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Abstract

We describe efficient algorithms for projecting a
vector onto the¢/;-ball. We present two methods
for projection. The first performs exact projec-
tion in O(n) expected time, where is the di-
mension of the space. The second works on vec-
tors k of whose elements are perturbed outside
the ¢;-ball, projecting inO(k log(n)) time. This
setting is especially useful for online learning in
sparse feature spaces such as text categorization
applications. We demonstrate the merits and ef-
fectiveness of our algorithms in numerous batch
and online learning tasks. We show that vari-
ants of stochastic gradient projection methods
augmented with our efficient projection proce-
dures outperform interior point methods, which
are considered state-of-the-art optimization tech-
niques. We also show that in online settings gra-
dient updates witlf; projections outperform the
exponentiated gradient algorithm while obtain-
ing models with high degrees of sparsity.

but mathematically equivalent approach is to cast the prob-
lem as aconstrained optimization problem. In this setting
we seek a minimizer of the objective function while con-
straining the solution to have a bounded norm. Many re-
cent advances in statistical machine learning and related
fields can be explained as convex optimization subject to
a 1-norm constraint on the vector of parametets Im-
posing an/; constraint leads to notable benefits. First, it
encourages sparse solutions,a solution for which many
components ofv are zero. When the original dimension
of w is very high, a sparse solution enables easier inter-
pretation of the problem in a lower dimension space. For
the usage of;-based approach in statistical machine learn-
ing see for example (Tibshirani, 1996) and the references
therein. Donoho (2006b) provided sufficient conditions for
obtaining an optimad; -norm solution which is sparse. Re-
cent work on compressed sensing (Candes, 2006; Donoho,
20064a) further explores hody constraints can be used for
recovering a sparse signal sampled below the Nyquist rate.
The second motivation for using constraints in machine
learning problems is that in some cases it leads to improved
generalization bounds. For example, Ng (2004) examined
the task of PAC learning a sparse predictor and analyzed
cases in which ai; constraint results in better solutions

1. Introduction than an, constraint.

A prevalent machine learning approach for decision andn this paper we re-examine the task of minimizing a con-
prediction problems is to cast the learning task as penakex function subject to a; constraint on the norm of
ized convex optimization. In penalized convex optimiza-the solution. We are particularly interested in cases where
tion we seek a set of parameters, gathered together in e convex function is the average loss over a training
vectorw, which minimizes a convex Objective function in set of m examp|es where each examp|e is represented as
w with an additional penalty term that assesses the comg vector of high dimension. Thus, the solution itself is
plexity of w. Two commonly used penalties are the 1- 3 high-dimensional vector as well. Recent work &n
norm and the square of the 2-normwf An alternative  constrained optimization for machine learning indicates
that gradient-related projection algorithms are more effi-
cient in approaching a solution of good generalization than
second-order algorithms when the number of examples and

Appearing inProceedings of the 25" International Conference
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Efficient Projections onto the/;-Ball for Learning in High Dimensions

the dimension are large. For instance, Shalev-Shwartdata (the MNIST handwritten digit dataset and the Reuters
et al. (2007) give recent state-of-the-art methods for-solvRCV1 corpus) for batch and online learning. Our projec-
ing large scale support vector machines. Adapting theséon based methods outperform competing algorithms in
recent results to projection methods onto fhéall poses terms of sparsity, and they exhibit faster convergence and
algorithmic challenges. While projections orftoballs are  lower regret than previous methods.

straightforward to implement in linear time with the ap-

propriate data structures, projection onto @anball is a 2. Notation and Problem Setting

more involved task. The main contribution of this paper is

the derivation of gradient projections with domain con-  We start by establishing the notation used throughout the
straints that can be performed almost as fast as gradiepaper. The set of integetsthroughn is denoted byn].
projection with?, constraints. Scalars are denoted by lower case letters and vectors by

. o - — lower case bold face letters. We use the notation- b
Our starting point is an efficient method for projection onto :
to designate that all of the componentsvwefare greater

the probabilistic simplex. The basic idea is to show that’thanb. We usel - || as a shorthand for the Euclidean norm

after sorting the vector we need to project, it is possible tcm [|». The other norm we use throughout the paper isithe
calculate the projection exactly in linear time. This ideanoerﬁ of the vector|v|, = S, |u;]. Lastly, we consider
1 =117l ’

was rediscovered multiple times. It was first described in . .

