability suppressed observed warming in this period. Decreases in low-altitude tropical water vapor in
ERAS and ground-based observations before around 1993 are considered suspect based on inconsistency with
simulations and increased column integrated water vapor in microwave satellite data since 1979. Atmospheric
Infra-red Sounder satellite data does not capture the increased tropospheric water vapor since 2002 shown by
other satellite, reanalysis, and model products. However, global water vapor responses to interannual surface
temperature variability are consistent across data sets with increases of ~4%-5% near the surface and 10%—-15%
at 300 hPa for each 1°C increase in global surface temperature. Global water vapor responses are explained

by thermodynamic amplification of upper tropospheric temperature changes and the Clausius Clapeyron
temperature dependence of saturation vapor pressure that are dominated by the tropical ocean responses. Upper
tropospheric moistening is larger in climate model simulations with greater upper tropospheric warming.

Plain Language Summary Evaporated water becomes a gas (water vapor) in the air where it traps
heat by absorbing thermal infrared radiative energy as well as sunlight. Water vapor is also the "fuel" for rain
and snowfall. As the climate warms, water vapor increases in the lowest few kilometers of the atmosphere,
therefore, causes greater trapping of heat but also heavier precipitation events. This study looks at how water
vapor has changed since 1979 by examining satellite measurements, observations at ground level and complex
computer simulations that are also used to make predictions of future climate change. We find that the total
water vapor in the atmosphere is increasing by about 1% every 10 years. Changes calculated as a percentage
of the initial amount are larger higher up in the atmosphere, which is consistent with simple physics. There
are some differences between the observations and simulations: some simulations overestimate the observed
changes and this is partly because natural fluctuations in the ocean temporarily slowed the warming over the
period studied (1988-2014). It is not known for sure what other differences between observations are caused
by but it seems possible that decreases in humidity in some data sets may not be real and we are confident that
water vapor is increasing with warming of climate.

1. Introduction

Water vapor increases the magnitude of climate change in response to natural and human-caused climate vari-
ability and change through a powerful amplifying feedback (Dessler et al., 2008; Forster et al., 2021; Manabe
& Wetherald, 1967; Soden et al., 2002, 2005). This is determined by thermodynamically driven increases in
water vapor with temperature that cause greater longwave and shortwave radiative absorption by the atmosphere.
Increases in low-altitude water vapor with warming are also central in water cycle intensification, including heavy
precipitation and associated flood events (Allan & Soden, 2008; Douville et al., 2021; Fowler et al., 2021).

The water vapor feedback is physically well understood and there is good agreement in its magnitude between
observations (1.85 + 0.32 Wm~2K~") and climate model simulations (1.77 + 0.20 Wm~2K~!; Forster et al., 2021),
yet there remains some uncertainty in altitude dependent changes that in part relate to the pattern of warm-
ing, temperature lapse rate responses as well as atmospheric and surface processes (Allan et al., 2002; Colman
& Soden, 2021; Dessler et al., 2013; Forster et al., 2021). Although humidity distributions are improved in
higher resolution, storm-resolving models, a substantial range remains in some dynamical regimes such as
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during transition between moist convection and suppressed phases and very dry regions of strong subsidence
(Lang et al., 2021). Notable discrepancies also exist in low-altitude humidity changes in recent decades (Dunn
et al., 2017; Simmons et al., 2010; Willett et al., 2020). While it is not yet clear to what extent discrepancies relate
to inhomogeneity in data records, spatial sampling, or physical inadequacies in the model simulations (Douville
et al., 2021), it remains important to evaluate height-dependent variability in water vapor across observing
systems and model simulations. For example, using this approach, Santer et al. (2021) demonstrated a strong
relationship between trends in column integrated water vapor and surface temperature and argue that microwave
satellite-based lower tropospheric temperature trends are underestimated based upon multiple lines of evidence
using a range of climate models, observations, and reanalyses. Thus, the motivation of the present study is to
assess consistencies and discrepancies across multiple satellite and ground-based observations, global reanalysis
estimates and the latest climate model simulations from Phase 6 of the Coupled Model Intercomparison Project
(CMIP6; Eyring et al., 2016). While evaluation of CMIP6 simulations at the regional scale are ongoing (e.g.,
He et al., 2022), here the objective is to assess global-scale tropospheric water vapor and temperature changes
and responses to surface temperature temporal variability over the 40 yr period since 1979 from multiple lines
of evidence.

2. Data and Methods

While observational sampling and its variation over time represents a limitation in the observational record (e.g.,
Schroder et al., 2018; Willett et al., 2020), the goal of the present study is to assess tropical and global mean
changes over the satellite era (since 1979) that allows consistent comparison across observations, reanalyses
and climate models. To enable this, an imperfect yet pragmatic approach is to employ a set of complimentary,
near-global observing systems, covering most of the troposphere, and to merge the incompletely sampled obser-
vations with a state of the art reanalysis system. Specific and relative humidity and temperature are assessed,
focusing on deseasonalized area mean anomalies which are computed as relative (percentage deviation) from
climatological area-mean averages for specific humidity and absolute deviations for temperature (K) and relative
humidity (% RH). The troposphere is resolved across seven pressure levels (300, 400, 500, 600, 700, 850, and
925 hPa). Water vapor feedback operating near the tropical tropopause and in the lower stratosphere is not consid-
ered due to limitations in the satellite estimates used in the present study, though its importance to the overall
feedback is nevertheless acknowledged (Dessler et al., 2013).

2.1. Reanalysis

The fifth generation European Center for Medium-range Weather Forecasts (ECMWF) global reanalysis
(ERAS; Hersbach et al., 2020) combines observations with a high-resolution atmosphere modeling system via
four dimensional-variational data assimilation. Extensive conventional and satellite observations of surface and
tropospheric temperature and humidity are assimilated, including the SSMI(S), Atmospheric Infra-red Sounder
(AIRS), HIRS, and MetOp radiance data that are also used to construct the climate data sets used in the present
study. ERAS provides a consistent hourly record of the atmosphere, land, and ocean surface since 1950 using
a ~31 km horizontal grid and 137 levels in the vertical. Monthly means of daily means covering the period
1979-2020 are considered: data on a 0.25 X 0.25 degree latitude-longitude grid are extracted, considering 2 m
and pressure level air temperature, column integrated and pressure level specific and relative humidity. Monthly
mean near-surface (2 m) specific humidity is computed from monthly 2 m air temperature, dewpoint temperature
and surface pressure (Simmons et al., 1999). Computing using monthly rather than hourly fields is not expected
to noticeably affect the estimates of deseasonalized trends and variability based on additional calculations (see
Supporting Information).

2.2. Observations
2.2.1. AIRS Infrared Satellite Data

The AIRS instrument provides a calibrated, spectrally resolved record of combined infrared and microwave
radiances (Tian et al., 2019; Trent et al., 2019) from which temperature and humidity profiles through the tropo-
sphere are retrieved in up to 80% cloud cover. Outgoing longwave radiation computed from the retrieved temper-
ature and humidity profiles show consistency with independent satellite measurements (Sun et al., 2011), though
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discrepancies relate to sampling and undetected cirrus. Version 6 AIRS data was combined with simulations
based on reanalysis inputs to remove systematic biases related to sampling, thereby producing a product suitable
for evaluating climate model simulations as part of the Obs4MIP project (version 2: Tian & Hearty, 2020) from
September 2002 to September 2016. Given this treatment of systematic biases and the focus of the analysis on
variability in anomalies, it is expected that biases due to retrieval errors in regions of substantial or undetected
cloud will not substantially affect the results. Since ERAS5 provides values by extrapolation for pressure levels
below the surface (e.g., mountains), these values are used to fill these missing data areas to ensure sampling
consistency, though this only noticeably affects result over land for the 925 hPa level (by <10% for global
trends; Figure S2 in Supporting Information S1). Also considered for comparison is the version 7 AIRS-only
Level 3 monthly product (an average of the ascending and descending H2ZOMMR variable) from 2002—present
(AIRS Project, 2020) but the focus of the present study is on the AIRS + AMSU v6 Obs4MIP data set (Tian &
Hearty, 2020) which is used throughout unless otherwise stated.

