Dov Dori

Model-Based Systems
Engineering with
OPMand SysML

Model-Based Systems Engineering with OPM and SysML

Dov Dori

Model-Based Systems Engineering
with OPM and SysML

Foreword by Edward Crawley

@ Springer

Dov Dori
Technion, Israel Institute of Technology
Haifa, Israel

Massachusetts Institute of Technology
Cambridge, MA, USA

Chapter slides and end-of-chapter Q&As can be found at http://esml.iem.technion.ac.il/qanswer/

ISBN 978-1-4939-3294-8 ISBN 978-1-4939-3295-5 (eBook)
DOI 10.1007/978-1-4939-3295-5

Library of Congress Control Number: 2015954175

Springer New York Heidelberg Dordrecht London

© Springer Science+Business Media New York 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any
other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in
the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free
for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and
accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with
respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer Science+Business Media LLC New York is part of Springer Science+Business Media (Www.springer.com)

http://esml.iem.technion.ac.il/qanswer/

Foreword

Architecting and engineering large, complex socio-technical systems, as well as gaining deep
understanding of existing natural and man-made systems, have eluded people for many years. Our
thinking about systems and their role in improving humans’ quality of life has evolved over the last two
decades. We now understand better that successful systems do not materialize in a haphazard way.
Rather, they must be carefully architected just like edifices, accounting for the needs, wants and
requirements of their intended beneficiaries, and alternative architectures—ways in which these desired
functions are embodied in form. These early decisions are critical to the system-to-be, as they determine
the concept to be followed and consequently the whole direction the system development takes and the
nature of the final outcome: how well the system performs in terms of delivering value, i.e., benefit at
cost, while maintaining the other requirements of safety, robustness, ease of use, environmental
friendliness, and many others.

As I was gaining these insights some 15 years ago, I realized that no matter how convincing your
ideas are, and how compelling are the arguments, there is only so much one can do with preaching and
hand-waving. It became obvious to me that making progress in the area of architecting and engineering
complex systems is contingent upon a solid foundation of language and methodology. It so happened,
that at that time, around year 2000, Dov stepped into my office, the office of the Head of the Aero-Astro
Department at MIT, with a draft of his first book, titled Object-Process Methodology—A Holistic Systems
Paradigm (Springer, 2002). Reading this draft in a plane I immediately understood that what I was
holding in my hands was exactly what I was looking for.

Object-Process Methodology (OPM) is a systems modeling paradigm that represents the two things
inherent in a system: its objects and processes. OPM is fundamentally simple; it builds on a minimal set
of concepts: stateful objects—things that exist, and processes—things that happen and transform objects
by creating or consuming them or by changing their states. This duality is recognized throughout the
community who studies systems, and sometimes goes by labels such as form/function, structure/function,
and functional requirements/design parameters. Objects are what a system or product is. Processes are
what a system does. Yet, it is remarkable that so few modeling frameworks explicitly recognize this
duality. As a result, designers and engineers try to jump from the goals of a system (the requirements or
the “program”) immediately to the objects. Serious theory in such disparate disciplines as software
design, mechanical design and civil architectural design all recognize the value of thinking about
processes in parallel with objects. Not only does OPM represent both objects and processes, but it
explicitly shows the connections between them.

OPM has another fundamental advantage—it represents the system simultaneously in formal graphics
and natural language. The two are completely interchangeable, conveying the exact same information.
The advantage in this approach lies in appreciating the human limitation to the understanding of
complexity. As systems become more complex, the primary barrier to success is the ability of the human
designers and analysts to understand the complexity of the interrelationships. By representing the system
in both textual and graphical form, the power of “both sides of the brain”—the visual interpreter and the
language interpreter—is engaged. These are two of the strongest processing capabilities that are hard-
wired into the human brain. Since each model fact is expressed both graphically and textually, in a subset

vi Foreword

of natural English, it is readily accessible to non-technical stakeholders, enabling them to take part in the
early, critical stages of the system architecting and development, in which the most important decisions
are made.

OPM allows a clear representation of the many important features of a system: its topological
connections; its decomposition into elements and sub-elements; the interfaces among elements; and the
emergence of function from elements. The builder of viewer of the model can view abstractions, or zoom
into detail. One can see how specification migrates to implementation. These various views are
invaluable when pondering the complexity of a real modern product system.