: order statistics and sorting vectors frequently throughou
an abstract and somewhat opaque form in the work of Gafnj, . h

is paper. To that end, we let;) denote thei*” order

and Bertsekas (1984) and Bertsekas (1999). Crammer anS Ltistic ofv. that is N - > v for v € R™
Singer (2002) rediscovered a similar projection algorithm : ) =@ = 2 V) '
as a tool for solving the dual of multiclass SVM. Hazan In the setting considered in this paper we are provided with
(2006) essentially reuses the same algorithm in the cona convex functionL : R®™ — R. Our goal is to find the
text of online convex programming. Our starting point is minimum of L(w) subject to ar{;-norm constraint orw.
another derivation of Euclidean projection onto the sim-Formally, the problem we need to solve is
plex that paves the way to a few generalizations. First we
show that the same technique can also be used for project- mingnize L(w) st |w]; <z . (@)
ing onto thel; -ball. This algorithm is based on sorting the

components of the vector to be projected and thus requires,r focus is on variants of the projected subgradient
O(nlog(n)) time. We next present an improvement of the method for convex optimization (Bertsekas, 1999). Pro-
algorithm that replaces sorting with a procedure resergblin je ctaq subgradient methods minimize a functicw) sub-
median-search whose expected time complexity (is). ject to the constraint that € X, for X convex, by gener-

In many applications, however, the dimension of the featuréting the sequencew (")} via

space is very high yet the number of features which attain

non-zero values for an example may be very small. For in- wittD) = Iy (w(t) — ntV(t)) )
stance, in our experiments with text classification in Sec. 7

the. dimension is two million (the bigram diCtionary Size) WhereV(t) is (an unbiased estimate of) the (sub)gradient
while each example has on average on_e—thousand Non-zegp 1, at w'*) andIly(x) = argmin y{||x — y|| | y €
features (the number of unique tokens in a document). Ap- i o

plications where the dimensionality is high yet the numberX } IS Euclidean projection ot onto X. In the rest of the

of “on” features in each example is small render our second@Per, the main algorithmic focus is on the projection step

algorithm useless in some cases. We therefore shift geaf§OMPUting an unbiased estimate of the gradieri(of) is
and describe a more complex algorithm that employs regstraightforward in the applications considered in thisgrap

black trees to obtain a linear dependence on the numbélS IS the modification o) by V(1)).
of non-zero features in an example and only logarithmic
dependence on the full dimension. The key to our con-3. Euclidean Projection onto the Simplex

struction lies in the fact that we project vectors that aee th . o ) ]
sum of a vector in thé -ball and a sparse vector—they are For clarity, we begin with the task of performing Euclidean
“almost” in the/; -ball. projection onto the positive simplex; our derivation natu-

rally builds to the more efficient algorithms. As such, the

In conclusion to the paper we present experimental resultgost basic projection task we consider can be formally de-
that demonstrate the merits of our algorithms. We compargcribed as the following optimization problem,

our algorithms with several specialized interior point)(IP

methods as well as general methods from the literature for "

solving ¢;-penalized problems on both synthetic and real ,;,inimize 1\\W—V||§ s.t. Zwt =z, w;>0.(3)
W 2 I -

=1
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Whenz = 1 the above is projection onto the probabilistic | |NpuT A vectorv € R™ and a scalat > 0
simplex. The Lagrangian of the problem in Eq. (3) is Sortvinto g : iy > pg > ... > pp
1 " ;
L(w,¢) = 2|w—v||2+9(2wi—z>—c~w, Fmdp=max{ﬂe (Zm—z)ﬂ)}
=1 P
whered € R is a Lagrange multiplier and € R” is a Defined = 2 (Z i — z)
vector of non-negative Lagrange multipliers. Differenti- _ j
ating with respect tOUL and comparing to zero gives the | OUTPUT w S.t.w; = max {v; — 6, 0}

optimality condition, dw = wi—vi+0-¢ = 0.