2.2.2. Upper Tropospheric Humidity (UTH) Satellite Data

UTH data for 60°S—60°N from two satellite sources are used in this study (John et al., 2021). One is based on
infrared radiances measured by the High-Resolution Infrared Radiation Sounder (HIRS; 6.7 to 6.5 pm Channel
12) instruments (Shi & Bates, 2011) and the other is based on the microwave radiances measured by Advanced
microwave sounding unit (AMSU-B; 183.31 GHz channels) or Microwave Humidity Sounder (MHS; 190.31 GHz
channels) instruments (Chung et al., 2013). In these data sets, UTH represents a Jacobian weighted average of
relative humidity with respect to water in a broad layer which is roughly between 500 and 200 hPa, but slightly
varies depending upon atmospheric humidity profile with lower altitude layers sampled for drier, higher latitude
profiles. Therefore, analysis focuses primarily on tropical regions. John et al. (2021) present the variability and
change in UTH in these data sets.

2.2.3. SSMI(S) and SMMR Microwave Satellite Observations

The Special Sensor Microwave Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS) are
passive microwave radiometers onboard Defense Meteorological Satellite Program satellites since 1987. Column
integrated water vapor, retrieved and averaged onto a 0.25 X 0.25 degree grid over the ice-free oceans (Mears
et al., 2015; Wentz, 2015), is taken from the Remote Sensing Systems SSM/I records (F08, 1987-1991; F11,
1992-1995; F13, 1996-1999; F15, 2000-2006) and the SSMIS record (F17, 2007-2020). These were chosen as
the set with a relatively stable satellite overpass time. Also considered was 1 X 1° resolution Scanning Multichan-
nel Microwave Radiometer (SMMR) data over the ice free oceans from 1979 to 1984, also generated by Remote
Sensing Systems (Wentz & Francis, 1992) and used in previous assessments of column integrated water vapor
changes (e.g., Allan et al., 2003). These records were merged with the ERAS data by replacing missing data,
primarily over land and ice-covered ocean, to provide a globally complete observations-based estimate of column
integrated water vapor for 1979—1984 and since July 1987.

2.2.4. HadISDH Ground Based Humidity Observations

The Met Office Hadley Centre homogenized and quality controlled, integrated sub-daily data set (HadISDH;
Willett et al., 2014, 2020) blends marine and land near-surface temperature and humidity fields over the period
1973-2020 (version 1.0 is constructed from HadISDH.land v4.2.0 and HadISDH.marine v1.0.0) which are aver-
aged onto a 5 X 5 degree latitude-longitude grid. Data since 1979 is used in the present study and this is further
merged with ERAS near-surface data (mapped onto the HadISDH grid) by reconstructing absolute values and
recalculating anomalies to produce an additional globally complete filled version. This ensures that the large areas
of missing data do not accentuate the substantial coverage bias and therefore complements previous assessments
rather than providing a new version of the data. Without this merging, the global mean changes are dominated
by varying geographic coverage that results in spurious negative trends in moisture and temperature when no
account is made for the missing regions (see Figure S6 in Supporting Information S1). The un-merged HadISDH
product was also considered, as was an earlier Hadley Centre and Climate Research Unit global surface humidity
data set (HadCRUH; Willett et al., 2008).
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Table 1

Global Mean Specific Humidity (q), Column Integrated Water Vapor (CWV) and 2 m Temperature (T,
Experiments, ERAS and Observationally Based Estimates (HadCRUTS T,

) Over 1995-2014 for Model amip and Historical
HadISDH/ERAS q,,; SSMI(S)/ERAS CWV; AIRS . 400)

m

Ty (K) Do (2/KQ) CWV (kg/m?) 00 (&/k) Qoo (/kg)

Model/experiment hist amip hist amip hist amip hist amip hist amip
ACCESS-ESM1-52 288.5 287.7 10.6 10.3 25.5 24.7 33 32 0.55 0.53
BCC-CSM2-MR"* 288.6 287.7 9.7 — 25.5 24.9 34 33 0.56 0.53
BCC-ESM1"* 288.5 287.7 10.0 — 27.0 26.3 3.8 3.7 0.69 0.67
CanESM5¢* 287.9 287.9 11.9 11.8 24.5 24.1 3.1 3.1 0.58 0.54
CESM2¢ 288.0 287.4 10.5 10.2 25.7 24.9 34 33 0.58 0.53
CESM2-WACCM* 287.9 287.4 10.4 10.2 25.6 24.9 34 33 0.58 0.54
CMCC-CM2-SR5¢* 288.3 287.5 10.5 10.3 26.6 25.7 3.5 33 0.65 0.59
CNRM-CM6-1f 286.8 287.3 9.5 9.7 232 24.1 3.0 32 0.46 0.51
CNRM-ESM2-1f 287.5 287.4 9.8 9.7 24.0 24.0 32 32 0.49 0.51
GFDL-ESM4¢ 287.2 287.2 10.0 10.0 235 239 32 32 0.46 0.48
GISS-E2-1-Gh* 287.6 287.5 10.5 10.2 27.2 26.0 3.8 3.6 0.64 0.60
HadGEM3-GC31-MM! 287.7 287.7 9.9 10.0 24.6 24.9 33 33 0.51 0.52
INM-CM5-0i* 287.1 287.5 9.6 10.0 24.1 25.8 3.1 3.4 0.57 0.65
IPSL-CM6A-LR* 287.0 287.2 9.9 10.1 249 25.6 34 3.5 0.45 0.48
MIROC6! 289.0 288.9 10.4 10.5 25.8 26.6 3.7 3.8 0.55 0.60
MRI-ESM2-0™ 287.6 287.8 10.4 10.6 24.5 25.2 33 34 0.55 0.57
NorESM2-LM"* 288.2 287.6 10.3 10.1 26.4 25.8 35 3.5 0.65 0.61
UKESM1-0-LL° 287.2 287.7 9.8 10.0 242 247 32 33 0.52 0.53
Ensemble mean 287.8 287.6 10.2 10.2 25.2 25.1 34 34 0.56 0.55
ERASP* 287.5 9.8 242 32 0.50

ObservationsP4 287.5 9.8 24.8 32 0.48

Note. *Pressure level data below surface filled by extrapolation.

2Ziehn et al. (2020). "Wu et al. (2019). <Swart et al. (2019). ‘Gettelman et al. (2019). Lovato et al. (2021) and Scoccimarro et al. (2021). fSéférian et al. (2019) and
Voldoire et al. (2019). £Zhao et al. (2018). "Elsaesser et al. (2017). {Andrews et al. (2020). ISong et al. (2021). *Boucher et al. (2020). 'Tatebe et al. (2019). ™Yukimoto
et al. (2019). "Seland et al. (2020). °Swaminathan et al. (2021). PHersbach et al. (2020). ®Morice et al. (2021), Willett et al. (2014, 2020), Wentz (1997), Tian and

Hearty (2020).

2.3. Climate Models

An ensemble of climate model simulations contributing to the CMIP6 historical and amip experiments were
selected (Table 1) based on the availability of diagnostics including near-surface and atmospheric pressure-level
specific and relative humidity and temperature as well as column integrated water vapor. Although the full set
of CMIP6 models is not considered, doing so would still not ensure the full range of uncertainty is captured and
the set of 18 models is considered a suitable number to sufficiently represent internal variability as well as model
structural uncertainty. This is a reasonable assumption given that interannual relationships between temperature
and moisture are tightly constrained across a similar size CMIP6 ensemble as well as for larger CMIP5 and large
single model ensembles (Santer et al., 2021).

The historical experiments apply realistic changes in radiative forcings to coupled versions of the climate models
over the period 1850-2014 (the 1979-2014 subset is extracted). The amip experiments apply realistic radiative
forcings, sea surface temperature (SST) and sea ice distributions to force the land surface and atmosphere-only
components of the models over 1979-2014. Ensemble members rlilp1fl were used apart from CNRM models
(rlilp1£2), UKESM (rlilp1f2 for historical, rlilp1f4 for amip) and HadGEM3 (rlilp1f3) which accounts for
slight adjustments to forcings required to produce the required CMIP6 simulations. Only some models filled
pressure level data below the surface by extrapolation (BCC-CSM2-MR, BCC-ESM1, CanESM5, GISS-E2-1-G,
INM-CM5-0, CMCC-CM2-SRS5, NorESM2-LM). It was decided not to investigate filling unsampled regions
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in the remaining models due to the small sensitivity of AIRS results to filling using ERA5 (only noticeable at
925 hPa and <10% difference in global mean trend and sensitivity to interannual surface temperature changes;
see Figure S2 in Supporting Information S1).