The complementary slackness KKT condition implies that

wheneverw; > 0 we must have thaf; = 0. Thus, if 4, Euclidean Projection onto the/;-Ball
w; > 0 we get that

Figure 1.Algorithm for projection onto the simplex.

We next modify the algorithm to handle the more general
w; = v —0+¢G = v, —0. (4)  ¢,-norm constraint, which gives the minimization problem

All the non-negative elements of the vecterare tied via
a single variable, so knowing the indices of these elements
gives a much simpler problem. Upon first inspection, find-
ing these indices seems difficult, but the following lemma.
(Shalev-Shwartz & Singer, 2006) provides a key tool in de-
riving our procedure for identifying non-zero elements.

minimize ||w —v|3 st |[w|; <z . @)
weR”?

We do so by presenting a reduction to the problem of pro-
jecting onto the simplex given in Eq. (3). First, we note
‘that if |[v||; < z then the solution of Eq. (7) isv = v.
Therefore, from now on we assume ttjat|; > z. In this
Lemma 1. Let w be the optimal solutiontotheminimiza-  case, the optimal solution must be on the boundary of the
tion problemin Eq. (3). Let s and j be two indices such  constraint set and thus we can replace the inequality con-
that v > v;. If ws = 0 then w; must be zero as well. straint||w||; < z with an equality constrainfw]||; = z.
Having done so, the sole difference between the problem
in Eg. (7) and the one in Eq. (3) is that in the latter we
have an additional set of constraintg,> 0. The follow-

ing lemma indicates that each non-zero component of the
optimal solutionw shares the sign of its counterpartin

Denoting by! the set of indices of the non-zero compo-
nents of the sorted optimal solutioh,= {i € [n] : vy >
0}, we see that Lemma 1 implies that= [p] for some

1 < p < n. Had we knowrp we could have simply used

Eq. (4) to obtain that
Lemma 3. Let w be an optimal solution of Eq. (7). Then,

) 0 ) :
iwi:iw(i)zz Z V() _9 for all 7, w; v; > 0.
i=1 i=1 i=1 i—1

Proof. Assume by contradiction that the claim does not

and therefore hold. Thus, there exists for which w; v; < 0. Letw

1/ be a vector such that; = 0 and for allj # i we have
0= - > v -2 (®)  w; = w;. Therefore||w||; = ||w||; — |w;| < z and hence
i=1 w is a feasible solution. In addition,
Givend we can characterize the optimal solution fotas R
W=Vl =W =vI3 = (wi—v)*~(0-v)
w; = max{v; —60, 0} . (6) = w?— 2w >w:>0 .

We are left with the problem of finding the optimal and
the following lemma (Shalev-Shwartz & Singer, 2006) pro-
vides a simple solution once we serin descending order.

Lemma 2. Let w be the optimal solution to the minimiza-
tion problem given in Eq. (3). Let u denote the vector ob-
tained by sorting v in a descending order. Then, the num-
ber of strictly positive elementsin w is

We thus constructed a feasible solutrwhich attains an
objective value smaller than that @f. This leads us to the
desired contradiction. O

Based on the above lemma and the symmetry of the ob-
jective, we are ready to present our reduction. tdie a
vector obtained by taking the absolute value of each com-

1 (i ) } ponent ofv, u; = |v;|. We now replace Eq. (7) with
- = wr—21 >0

z, = max{j € n
e {j " migimize 8w} st 8l <= and 820 @

The pseudo-code describing then logn) procedure for  Once we obtain the solution for the problem above we con-
solving Eq. (3) is given in Fig. 1. struct the optimal of Eq. (7) by setting; = sign(v;) ;.
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INPUT A vectorv € R™ and a scalat > 0 2001). The algorithm computes partial sums just-in-time

INITIALIZE U = [n] s=0 p=0 and has expected linear time complexity.