In general, the CNRM models simulate the driest atmosphere, even where observed SSTs are prescribed in the
amip simulations; the IPSL upper troposphere is notably dry compared to other models (Table 1 and Table S1 in
Supporting Information S1) though comparable with the ERA5 and the AIRS 400 hPa estimates (Table 1). The
CNRM models also simulate relatively low specific humidity at 400 hPa, though this appears mainly related to a
relatively cold upper troposphere rather than low relative humidity (Table S1 in Supporting Information S1). The
CanESMS5 model produces the highest near-surface moisture amount and relative humidity (Table 1 and Table S1
in Supporting Information S1) and the BCC-ESM1 and GISS-E2 models simulate the largest tropospheric mois-
ture totals with most models overestimating water vapor amounts compared to ERAS and the observations-based
estimates. The MIROC model simulates unusually high global surface temperature, even in the amip experiment
where SSTs are constrained by observations with land regions, therefore, being unusually warm (e.g., by >10 K
regionally). It is not clear whether this is due to a diagnostic or physical reason though the model does exhibit
a positive net heating of about 1 Wm™ in the pre-industrial spin-up simulations (Tatebe et al., 2019) and also
simulates above average water vapor amount in the amip and historical simulations (Table 1). The INM-CM5-0
amip simulations display suspect near-surface temperature over the ocean during July—-December 2014 though
this does not noticeably influence the results.

2.4. Methodology

Monthly mean data from the observational (filled and unfilled) estimates, reanalysis and climate models
spanning 1979-2020 and depending on the data record lengths were processed using CDO software (version
1.9.5; http://mpimet.mpg.de/cdo). Data sets were bi-linearly interpolated onto a common 0.75 X 0.75 degree
latitude-longitude grid. Monthly global, tropical, and zonal means were computed over the land, ocean, and all
regions using a common land-sea mask derived from the reanalysis data (land is assumed if more than half of the
interpolated grid points are land points). In addition, grid point deseasonalized anomalies and relative anomalies
(% deviation from climatology) and corresponding global, tropical, and zonal means were computed, though
analysis primarily focuses on the absolute means: these were subsequently processed to compute absolute and
relative deseasonalized anomalies of the global, tropical and zonal means using a base period of 1995-2014
(20022014 for AIRS, the part of this record which overlaps with this baseline), commonly used to denote “pres-
ent day” conditions (e.g., Douville et al., 2021). In the case of the SMMR/ERAS data, anomalies were computed
with respect to 1979-1984 and the area mean (e.g., global) anomalies adjusted by the area mean SMMR/ERAS
(1979-1984) minus SSMI(S)/ERAS (1995-2014) difference.

Present-day multi-annual means and linear trends of deseasonalized anomalies were computed over various
time-scales and depending on data availability (a focus was 1988-2014 based on data availability). Finally, to
assess the interannual coupling of large-scale humidity and temperature variability, the linear trends are removed
from the time series and the sensitivity of detrended anomalies to detrended surface temperature anomalies were
computed over the same time periods. This, therefore, isolates the interannual relationship between atmospheric
moisture and surface temperature that is distinct from the (multi-)decadal scale trends.

3. Results
3.1. Water Vapor Changes

Changes in global mean atmospheric water vapor and surface air temperature are displayed in Figure 1 during
1979-2020 for the observationally based data sets, ERAS reanalysis and amip simulations. Interannual variabil-
ity is characterized by warming and moistening during El Nifio events (e.g., 1987/1988, 1997/1998, 2015/2016)
with cooler and drier conditions globally during La Nifia events (e.g., 1988/1989, 1998-2000, 2008/2009).
Large volcanic eruptions also cause cooling which is amplified by resulting drying of the troposphere, as evident
following the eruption of Mt. Pinatubo in 1991 (Soden et al., 2002).
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Figure 1. Deseasonalized anomaly time series of global mean atmospheric water vapor (% anomaly relative to 1995-2014
baseline) for amip models (ensemble mean and range) and ERAS for (a) 400 hPa specific humidity (g) including AIRS
satellite observations (Obs4MIP AIRS + AMSU and AIRS-only v7 products relative to 2002-2014), (b) total column
integrated water vapor (CWV) including SSMI(S)/ERAS and SMMR/ERAS blended satellite microwave estimates and (c)
near-surface specific humidity (2 m) including HadISDH/ERA5 and HadCRUH/ERAS blended observations and (d) surface
temperature (°C anomalies) including HadCRUTS observations and the HadISDH/ERAS blended record. A 3-month boxcar
average smoothing is applied.

There is broad agreement between data sets with notable exceptions:

1. Increases in upper tropospheric specific humidity at 400 hPa (g,,,) in simulations and ERA5 are less
pronounced in AIRS observations, though interannual variability is similar (Figure 1a).

2. A decrease in ERAS5 column integrated water vapor 1979-1993 conflicts with simulations and the
SMMR-SSMI(S)/ERAS blended record since 1979 with strong agreement after 1993 (anomalies within
~0.5%; Figure 1b).
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3. Simulated increases in 2 m specific humidity (g,,,) are inconsistent with ERAS5 before around 1993 and with
HadISDH/ERAS estimates over the full record (Figure 1c¢).

The decrease in ERA5 lower tropospheric moisture in the late 1980s/early 1990s appear consistent with a previ-
ous version of the reanalysis where they were attributed to an unrealistic influence of the changing observing
system (Allan et al., 2020; Hersbach et al., 2020). This also raises questions as to the realism of the low level
water vapor trends estimated by HadISDH/ERAS (Figure 1c); since this fills missing data with ERAS, the differ-
ence to ERAS5-only is indicative of the HadISDH data alone which appears to show a decrease in specific humid-
ity relative to ERAS over time. HadISDH/ERAS variability is consistent with an earlier data set (HadCRUH)
similarly combined with ERAS (1979-2003), though HadCRUH/ERAS displays near-surface specific humidity
anomalies slightly closer to the amip simulations. The decrease in HadISDH water vapor is also apparent in
differences with amip simulations masked to the unfilled HadISDH observations (Figure S6 in Supporting Infor-
mation S1); this is dominated by the tropical oceans (not shown) and coincides with HadISDH temperature and
specific humidity anomalies that are more positive than the simulations before around 1995. HadISDH/ERAS 2
m temperature anomalies are also more positive than HadCRUTS5 and ERAS in the 1980s (Figure 1d) and this is
consistent with the higher 2 m specific humidity anomalies given that they are calculated using the dry bulb and
dewpoint temperature (Willett et al., 2020). This highlights the challenges in constructing homogeneous climate
data sets which for HadISDH involves rigorously accounting for daytime solar bias, unaspirated-psychrometer
bias, ship height for ocean measurements and reporting deficiencies, all of which can change over time (Willett
et al., 2020). Investigating the causes of these discrepancies merits further investigation but are beyond the scope
of the present study.

3.1.1. Water Vapor Trends

Table 2 quantifies the global mean trends (dq/dt) across all data sets for 1988-2014, including the historical
simulations which represent unforced interannual variability but are not designed to capture its correct timing.
The amip simulations estimate a smaller magnitude increase in water vapor (around half) compared to historical
simulations (Table 2). This is principally due to the suppressed observed warming during 1998-2013 relating
partly to internal climate variability, though radiative forcing, the pattern of warming and high climate sensitivity
in some CMIP6 coupled models also plays a role (Eyring et al., 2021; Forster et al., 2021; Kosaka & Xie, 2013;
Mitchell et al., 2020). Corresponding 1988-2014 trends in ERAS are increased by around 0.5%/decade through-
out the troposphere when extending this period up to 2019 (Figure S2b in Supporting Information S1).

In agreement with Figure 1, simulated increases in column integrated water vapor of about 1%/decade are repro-
duced by the SSMI(S)/ERAS observations-based estimate. Simulated 2 m water vapor increases are consistent
with column trends but 23% smaller, while insignificant trends in HadISDH/ERAS 2 m specific humidity are at
odds with the observed column integrated trends. These small trends are consistent with decreasing HadISDH
minus amip ensemble mean water vapor anomalies computed over the observational coverage region (Figure S6
in Supporting Information S1); these are most pronounced over the tropical ocean and are also associated with
a decreasing trends in HadISDH minus amip surface air temperature, which merits further investigation yet is
beyond the scope of the present study.