WHILE U # ¢ The algorithm identifiep and the pivot value,, without
PICK k € U atrandom sorting the vector by using a divide and conquer proce-
PARTITION U: dure. The procedure works in rounds and on each round

G = {3_ €U [vj > vy} either eliminates elements shown to be strictly smallen tha
L={jeUlv; <} v(,) Or updates the partial sum leading to Eg. (9). To do so
CALCULATE Ap = |G| ; As= Z Uj the algorithm maintains a set of unprocessed elements of
IF(s+As) = (p+ Ap)op, <z 7€C v. This set contains the componentswofvhose relation-
s=s+As : p=p+Ap ; UL ship tov,) we do not know. We thus |r_1|t|ally séf = [n]. _
ELSE On each round of the algorithm we pick at random an in-
U~ G\ {k} dex k from the setU. Next, we partition the sel/ into
ENDIE two subsets7 and L. G contains all the indiceg € U
SETO=(s—2)/p whose F:omponentzs,» > vy; L contains thosg € U such
OUTPUT W S.t.v; = max {v; — 0, 0} thatv; is smaller. We now face two cases related to the
current summation of entries ¥ greater than the hypoth-
Figure 2.Linear time projection onto the simplex. esizedv(, (i.e. vx). If Zj:ujzuk (v; —vg) < z then by

. . . . EQ. (9),vx > v(,. In this case we know that all the el-
5. ALinear Time Projection Algorithm ements inG participate in the sum defininfgas given by

In this section we describe a more efficient algorithm forEd. (9). We can discard' and setU to be L as we still
performing projections. To keep our presentation simple€€ed to further identify the remaining elements/in If

and easy to follow, we describe the projection algorithm>_j.,, >, (vj — vk) = z then the same rationale implies
onto the simplex. The generalization to the ball can thatvy, < v(,). Thus, all the elements ih are smaller than
straightforwardly incorporated into the efficient algbrit () and can be discarded. In this case we can remove the
by the results from the previous section (we simply workSetL andv, and setV to beG \ {k}. The entire process

in the algorithm with a vector of the absolute valuessof ~ €nds wherl/' is empty.

replacing the solution's components with sign(v;) - w:).  aAlong the process we also keep track of the sum and the

For correctness of the following discussion, we add annumber of elements iwv that we have found thus far to
other component te (the vector to be projected), which Pe no smaller tham,), which is required in order not to
we set to0, thusv,;; = 0 andv(,1) = 0. Letus recalculate partial sums. The pseudo-code describing the
start by examining again Lemma 2. The lemma impliesefficient projection algorithm is provided in Fig. 2. We
that the indexp is the largest integer that still satisfies keep the set of elements found to be greater thgnonly

vy — 2 (X0, vy —2) > 0. After routine algebraic implicitly. Formally, at each iteration of the algorithm we

o p \Lur= . ; ’ K . . . . .

manipulations the above can be rewritten in the followingmaintain a variable, which is the sum of the elements in

somewhat Simp]er form: the Set{’U]‘ : ] ¢ U, Vj > U(p)}, and Overloa¢ to des-
ignate the cardinality of the this set throughout the algo-
P p+1 rithm. Thus, when the algorithms exits its main while loop,
> (ve) =) <z and Y (v@) —vpe1) =2 (9)  pis the maximizer defined in Lemma 1. Once the while
i=1 i=1 loop terminates, we are left with the task of calculatéhg

using Eqg. (10) and performing the actual projection. Since
> jw; >, Ui is readily available to us as the variableve
simply setd to be(s — z)/p and perform the projection as
g1 Z . (10) prescribed by Eq. (6).

G0 20 (p) Though omitted here for lack of space, we can also extend

o o the algorithms to handle the more general constraint that
The task of projection can thus be distilled to the task ofs~ . 1,,| < 2 for a; > 0.

finding #, which in turn reduces to the task of findipand

the pivot element,). Our problem thus resembles the .. L .
task of finding an order statistic with an additional compli- 6. Efficient Projection for Sparse Gradients

cating factor stemming from the need to compute summagefore we dive into developing a new algorithm, we re-

tions (while searching) of the form given by Eq. (9). Our ming the reader of the iterations the minimization algo-

efficient projection algorithm is based on a modification of yjthm takes from Eq. (2): we generate a sequefwé’)}
the randomized median finding algorithm (Cormen et al.,

Givenp andv(,y we slightly rewrite the valué as follows,
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INPUT A balanced tred and a scalat > 0 step in which we dedudi, from all the elements of the
INITIALIZE v* =00, p* =n+1,s* = 2 vectorimplicitly, adhering to the goal of performing a sub-
CALL PIvOTSEARCH(root(7), 0, 0) linear number of operations. As before, we assume that the
PROCEDUREPIVOT SEARCH(v, p, 5) goal is to project onto the simplex. Equipped with these
COMPUTE p=p+r(v); §=s+0c(v) variables, thg'*" component of the projected vector after
IF§<wvp+2z Ilv>pivot projected gradient steps can be writtemas{v; —©;,0}.
IF v‘: > v . The second substantial modification to the core algorithm is
V=0p =P8 =S to keep only theon-zero components of the weight vector
ENDIF in ared-black tree (Cormen et al., 2001). The red-black tree
IF leaf (v) facilitates an efficient search for the pivot element) in
RETURN 0 = (s* — z)/p* time which is logarithmic in the dimension, as we describe
ENDIF o in the sequel. Once the pivot element is found we implic-
CALL PIvoTSEARCH(left,(v), p, 8) itly deducté, from all the non-zero elements in our weight
ELSE /v < pivot vector by updating,. We then remove all the components
IF leaf (v) that are less than,) (i.e. less thar®,); this removal is
ENEIIEFTURN 0= (s"=2)/p" efficient and requires only logarithmic time (Tarjan, 1983)
CALL PIvoTSEARCH(right (v), p, s) The course of.the algorithm is as follows. Aftgprojected
ENDIF gradient iterations we have a vectdt) whose non-zero el-
ENDPROCEDURE ements are stored in a red-black tEend a global deduc-
tion value®, which is applied to each non-zero component

Figure 3.Efficient search of pivot value for sparse feature spacesjust-in-time,i.e. when needed. Therefore, each non-zero
weight is accessed as — ©, while 7 does not contain the

by iterating - .
zero elements of the vector. When updatingith a gradi-
G (W(t) n g(t)) ent, we modify the vectov® by adding to it the gradient-
based vectog(®) with k& non-zero components. This update
whereg® = —, VO, W = {w | |wll, < =} andILy is is done usingk deletions (removing; from 7 such (ttr;at

gi(t) # 0) followed by k re-insertions o} = (v; + ¢; )
o ) ) into 7, which takesO(klog(n)) time. Next we find in

In many gpphcatlons the dimension of the fe_ature SPace)(1og(n)) time the value of,. Fig. 3 contains the algo-
is very high yet the number of features which attain ajthm for this step; it is explained in the sequel. The last
non-zero value for each example is very small (see for ingiep removes all elements of the new raw veetdr + g(*)

stance our experiments on text documents in Sec. 7). It i§hich become zero due to the projection. This step is dis-
straightforward to implement the gradient-related upslate -,ssed at the end of this section.