Upper tropospheric (400 hPa) moisture increases by ~2%/decade in ERAS and amip simulations but not in the
AIRS Obs4MIP record. The discrepancy is smaller when considering the full AIRS Obs4MIP record (2003-2016)
which produces ~1%/decade more positive trends (Figure S2b in Supporting Information S1), though this is
influenced by the 2015/2016 El Nifio warm event. Based on Figure 1 and Figure S3 in Supporting Informa-
tion S1 it is not expected that the AIRS-only v7 record will alter these results substantially though there are some
discrepancies early in the record and evidence of a drying trend after 2016 that is at odds with ERAS (Figure S3
in Supporting Information S1).

Larger relative magnitude (%) moisture responses at higher altitudes (Figure S1 in Supporting Information S1)
are consistent with the Clausius Clapeyron equation which determines a larger relative change in saturation vapor
pressure with warming at lower temperatures (e.g., Allan, 2012) but also due to amplification of warming aloft
due to diabatic and radiative processes (e.g., Ohmura, 2012). Combined with an observed global surface warming
0f 0.17 + 0.01 K/decade based on HadCRUTS, the global moisture increases correspond with around 6%/K sensi-
tivity for column integrated water vapor and a ~12%/K response of 400 hPa water vapor to surface temperature.
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Table 2
Global Mean Trends (%/decade, 1988-2014) in 2 m Specific Humidity (q,,,), Column Integrated Water Vapor (CWV)
and Specific Humidity at 400 hPa (q,,,) for Model amip and historical Experiments, ERA5 and Observations-Based
Estimates (HadISDH/ERAS q,,,; SSMIS(S)/ERA5 CWV; AIRS 2002-2014 Only q ) [ *Significant at 90% Confidence Level
Accounting for Autocorrelation; +1 Standard Error in Linear Fit Apart From Model Ensemble +1 Standard Deviation
Model Spread.] Observations Denote HadISDH/ERAS q,,,; SSMIS(S)/ERAS CWV and AIRS (2002-2014 Only) q
Model Dom cwv 9400
Trend (%/decade) hist amip hist amip hist amip
ACCESS-ESM1-5 2.09 +0.07* 0.81 £0.06* 2.55+0.09* 0.92+0.08%* 4.33+0.19%* 1.69 +0.19*
BCC-CSM2-MR 1.37 + 0.06* — 1.63 + 0.08*  0.95 +0.08* 2.82+0.16% 1.65+0.18*
BCC-ESM1 1.23 + 0.06* — 1.45 +0.08* 1.04 +0.08*% 2.46 +0.16% 1.83 +0.18*
CanESM5 2.05 +0.06* 0.77 £0.05* 2.82+0.10* 1.16+0.08%* 548 +0.21* 2.17 +0.18*
CESM2 1.52 + 0.08* 0.86 + 0.06* 1.89 +0.10* 1.13 +0.08* 3.52 +0.22* 2.30+0.19*
CESM2-WACCM 1.55 +0.06* 091 +0.06* 190+ 0.08* 1.08 +0.08% 3.41+0.17* 2.16 +0.19*
CMCC-CM2-SR5 2.01 £0.09* 1.04 +£0.06* 239+0.11* 1.28+0.08%* 4.21 +0.24* 241 +0.18*
CNRM-CM6-1 1.01 +£0.06* 0.77 £ 0.06* 1.21 +0.09%* 0.98 + 0.09*  2.34 + 0.20* 2.02 + 0.20*
CNRM-ESM2-1 142 +0.05%* 0.77 £0.06* 170 +0.07* 0.98 £ 0.09* 3.13 +0.16% 1.89 + 0.20*
GFDL-ESM4 1.53 £ 0.08* 0.85+0.06* 1.94+0.11* 1.19+0.08%* 3.82 +0.22* 2.25 +0.20*
GISS-E2-1-G 1.40 + 0.10*  0.83 £0.06%* 1.79 + 0.15 0.97 +£0.08* 3.15+0.29% 1.72 +£0.17*
HadGEM3-GC31-MM 1.92 +0.07% 0.81 +£0.07* 223 +0.08* 0.92 +0.09%* 3.75+0.16% 1.67 +0.17*
INM-CM5-0 1.04 £ 0.06* 0.82 +£0.06* 1.20+0.07* 1.07 +£0.07* 2.30+0.13* 2.07 +£0.15*
IPSL-CM6A-LR 1.27 +£ 0.09* 0.88 +0.06* 1.63 +0.13* 1.12+0.08% 3.13 +0.26* 2.25 +0.18*
MIROC6 1.58 £ 0.09* 0.74 +0.06* 2.09 + 0.14*  0.96 + 0.09*  3.75 + 0.29* 1.93 +0.18*
MRI-ESM2-0 1.23 £ 0.07* 0.78 £0.06* 1.53 +0.10%* 1.06 +0.08* 247 +0.18* 1.81 +£0.15*
NorESM2-LM 1.73 £ 0.08* 092 +0.06* 2.11+0.11* 1.14 + 0.08* 3.67 + 0.22* 2.08 + 0.18*
UKESM1-0-LL 221 £0.06% 0.82+0.06% 2.49+0.08%* 0.93 +0.09%* 4.06+0.16% 1.63 +0.17*
Ensemble median 1.53 £ 0.36% 0.82 +0.07* 1.90+0.46* 1.06+0.11* 3.52 +0.82* 2.02 + 0.25*
ERAS 0.28 + 0.05 0.78 + 0.08* 2.26 + 1.17*
Observations —0.04 + 0.05 1.02 £ 0.07* 0.69 £ 0.51

The relatively low moisture content CNRM models also produce one of the smallest %/decade near-surface water

vapor trends of the amip simulations. Conversely, the CanESM model simulates a relatively moist near-surface

but a smaller than amip average %/decade trend and the IPSL model simulates a dry upper troposphere yet

produces one of the largest %/decade 400 hPa moisture trends. This suggests there is not a simple link between

mean moisture biases and trends.

Moisture trends on pressure levels are dominated by lower latitude ocean changes where the moisture amount

is larger and so global mean changes are similar to tropical ocean mean changes: tropical ocean dCWV/dt is
1.77 £ 0.45%/decade in historical simulations (7% less than global mean trends) and 0.86 + 0.10%/decade in

amip (20% smaller than the global mean trend; see Figure S1 in Supporting Information S1). The smaller trop-

ical ocean trends in amip simulations may reflect the larger influence of El Nifio on tropical ocean variability.

However, there is an 8% larger tropical ocean trend compared to the global mean for ERAS, which could partly

be explained by regionally dependent inhomogeneities in observations-based data sets, that are beyond the scope

of the present analysis. There is a smaller trend in ERAS water vapor over tropical land than the global mean

and compared with the amip simulations at all levels considered (Figure S1 in Supporting Information S1), with

a non-significant CWV trend of 0.3%/decade compared with 0.8—1.7%/decade range for amip simulations. The

decreasing global CWV trends in ERAS before 1993 are particularly apparent for the 850 hPa level and over the

tropical oceans (Figure S2 in Supporting Information S1).

While AIRS observations reproduce the interannual variability in moisture throughout the troposphere displayed

by ERAS and amip simulations (Figure 1a; Figure S2 in Supporting Information S1), trends are generally not
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significant in the mid/upper troposphere but strongly positive in the lower troposphere (e.g., 2.6%/decade for
global mean 850 hPa trends 2002-2016) and there is inhomogeneity apparent in the 925 hPa AIRS time series
during early 2014 (Figure S2 in Supporting Information S1).

Computing the global mean of % water vapor anomalies is of greater relevance to the global longwave radiative
effect and water vapor feedback and increases the importance of higher latitude regions: this increases low alti-
tude global trends by ~0.2%/decade and decreases upper tropospheric water vapor trends by up to ~1%/decade
(see ERAS in Figure S2d in Supporting Information S1), only marginally different to the % anomalies of the
global mean in Table 2.

3.1.2. Zonal Mean Moisture Variability and Trends

The dependence of moisture variability and trends as a function of latitude are presented in Figure 2. Zonal mean
water vapor is computed and deseasonalized anomalies are calculated as a percentage of monthly climatological
mean; a zonal mean of the grid point deseasonalized percentage anomalies are very similar (not shown). Linear
trends are computed for each latitude-mean over the full available data records.

Variability in upper tropospheric water vapor (g,,) is smoother in the amip ensemble mean compared to ERAS
(as expected due to ensemble averaging) but with consistent increases in equatorial latitudes during the strong El
Nifio events of 1983, 1998, and also 2010. However, while the latitude-mean trends are positive (0-5%/decade)
across all ensemble members and the historical ensemble mean (Figure 2a, right panel), ERAS displays negative
trends around Antarctic latitudes and stronger than simulated trends in the northern tropics.

Column integrated water vapor (Figures 2c—2¢) displays some similar features to the upper troposphere such as
the tropical El Nifio signals but the latitude structure in trends differs. The largest CWV trends as a percentage
of climatology are over Arctic latitudes: ~2—-5%/decade in amip simulations with ERAS at the upper end of this
range. Arctic changes agree with previous estimates based on earlier reanalyses and radiosonde data (Rinke
et al., 2019), with relative trends smallest in February—March and largest in October—January. This is consistent
with an increased local moisture source due to delayed freezing of the open ocean (Nusbaumer et al., 2019),
though increased moisture transport also plays a role (Dufour et al., 2016; Nygard et al., 2020). Trends in CWV
are smaller than for g,,, in the Southern Hemisphere (0°-60°S) with the SSMI(S)/ERAS estimates close to
amip simulations and more positive than ERAS5-only estimates, which in part relates to the apparently spurious
decreases in ERAS moisture before 1993. Although the SSMI(S)/ERAS CWV record is identical to ERAS over
latitudes with no ice free ocean, such as Antarctica, differences in trends reflect the contrasting data record
lengths considered. Trends over the Arctic are generally smaller in the upper troposphere (Figures 2a and 2b)
than at lower levels (Figures 2c—2h), reflecting that much of the Arctic warming (and therefore moistening) is
concentrated in the lower troposphere(e.g., Steiner et al., 2020).

Near-surface water vapor changes (Figures 2f—2h) broadly match those for CWV but with less prominent tropical
El Nifio signals. The unfilled HadISDH latitudinal variability and trends (Figure 2h) show similarity to ERAS but
with negative trends apparent in the Southern Hemisphere, particularly before 2015. Dunn et al. (2017) identified
weaker global water vapor increases since 1973 in HadISDH compared with coupled models from the CMIP6
predecessor (CMIPS); this was particularly so for the 1996-2015 period which can partly be explained by the
stronger warming in CMIP5 historical experiments than observations over the period, consistent with CMIP6
(Mitchell et al., 2020).

Larger trends in historical experiments compared to amip (Figures 2a, 2¢ and 2f right panels) are particularly
prominent in the northern tropics but also in the Southern Hemisphere extra-tropics for CWV and g, . Weak
trends in HadISDH ¢, over the Southern Hemisphere were reported by Dunn et al. (2017); negative trends over
southern mid-latitudes appear to reverse after 2014 (Figure 2). While Dunn et al. (2017) noted the model under-
estimate in 2 m relative humidity decline over land, the discrepancy in water vapor trends is particularly acute
over the tropical ocean (Figures S1-S2 in Supporting Information S1): HadISDH/ERAS shows a non-significant
negative trend of —0.3%/decade compared to significant increases in amip (0.5-0.8%/decade) and historical
simulations (0.8%-2.1%/decade).

3.1.3. Sensitivity of Water Vapor Changes to Surface Temperature

Construction of decadal-scale data sets of climate-quality is limited by issues of homogeneity, sampling, and
record length (Hersbach et al., 2020; Schroder et al., 2018; Simmons et al., 2014; Willett et al., 2020). Interannual
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Figure 2. Time-latitude variability and trends for: 300 hPa specific humidity (a) model ensemble mean amip simulations
and 1979-2014 trends for each model (gray) and ensemble mean historical experiment trend (dashed thick), (b) ERAS
(1979-2020); column integrated water vapor for (c) model ensemble mean amip simulations (trends as in (a)), (d) ERAS
(1979-2020), (e) SSMI(S)/ERAS (1987-2020); 2 m specific humidity in (f) model ensemble mean amip simulations (trends
as in (a)), (g) ERAS, (h) HadISDH (1979-2019). The time-latitude plots (left) depict % anomalies relative to zonal monthly
mean (1995-2014) while zonal mean trends (right) apply for the respective record lengths with +2 standard error on the
calculated trends in ERAS and observations (dashed).

ALLAN ET AL.

10 of 23

85U8017 SUOWLOD 8A1Ie10) 8|qed![dde 8y Aq peusenob afe Sapiie YO ‘@SN JO SN 10} Arelq18UlUO 48] 1M UO (SUORIPUOD-pUe-SWB}LI0O" A3 1M AeIq | U1 UO//SdNY) SUORIPUOD pue Swie | 3y} 89S *[£202/90/T0] Uo Ariqiauliuo A8|im ‘Auewses aueiyooD Aq 822950Arzz0z/620T 0T/10p/wodAs|im AreiqiiuljuosqndnBey/sdny wouy papeojumoq ‘ZT ‘2202 ‘96686912