in time which is proportional to the number of non-zero i
features, but the time complexity of the projection algo-IN contrast to standard tree-based search procedure, to find
rithm described in the previous section is linear in the di-¢: We need to find a pair of consecutive valuesvirthat
mension. Therefore, using the algorithm verbatim could becorrespond tay,) andv(, ). We do so by keeping track
prohibitively expensive in applications where the dimen-Of the smallest element that satisfies the left hand side of
sion is high yet the number of features which are “on” in EQ- (9) while searching based on the condition given on the
each example is small. In this section we describe a protight hand side of the same equatidnis keyed on the val-
jection algorithm that updates the vectof?) with g(t) and ~ U€s of the un-shifted vectsr,. Thus, all the children in the
scales linearly in the number of non-zero entriegéfand  1€ft (right) sub-tree of a noderepresent values i, which

only logarithmically in the total number of features.¢  are smaller (larger) tham In order to efficiently find), we
non-zeros inw(®). keep at each node the following information: (a) The value

of the component, simply denoted@as(b) The number of
The first step in facilitating an efficient projection forspa&  gjements in the right sub-tree rootecbatienoted(v), in-
feature spaces is to represent the projected vector as & "ra"&luding the node. (c) The sum of the elements in the right
vectorv by incorporating a global ghift that is appligd 10 sub-tree rooted at, denoteds(v), including the valuey
each non-zero component. Specifically, each projectiofyself. Our goal is to identify the pivot element,) and its
step amounts to deductirgfrom each component of  jndex . In the previous section we described a simple con-
and thresholding the result at zero. Let us denoté;lile  jtion for checking whether an elementnis greater or
shift value used on thé" iteration of the algorithm and by - gmajler than the pivot value. We now rewrite this expres-

O, the cumulative sum of the shift values, = > ., 6. sjon yet one more time. A component with valués not
The representation we employ enables us to perform the

projection onto this set.
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smaller than the pivot iff the following holds:

——Coordinate
——L1 - Batch
——L1 - Stoch
—IP

—— Coordinate
L1 - Line

——L1 - Batch

——L1 - Stoch

Zvj >NHjiv; >v}-v+z. (11

jv;>v

The variables in the red-black tree form the infrastruct
for performing efficient recursive computation of Eq. (1:
Note also that the condition expressed in Eq. (11) still &0 e SN it
when we danot deduct®, from all the elements in. Approximate Flops Approximate Flops

. L . Figure 4. Comparison of methods dh-regularized least squares.
The search algorithm maintains recursively the number 1nq |eft has dimension — 800. the rightn = 4000

and the suns of the elements that have been shown to be

greater or equal to the pivot. We start the search with thenethods for both least squares and logistic regression (Koh
root node of7, and thus initiallyp = 0 ands = 0. Upon et al., 2007; Kim et al., 2007). The algorithms we use are
entering a new node, the algorithm checks whether the batch projected gradient, stochastic projected subgngdie
condition given by Eq. (11) holds far. Sincep ands were  and batch projected gradient augmented with a backtrack-
computed for the parent of, we need to incorporate the ing line search (Koh et al., 2007). The IP and coordinate-
number and the sum of the elements that are largerthan wise methods both solve regularized loss functions of the
itself. By construction, these variables af@) ando(v),  form f(w) = L(w) + A|w||; rather than having a#; -
which we store at the nodeitself. We letp = p+ r(v)  domain constraint, so our objectives are not directly com-
ands = s+ o(v), and with these variables handy, Eq. (11) parable. To surmount this difficulty, we first minimize
distills to the expressiof < vj+z. If the inequality holds, L(w)+\||w||; and use the 1-norm of the resulting solution
we know thatv is either larger than the pivot or it may be w* as the constraint for our methods.