~I1
A\-"Ul Journal of Geophysical Research: Atmospheres 10.1029/2022JD036728
AND SPACE SCIENCE
Table 3
Global Mean Sensitivity of Detrended Water Vapor to Surface Temperature (%/K) Over 1988-2014 for amip and historical
Simulations, ERAS and Observation-Based Estimates for 2 m Specific Humidity (q,,,), Column Integrated Water Vapor
(CWV) and Specific Humidity at 400 hPa (qy,) [ *Significant at 90% Confidence Level Accounting for Autocorrelation; +1
Standard Error in Linear Fit Apart From Model Ensemble +1 Standard Deviation Model Spread. ] Observations Denote
HadISDH/ERAS q,,; SSMIS(S)/ERA5 CWV and AIRS (2002-2014 Only) q,,
Model Dom cwv Q400
Sensitivity (%/K) hist amip hist amip hist amip
ACCESS-ESM1-5 4.08 +£0.21* 420+0.21* 5.02+031* 523+0.31* 8.35 +£0.74* 10.13 + 0.82*
BCC-CSM2-MR 391 +0.20* — 4.59 + 0.31*  4.37 + 0.30* 8.49 + 0.63* 8.13 + 0.68*
BCC-ESM1 3.60 + 0.24* — 481 +0.33*  4.78 + 0.29* 8.91 + 0.70* 9.46 + 0.67*
CanESM5 3.86+0.19%* 348 +0.19%* 5.60+031* 4.61+0.33* 10.98 + 0.74* 8.15 £ 0.77*
CESM2 532+0.18% 4.15+0.21*% 6.14+028* 544 +0.31* 11.88+0.77* 10.65=+0.77*
CESM2-WACCM 442 +0.20¥ 3.86+0.21* 5.04 +030* 4.80+0.31% 9.04 + 0.69* 9.74 + 0.75*
CMCC-CM2-SR5 499 +0.16%  3.79 +0.22% 6.37 +0.23* 4.76 +0.32*  12.00 + 0.55* 9.45 + 0.73*
CNRM-CM6-1 470 £ 0.23* 417 +£0.24*  6.25+0.33* 5.08 £0.34* 13.50 +0.82* 11.40 + 0.78*
CNRM-ESM2-1 391 +£0.23*% 425+ 0.23* 483 +0.33* 5.43 +0.32% 941 +0.73* 11.84 +0.78*
GFDL-ESM4 5.50+0.17%  4.05+0.22* 7.10+0.27* 5.05 +£0.35% 12.64 + 0.62* 10.75 + 0.88*
GISS-E2-1-G 6.01 +£0.23* 4.00 +0.26% 8.67+0.35% 4.84+0.39% 16.76 + 0.74* 8.88 + 0.84*
HadGEM3-GC31-MM  4.72 +0.18* 4.43 +0.23* 5.59 +0.24* 5.08 + 0.33* 9.06 + 0.53* 9.31 £+ 0.69*
INM-CM5-0 440 +0.18% 3.55+0.18% 4.96 +£0.25% 3.99 + 0.26* 8.46 + 0.51* 7.11 + 0.62*
IPSL-CM6A-LR 495 +0.16% 374 £0.20¥ 6.67 +£0.25% 4.56 +0.32% 12.62 + 0.60* 8.28 +0.75*
MIROC6 6.20 £ 0.19%  3.72 +0.22* 936+ 0.31* 490+ 0.32* 18.29 + 0.68* 8.75 £ 0.70*
MRI-ESM2-0 4.18 £ 0.27* 3.23 +£0.20* 545 +0.40* 3.83 +0.28* 8.83 +£0.76* 6.19 + 0.58*
NorESM2-LM 554 +£0.18% 3.83+021% 7.02+0.26% 4.77+0.30% 12.42+0.61% 9.35 + 0.70%
UKESM1-0-LL 4.08 + 0.22%¥ 453 +0.23* 4.55+0.30*% 543 +0.34* 7.31 £ 0.70* 9.69 £ 0.71*
Ensemble median 470+ 0.77% 4.00 +0.35% 5.60 +1.37* 4.84 +0.45* 1098 +3.01* 9.45 + 1.42%
ERAS 445 + 0.22% 5.76 + 0.35* 10.20 + 0.84*
Observations 441 + 0.24* 5.53 + 0.36* 9.89 + 1.51*
variability is, however, more robustly represented (Figure 1 and Figures S2—-S3 in Supporting Information S1).
Such variability in water vapor or precipitation are often utilized to test the coupling with surface temperature on
these time-scales and infer links to climate change (Adler et al., 2008; Allan & Soden, 2008; Dessler et al., 2008)
with the caveat that there is not a simple link between interannual and multi-decadal responses.
Interannual coupling is now assessed in models, reanalyses and observation over the period 1988-2014 through
linear regression of detrended water vapor (surface to 300 hPa pressure level % anomalies) and surface temper-
ature anomalies (see Section 2.4) for the global and tropical mean and corresponding ocean-only and land-only
estimates (Table 3; Figure 3). The interannual sensitivity of detrended moisture to surface temperature anoma-
lies (dq/dT,) therefore provides distinct yet complimentary information relative to the corresponding sensitivity
computed from multi-decadal trends in moisture and surface temperature ((dg/dt)/(dT/dt)).
At higher levels in the troposphere, global mean moisture responds more strongly to surface temperature changes
(~4-5%/K near the surface and up to ~10%/K at 400 hPa) in amip simulations, reanalyses, and observations
(Table 3, Figure 3a). This is expected from the temperature dependence of the Clausius Clapeyron equation
and the lower temperatures at higher altitudes (e.g., Allan, 2012). Dessler et al. (2008) presented a qualitatively
similar picture considering global and tropical mean changes between 2007 (warm event) and 2008 (cold event).
Responses are below the saturation vapor pressure rate (~6—7%/K near the surface up to about 15%/K in the upper
troposphere) though this depends on the regional pattern in temperature changes and the larger moisture amounts
in lower latitudes. Responses in temperature lapse rate also contribute, explaining the stronger increases with alti-
tude over the oceans (Figure 3b) and in the tropics (Figures 3d and 3e) where the atmospheric thermal structure is
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Figure 3. Detrended linear regression between atmospheric water vapor and HadCRUTS surface temperature (%/K) for the (a) global land and ocean, (b) global ocean,
(c) global land, (d) tropical land and ocean, (e) tropical ocean and (f) tropical land over 1988-2014 for amip and historical model experiments (line denotes ensemble
median and shading the range), ERAS, AIRS satellite observations (2002—-2014), SSMI(S)/ERAS column integrated water vapor and HadISDH/ERAS 2 m observations
(horizontal lines denote 90% uncertainty ranges).

more strongly constrained by the moist adiabatic lapse rate. Over land (Figure 3c), there are weaker sensitivities
(~2-5%/K) with little altitude dependence apart from in the tropics at altitudes higher than the 400 hPa level
(Figure 3f). The weaker sensitivities are in part explained by the larger land surface temperature anomaly relative
to the ocean surface temperature anomaly (not shown).

Regional variations in moisture sensitivity are partly explained by a greater upper tropospheric temperature
response than the surface over ocean (Figure 4b), particularly the tropical oceans (Figure 3e). The weaker atmos-
pheric moisture response to temperature variation over land is partly explained by a steepening of temperature
lapse rates during warmer years as implied by the smaller upper tropospheric temperature response to surface
warming over land (Figure 4c). These regional differences are dominated by El Nifio variability which exhibits
a particular pattern of ocean warming and corresponding lapse rate responses that contrast with long term trends
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Figure 4. Detrended linear regression between in atmospheric temperature and HadCRUTS surface temperature (%/K) for the (a) global land and ocean, (b) global
ocean, (c) global land, (d) tropical land and ocean, (e) tropical ocean and (f) tropical land over 1988-2014 for amip and historical model experiments (ensemble
median+1 standard deviation), ERAS, AIRS satellite observations (2002-2014) and HadISDH 2 m observations.

(1988-2014). Multi-decadal temperature trends appear more consistent between ocean and land though with less
similarity between data sets (Figure S4 in Supporting Information S1). Tropospheric temperature trends in ERAS
are up to about 0.1 K/decade weaker than simulated by the amip ensemble mean (Figure S4 and Table S2 in
Supporting Information S1), which itself shows suppressed warming compared to the coupled historical experi-
ment (by 0.1-0.2 K/decade). The smaller warming in amip than historical simulations is again partly explained
by internal variability (Kosaka & Xie, 2013; Mitchell et al., 2020), but the long-term evolving pattern of warming
and the realism of climate sensitivity may also play a role.

There is greater consistency in interannual moisture and temperature responses across data sets compared with
multi-decadal trends. AIRS Obs4MIP displays a smaller mid and upper tropospheric water vapor sensitivity
to surface temperature than other data sets, particularly around 600-700 hPa over the tropical oceans where
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Figure 5. Responses of global mean upper tropospheric water vapor and temperature responses across models (amip and
historical experiments 1979-2014; large symbol denotes ensemble mean) and for ERAS (1979-2019) and AIRS observations
(2002-2016): (a) detrended linear regression between 400 hPa water vapor and surface temperature (dg/dTs) scattered against
400 hPa temperature regression with surface temperature (d7/dTs); (b) 400 hPa water vapor trends scattered against 400 hPa
temperature trends.

mid-tropospheric temperature responses are also smaller than other data sets. This is for a shorter period than
other data sets (2002-2014 in Figures 3 and 4) and extending to 2016 increases the sensitivity by around 1%/K
throughout most of the troposphere (Figure S2a in Supporting Information S1). Applying the AIRS-only v7 record
up to present is however not anticipated to alter this discrepancy based on Figure 1a and Figure S3 in Supporting
Information S1 comparisons. The interannual sensitivity is also relatively robust to time period, detrending, and
sampling compared with trends (see Supplementary Information; Figure S2 in Supporting Information S1).

Despite discrepancies between long term trends in g,,, and CWV between HadISDH-ERAS and amip simulations,
interannual responses are consistent and within the model ranges. The MRI-ESM2 amip simulation produce the
smallest interannual sensitivity at all levels while the CNRM models simulate the largest upper tropospheric
water vapor sensitivity to surface temperature variability (>11%/K; Table 3) despite 1988-2014 trends that are
close to the ensemble median (Table 2). This is explained by the atmospheric temperature response to interannual
surface temperature changes which is small in MRI-ESM2 and large in the CNRM models (Table S3 in Support-
ing Information S1). However, the substantial range in (detrended) upper tropospheric interannual dg/dT sensi-
tivities exhibited by the historical experiments (7.3—-18.3%/K; Table 3) indicates a diversity in unforced climate
variability generated by the coupled climate models in terms of magnitude and spatial or temporal characteristics.

3.1.4. Links Between Tropospheric Temperature and Moisture Variability

Thermodynamic coupling between temperature and water vapor is confirmed by considering the interannual
and multi-decadal relationships across data sets, illustrated for the 400 hPa level in Figure 5 for full data records
within the 1979-2019 period. There is a robust relationship between water vapor and temperature responses
over interannual (Figure 5a) and multi-decadal (Figure 5b) scales across models that are in broad agreement
with ERAS and AIRS values. ERAS5 produces a large water vapor trend relative to its 400 hPa temperature trend
(Figure 5b) in comparison with AIRS and the models. However, temperature and moisture trends in AIRS and
ERAS are smaller than the amip simulations for the shorter 1988-2014 period (2002-2014 for AIRS; Figures S1
and S4 in Supporting Information S1).

The range of historical experiment multi-decadal water vapor trends is partly explained by the range of warming
rates (Figure 5b) with a strong relationship across models between 400 hPa temperature and moisture trends
(r = 0.94). For example, the CanESM5 model simulates a 400 hPa warming of 0.48 K/decade and moistening
of 4.8%/decade while the MRI-CM2 model simulates a weak warming and moistening of 0.23 K/decade and
2.0%/decade (corresponding temperature trends for 1988-2014 in Table S2 in Supporting Information S1). A
relationship between temperature and moisture trends also exists across amip simulations, albeit weaker (r = 0.7).
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A weaker relationship is expected since the range in surface warming is constrained by the experimental design
(0.14-0.17 K/decade; Table S2 in Supporting Information S1) so trends are smaller compared to internal variabil-
ity. However, the magnitude and range in 400 hPa temperature trends is larger (0.21-0.25 K/decade; Figure 5b),
indicating amplified upper tropospheric signal and a diversity in coupling between the upper troposphere and
surface temperature. This is confirmed by considering the interannual sensitivity of upper tropospheric temper-
ature and moisture to surface temperature (Figure 5a) which shows a significant positive relationship across
models with albeit weaker correlation in amip (r = 0.74) compared to historical (r = 0.94).

Models with a stronger interannual upper troposphere temperature response to surface warming therefore also
display a stronger upper tropospheric water vapor response: the MIROCS historical simulation produces a strong
global mean 400 hPa water vapor and temperature response to surface temperature (17.5%/K and 1.8 K/K for
1979-2014) while the MRI model displays a weak coupling (8%/K and 1.1 K/K; corresponding 1988-2014
responses in Table 3 and Table S3 in Supporting Information S1). Combining these estimates suggests a
more consistent coupling between 400 hPa moisture and temperature of 9.7%/K for MIROC6 and 7.3%/K for
MRI-ESM2, approximately 1%/K larger than (so quite close to) their respective amip experiment interannual
sensitivities.

A greater amplification of upper tropospheric warming can be partly explained by a larger tropical to global
warming ratio. This is suggested based on a weak positive correlation between 400 hPa temperature trends and
the ratio of tropical to global surface warming trend across historical simulations (Figure S5 in Supporting Infor-
mation S1). This can further partly explain a positive relationship between 400 ~Pa specific humidity trends and
the tropical to global warming ratio (r = 0.49). Proportionally greater warming in the convective tropics, which
is more strongly constrained by the moist adiabatic lapse rate than at higher latitudes or in subsidence regions,
therefore favors a greater upper tropospheric warming and, through thermodynamic constraints, larger water
vapor responses to warming. However, a diversity in patterns of warming in historical experiments across models
(the “pattern effect”, e.g., Stevens et al., 2016) does not apply to the amip simulations since the evolving pattern
of ocean warming is constrained to be near-identical across model simulations. Therefore additional factors such
as contrasting convection schemes and additional parametrizations must also contribute (e.g., Allan et al., 2002).
Notably, the MRI-ESM2 model simulates one of the weakest upper tropospheric amplification of surface warm-
ing in both historical and amip experiments and across time-scales (interannual and multi-decadal).

Since greater amplification of warming aloft leads to greater outgoing longwave radiative emission, while the
associated larger moisture increases reduces this longwave emission, there is a well understood strong compen-
sation between the negative temperature lapse rate feedback and the positive water vapor feedback (Allan
etal., 2002; Colman & Soden, 2021). Therefore it is useful to consider the range in combined lapse rate and water
vapor feedbacks as well as a relative humidity feedback in assessing the contribution to uncertainty in climate
sensitivity (Forster et al., 2021). The combined temperature and water vapor feedback is the total clear-sky radi-
ative feedback relating to temperature and water vapor changes, often simplified as a constant relative humidity
feedback given the tropospheric temperature changes. The relative humidity feedback relates to deviations away
from constant relative humidity alone. The next section assesses changes in relative humidity across data sets,
considering tropical ocean and land and near-global trends across lines of latitude.

3.2. Tropospheric Relative Humidity Changes

As expected from the strong thermodynamic constraint on atmospheric moisture, changes in relative humidity
are small when averaging over large areas and limiting the effect of changes in atmospheric circulation changes:
generally monthly anomalies in near-global relative humidity are within +1% RH based on ERAS5 and microwave
and infrared UTH measurements since 1979 (John et al., 2021).

Considering first the tropics (30°S—30°N), variability is similar in magnitude over the tropical ocean and land
(Figures 6a—7a) for UTH observations though is larger for ERAS 400 hPa RH (~+2%). This is partly explained
by UTH being a weighted average of RH over a broad atmospheric layer (~200-500 hPa in the tropics), though
AIRS estimates of tropical mean 400 hPa relative humidity are strongly correlated with both UTH estimates (MW
r = 0.85; HIRS r = 0.79) and ERAS (r = 0.83) over the 2003-2015 period. While previous studies have more
consistently compared models and observations by simulating satellite humidity channel brightness temperatures
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Figure 6. Deseasonalized anomaly time series of relative humidity (RH) for amip models (ensemble mean and range) and
ERAS at (a) 400 hPa including AIRS satellite observations and upper tropospheric humidity estimates from infra-red (HIRS)
and microwave (MW) satellite observations, (b) 700 hPa including AIRS and (c) at the surface (2 m) including HadISDH
observations and (d) surface temperature including HadCRUTS observations.
(Allan et al., 2003; Soden et al., 2005), this is beyond the scope of the present work which is deemed adequate for
the purposes of a qualitative comparison.
There is good qualitative agreement in interannual RH variability over the tropical ocean across data sets
(Figure 6a) with decreased humidity during mature El Nifio events, particularly in northern hemisphere spring
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Figure 7. As Figure 6 but for tropical land.
(e.g., April in 1983, 1998, 2016) and relating partly to exceptionally strong subtropical subsidence in the
Pacific (e.g., McCarthy & Toumi, 2004). Discrepancies include larger multi-decadal RH variability in ERAS
with negative anomalies generally before 2002 and positive anomalies after, in contrast to the amip simulations
and HIRS infrared UTH estimates which tend to display negative trends. Anomalies are up to 1% RH more
negative in ERAS5 than the amip ensemble mean during 1993-1997 and this is also apparent at the 700 hPa level
(Figure 6b).
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Figure 8. Time-latitude relative humidity variability and trends for (a) 300-500 hPa RH model ensemble mean amip simulations and 1979-2014 trends for each
model (gray) and ensemble mean historical experiment trend (dashed thick); (b) 300-500 hPa RH in ERAS (1979-2020); (c) HIRS satellite UTH (1979-2020) and (d)
Microwave satellite UTH (1998-2020). The time-latitude plots (left) depict % RH or UTH anomalies relative to 1995-2014 while zonal mean trends (right) apply for
the respective record lengths with +2 standard error on the calculated observed trends (dashed lines in (b—d), right panels).

Tropical ocean near-surface relative humidity in ERAS decreases by more than 1% from 1979 to 2015 and to a
lesser extent in the HadISDH-ERAS blend. This is at odds with amip simulations which display a slight increase
and small year to year variability in anomalies of order 0.5% RH (Figure 6¢). An increase in ocean surface
RH is consistent with physical expectations in which slower warming over ocean than land drives increases in
surface stability (Richter & Xie, 2008). The declining observed surface relative humidity is less pronounced than
ERAS-only data but consistent with a negative trend in HadISDH minus amip water vapor anomaly difference
for the region of observational coverage (Figure Séc in Supporting Information S1); these changes are dominated
by tropical oceans where accounting for measurement and reporting biases and ship height inhomogeneity is a
challenge (Willett et al., 2020) and merits investigation in future work. A declining surface RH trend over tropical
land is also evident (Figure 7c) though the discrepancy with amip simulations is less apparent, in part due to
larger month to month variability. There is generally good agreement across data sets of RH variability through-
out the troposphere, including the upper troposphere based on correlations between MW and AIRS (r = 0.83),
HIRS with AIRS (r = 0.69) and ERAS with AIRS (r = 0.92) over the 2003-2015 period.