the pivot itself. We thus update our current hypothesis fo
1, andp (designated as* andp* in Fig. 3). We continue
searching the left sub-tree (leftv)) which includes all el-
ements smaller than. If inequality § < vp + z does not

i S

"To generate the data for the least squares problem setting,
we chose av with entries distributed normally with 0 mean
and unit variance and randomly zeroed 50% of the vector.
The data matrixX € R™*" was random with entries also

hold, we know that < p,, and we thus search the right o
) ) normally distributed. To generate target values for thetlea
subtree (right(v)) and keepp ands intact. The process
squares problem, we sgt = Xw + v, where the com-

naturally terminates once we reach a leaf, where we can o
also calculate the correct value®fising Eq. (10). ponents ofv were also distributed normally at random. In

the case of logistic regression, we generated datand
Once we findd, (if 6, > 0) we update the global shift, the vectorw identically, but the targets; were set to be
O:11 = O + 6;. We need to discard all the elements in sign(w - x;) with probability 90% and to-signw - x;)

7T smaller than9,, 1, which we do using Tarjan’s (1983) otherwise. We ran two sets of experiments, one each for
algorithm for splitting a red-black tree. This step is log- n = 800 andn = 4000. We also set the number of ex-
arithmic in the total number of non-zero elementsvef  amplesm to be equal tow. For the subgradient methods
Thus, as the additional variables in the tree can be updatad these experiments and throughout the remainder, we set
in constant time as a function of a node’s child nodes imy; = 7y/+/t, choosingy, to give reasonable performance.
T, each of the operations previously described can be pe(s, too large will mean that the initial steps of the gradient
formed in logarthmic time (Cormen et al., 2001), giving us method are not descent directions; the noise will quickly
a total update time o (k log(n)). disappear because the step sizes are proportionghte).

] Fig. 4 and Fig. 5 contain the results of these experiments
7. Experiments and plot f(w) — f(w*) as a function of the number of
{!oating point operations. From the figures, we see that the

We now present experimental results demonstrating the ef- " ;
fectiveness of the projection algorithms. We first report re projected sgbgradlent methods are generally very faseat th
: outset, getting us to an accuracyfdfv) — f(w*) < 1072

sults for experiments with synthetic data and then move tg_ . ; .
. L . . quickly, but their rate of convergence slows over time. The
experiments with high dimensional natural datasets.

fast projection algorithms we have developed, however, al-
In our experiment with synthetic data, we compared variH{ow projected-subgradient methods to be very competitive
ants of the projected subgradient algorithm (Eq. (2)) forwith specialized methods, even on these relatively small
¢1-regularized least squares afidregularized logistic re- problem sizes. On higher-dimension data sets interiortpoin
gression. We compared our methods to a specializechethods are infeasible or very slow. The rightmost graphs
coordinate-descent solver for the least squares problem dun Fig. 4 and Fig. 5 plotf(w) — f(w™*) as functions of

to Friedman et al. (2007) and to very fast interior pointfloating point operations for least squares and logistic re-
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L1 - Line 0
. \ ——L1 - Batch
o ——L1 - Stoch

1P

——L1 - Stoch
—=—L1-Full
——EG - Full
EG - Stoch

——L1 - Batch
——L1 - Stoch
—IP e

*****
*****
e,

0% —a

05 1 15

50 400 450

5 5 55 s 3 00 15 200 250 300 3
Time (CPU seconds)

Approximate Flops Y7 approdmate Flops” | e " Time (CPU seconds)
Figure 5. Comparison of methods ofi -regularized logistic re-  Figure 6. EG and projected subgradient methods on RCV1.
gression. The left has dimensien= 800, the rightrn. = 4000

mensional spaces, and it very quickly identifies and shrinks
gression with dimension = 4000. These results indicate weights for irrelevant features (Kivinen & Warmuth, 1997).
that in high dimensional feature spaces, the asymptoficall At every step of EG we update
faster convergence of IP methods is counteracted by their
guadratic dependence on the dimension of the space. (t+1) w§” exp (_ntvif(w(t)))

w; = Z, (13)

We also ran a series of experiments on two real datasets
with hlgh dimensionality: the Reuters RQVl Cpr- where Z, normalizes so tha", wl(tﬂ) — zandV,f
pus (Lewis et al., 2004) and the MNIST handwritten d'g'ts_denotes the'" entry of the gradient off, the function

database. The Reuters Corpus has 804,414 examples; ng be minimized. EG can actually be viewed as a pro-
simple stemming and stop-wording, there are 112,919 uni-

. ’ ected subgradient method using generalized relative en-
gram features and 1,946,684 bigram features. With our prét—ropy (D(x]ly) = 3, z:log & — , + y;) as the distance
i} Yi ) )

processing, the unigrams have a sparsity of 1.2% and the bﬂ]nction
grams have sparsity of .26%. We perfornfeetonstrained replaceV; f with ¥, f in Eq. (13), an unbiased estimator

binary logistic regression on the CCAT category from of the gradient off, to get stochastic EG. A step sizggox

RCV1 (classifying a document as corporate/industrial) US'l/\/g guarantees a convergence ratext /log n/T). For

ing unigrams in a batch setting and bigrams in an online Setyach experiment with EG, however, we experimented with

ting. The MNIST dataset consists of 60,000 training exam, ming rates proportional to/t, 1/+/, and constant, as
ples and a 10,000 example test set and has 10-classes; eggly as different initial step-sizes; to make EG as competi-

image is a gray-scale8 x 28 image, which we represent as tive as possible, we chose the step-size and rate for which

. 784 i i
x; € R Rather than dllrectly use the_ inpuf, however, EG performed best on each individual test..
we learned weightsv; using the following Kernel-based

for projections (Beck & Teboulle, 2003). We can

“similarity” function for each clasg € {1,...,10}: Results for our batch experiments learning a logistic ¢lass
fier for CCAT on the Reuters corpus can be seen in Fig. 6.

, 1 ify; =4 : - - . )

k(x,5) = Zw]‘io—jiK(Xi,X), i = { . Ot}l{erwée The_ figure plots the bln_ary logistic loss of the o_llfferent al
pry . gorithms minus the optimal log loss as a function of CPU

_ _ _ time. On the left side Fig. 6, we used projected gradient
In the above,K is a Gaussian kernel function, so that descent and stochastic gradient descent using 25% of the
K(x,y) = exp(—|)x — y|[?/25), andS is a 2766 element  training data to estimate the gradient, and we used the al-
support set. We put afi constraint on e’c_ICin, giving us  gorithm of Fig. 2 for the projection steps. We see that
the foIIowmg multiclass objectlve with dimension 27,660: projections outperform EG both in terms of convergence
speed and empirical log-loss. On the right side of the fig-
minimizey, + Y7 log (143 . k(i) —k(xiy:) i i ini
W 2ai=1 108 r£Y; ure, we performed stochastic descent using only 1 training
st |lwjlli < z,w; = 0. example or 100 training examples to estimate the gradient,
(12)  using Fig. 3 to project. When the gradient is sparse, up-
. . . dates for EG ar@ (k) (wherek is the number of non-zeros
As a comparison to our projected subgradient methods on

real data, we used a method known in the literature as eithép the gradient), so EG has a run-time advantage éyer

) . . rojections when the gradient is very sparse. This advan-
entropic descent, a special case of mirror descent (Beck . 0e can be seen in the riaht side of Eia. 6
Teboulle, 2003), or exponentiated gradient (EG) (Kivinen 9 9 9.
& Warmuth, 1997). EG maintains a weight vectersub-  For MNIST, with dense features, we ran a similar series
ject to the constraint that ", w; = z andw > 0; it can  of tests to those we ran on the Reuters Corpus. We plot
easily be extended to work with negative weights under ahe multiclass logistic loss from Eq. (12) over time (as a
1-norm constraint by maintaining two vectors™ andw . function of the number gradient evaluations) in Fig. 7. The
We compare against EG since it works well in very high di- left side of Fig. 7 compares EG and gradient descent using
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