A strong dipole in latitude-mean RH anomalies coincides with the mature phase of the 1983 and 1998 El Nifio
events with positive anomalies at 15°N and negative equatorial anomalies (Figure 8). Monthly RH variability
appears largest in ERAS, consistent with the tropical time series in Figures 6 and 7. Smaller variability is expected
for the amip ensemble mean, which averages out internal atmospheric variability. The HIRS infrared and MW
UTH records also display smaller magnitude and consistent variability.
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Figure 9. Detrended linear regression between relative humidity and surface temperature (d{RH/dTs) with pressure level and
at the surface for tropical (a) oceans and (b) land over 1988-2014 for amip and CMIP historical model experiments, ERAS
and HadISDH surface observations, AIRS satellite observations (2002-2014, horizontal lines depict 90% confidence range)
and upper tropospheric humidity estimates from infra-red (HIRS, 1988-2014) and microwave (MW, from 1999) satellite
estimates (90% confidence ranges).

Variability in ERAS 300-500 hPa RH is characterized by negative tropical anomalies and positive high lati-
tude anomalies before ~2002 (Figure 8b) and this explains positive tropical and negative high latitude trends
greater in magnitude than 0.5% RH per decade that are not apparent in other data sets (Figure 8). This possible
discontinuity could relate to the introduction of AMSU microwave instruments into ERAS after 1998 (Hersbach
et al., 2020). There is an indication of negative RH trends up to —0.5%/decade at around 40°S in amip and
historical experiments (1979-2014) and HIRS (1979-2020) observations (Figure 8, right panels). Reductions
in subtropical humidity have been linked with expansion of the Hadley circulation with greenhouse gas induced
warming (Lau & Kim, 2015), though observed drying is weak and restricted to the poleward edge of the southern
winter-hemispheric dry belt in infrared measurements (Tivig et al., 2020) and are not present in the MW record
since 1999 (Figure 8d).

Finally, the sensitivity of RH throughout the tropical troposphere to interannual variability in surface temper-
ature (from HadCRUTSYS) is estimated based on detrended linear regression (Figure 9). RH generally decreases
with warming over interannual time-scales apart from near the surface in AIRS and HadISDH-ERAS data. The
response of RH to interannual temperature variability is generally small (0 to —2%/K) over land in all data sets.
Near-surface relative humidity decreases over tropical land in warmer years in model simulations (~—1%/K) and
ERAS (~— 0.5%/K) but not in HadISDH observations. Upper tropospheric RH tends to decrease with warming
over tropical oceans at around —1 to —3%/K. AIRS and ERAS also depict a drying in response to warming at
around 700 hPa which is not reproduced by the amip or historical simulations. Overall, the response of rela-
tive humidity to interannual variability and long term warming is small in relation to its effect on the radiative
feedbacks (Forster et al., 2021). Therefore, the combined temperature lapse rate and specific humidity feedback
dominate, strongly amplifying climate change (trapping ~1.3 Wm~2 more heat for each K of warming).

4. Conclusions

Global changes in tropospheric water vapor since 1979 are assessed across a range of observations, a reanalysis,
and climate model simulations. The main conclusions are:

1. Increases in moisture since 1979 are identified throughout the troposphere across multiple data sets and simu-
lations. Global-mean column integrated water vapor increased by 1%/decade during 1988-2014 in micro-
wave satellite observations and atmosphere-only amip simulations. Combined with an observed global surface
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warming trend of 0.17 K/decade, this equates to global moisture increases with warming of ~6%/K, close to,
but slightly lower than, that expected from the Clausius Clapeyron equation. Tropospheric moisture increases
are consistent with a strongly amplifying water vapor feedback in agreement with previous work (Colman &
Soden, 2021; Forster et al., 2021; Soden et al., 2005).

2. Coupled climate model historical simulations overestimate 1988—2014 water vapor trends by up to a factor of
two compared with amip simulations and some of the observations-based data sets. This is partly explained
by observed internal variability which suppressed warming, and therefore also moistening rates, during the
1998-2012 period (Kosaka & Xie, 2013; Mitchell et al., 2020), though the realism of radiative forcings, the
pattern of warming and climate sensitivity also play a role (Forster et al., 2021).

3. Increases in global mean 2 m specific humidity from 1988 to 2014 in amip simulations (~0.8%/decade) are
inconsistent with the HadISDH observations and the ERAS reanalysis. For ERAS, this discrepancy is coin-
cident with declining column integrated water vapor over the tropical oceans before 1993 that is inconsistent
with SSM/I and SMMR microwave satellite measurements and amip simulations and partly explained by
inhomogeneities in the observing system (Allan et al., 2020; Hersbach et al., 2020). Longer term decreases in
near-surface water vapor over the Southern Hemisphere in HadISDH (1979-2014) are at odds with the ERAS
reanalysis and simulations. HadISDH also does not display near-surface relative humidity decreases over
tropical land in warmer years shown in model simulations (~—1%/K) and ERA5 (~—0.5%/K) and as expected
from drier El Nifio conditions over tropical land (Trenberth & Shea, 2005). Caution is therefore required in
interpreting an apparent underestimate in relative humidity decline over land by simulations compared to
HadISDH (Dunn et al., 2017).

4. Robust increases in upper tropospheric water vapor over time, of around 2% per decade at 400 hPa in amip
simulations and ERAS, are larger than lower tropospheric %/decade moisture changes. This is well understood
based on the Clausius Clapeyron temperature dependence of moisture response to warming and amplified
atmospheric warming aloft due to radiative convective balance, particularly over tropical oceans (Held &
Soden, 2006; Ohmura, 2012). This is consistent with small changes in upper tropospheric relative humidity
from satellite observations, which strengthens past assessments (e.g., Soden et al., 2005). Increases in upper
tropospheric water vapor since 2002 in the AIRS satellite observations are weaker than ERAS and model
simulations.

5. Global mean near-surface water vapor increases by about 5% per K increase in surface temperature over
interannual time-scales across all data sets. A larger sensitivity of 10%—15% increase in 300 hPa water vapor
per K increase in surface temperature is primarily related to changes over the tropical ocean and explained by
thermodynamic amplification of upper tropospheric temperature changes and the Clausius Clapeyron temper-
ature dependence of saturation vapor pressure, as known from previous work (Dessler et al., 2008; Held &
Soden, 2006). These responses are not apparent for land over interannual times-scales with temperature lapse
rate increases for warmer years and %/K moisture responses similar in magnitude to the surface. AIRS satellite
measurements since 2002 appear to underestimate the 600—700 hPa water vapor responses to surface temper-
ature and this is dominated by tropical ocean relative humidity variability.

6. Climate models with larger upper tropospheric temperature changes also simulate stronger upper tropo-
spheric water vapor changes. The range of warming rates reflect internal climate variability which dominates
coupled model water vapor responses and trends over time periods less than 30 yr. This is not the case for
corresponding uncoupled SST-constrained amip simulations where differences in tropospheric temperature
and moisture responses relate more directly to the model parametrizations and merits further analysis. The
MRI-ESM2 model simulates the smallest water vapor responses to observed (amip) surface temperature vari-
ability (3.2%/K at the surface, 6.2% per K surface temperature change at 400 hPa) while the CNRM models
simulate among the largest responses (>4%/K at the surface, >11% per K surface temperature change at
400 hPa), partly explained by the stronger interannual tropospheric temperature responses to surface warming
in the CNRM simulations. The CNRM models also simulate a relatively dry near-surface layer compared to
other models, though similar to observation-based estimates, and weaker than ensemble average trends in
near surface water vapor. This underlines the contrasting behavior between interannual and multi-decadal
responses and between lower and higher altitudes.

In summary, tropospheric water vapor changes at the global scale since 1979 are consistent with a powerfully
amplifying water vapor feedback based on observations-based products and the latest CMIP6 climate model
simulations, as anticipated from a strong physical basis and multiple lines of evidence (Colman & Soden, 2021;
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Forster et al., 2021). Discrepancies in moisture trends across data sets are strongly influenced by tropical ocean
relative humidity. These trends are susceptible to inhomogeneities in the observational records that also deter-
mine unrealistic global-scale responses represented by reanalysis products such as ERAS. Future improvements
in these records will further aid the evaluation and improvement of model parametrizations and coupled behavior
compared to the real world.
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