OPM semantics was originally geared towards systems engineering, as it can model information,
hardware, people, and regulation. However, in recent years OPM started to serve also researchers in
molecular biology, yielding tangible published new findings related to the mRNA lifecycle. This is a
clear indication of the universality of the object and process ontology: As it turns out, one can use this
minimal set of concepts to model systems in virtually any domain. Perhaps one exception is quantum
physics, where our macro notions of particle (object?) and wave (process?), as well as matter (object?)
and energy (process?) get fuzzy as we try to ‘inspect’ subatomic particles such as electrons. For any
system from the molecular level up, all the way to the most complex natural, socio-technical and societal
systems, the object-process paradigm works extremely well. OPM models concurrently explicate the
function (utility), structure (form) and behavior (dynamics) of systems in a single, coherent model that
uses one kind of diagram at any desired number of levels of detail by drilling down into the details of
processes hand-in-hand with the objects they transform. The set of these self-similar object-process
diagrams are represented not just visually, but also textually, catering to humans’ dual channel
processing, a key cognitive assumption of how we process information to convert it into actionable
knowledge.

Having realized the value of OPM to systems architecting and engineering, I adopted it in my thinking
and teaching, and it has become an important cornerstone of courses I have been teaching in systems
architecture at MIT and elsewhere. In particular, OPM has become a key element in the teaching of core
courses in the Systems Design and Management graduate program at MIT. I have used OPM in the SDM
System Architecture course. It has proved an invaluable tool to professional learners in developing
models of complex technical systems, such as automobiles, spacecraft and software systems. It allows an
explicit representation of the form/function duality, and provides an environment in which various
architectural options can be examined. The addition of OPM to my subject has added the degree of rigor
of analysis necessary to move the study of technical system architecture towards that of an engineering
discipline.

OPM is also used as a representational framework in the new book which I co-authored, System
Architecture: Strategy and Product Development for Complex Systems (Pearson, 2015), which
develops an approach to architecture and demonstrates it with examples ranging from pumps, circuits,
and sorting algorithms, to complex systems in networking and hybrid cars. Indeed, the task of
architecting and engineering a new system has become more complicated by the increasing number of
components involved, the number of disparate disciplines needed to undertake the task, and the growing
size of the organizations involved. Despite the common experience that members of many organizations
share, they often lack a common product development vocabulary or modeling framework. Such a
framework should be based on system science, be able to represent all the important interactions in a

Foreword vii

system, and be broadly applicable to electrical, informational, mechanical, optical, thermal, and human
components.

OPM provides such a framework. Indeed, in 2008, the task force of the International Council on
Systems Engineering (INCOSE) has recognized OPM as one of the six leading model-based systems
engineering methodologies. Looking at the historical development of engineering disciplines, it is an
appropriate time for such a rigorous framework to emerge. Disciplines often move through a progressive
maturation. Early in the history of an intellectual discipline, we find observation of nature or practice,
which quickly evolves through a period in which things are classified. A breakthrough often occurs when
classified observations are abstracted and quantified. These phases characterize much of the work done to
date in systems engineering and product development. Mature disciplines, such as mechanics, are well into
the era of symbolic manipulation and prediction. Maturing disciplines such as human genomics are in the
phase of symbolic representation.

OPM is a parallel development in symbolic representation of systems. Over the past two decades, the
understanding of the need for systematic modeling capability has broadened. As OPM was developed in
response to this growing recognition, so have other approaches. The most notable of these are UML,
which includes 13 kinds of diagrams, geared for software engineering, and its derivative, SysML, which
includes nine kinds of diagrams, designed more generally for systems engineering. Both SysML and
OPM are listed as leading standards in the Guide to the Systems Engineering Body of Knowledge
(SEBoK), an online ongoing project jointly sponsored by the Systems Engineering Research Center
(SERC), the International Council on Systems Engineering (INCOSE), and the Institute of Electrical and
Electronics Engineers Computer Society (IEEE-CS).

SysML and OPM represent two different approaches to system modeling. In SysML up to nine
diagrams are used, which are independently derived, and may not be completely consistent. In OPM one
main diagram emerges. The need to integrate several kinds of diagrams may be more complicated. 1 make
the distinction between complexity—the inherent fact that a system contains many parts interacting in
multiple, often inexplicable ways, and complicatedness—the way a system model is presented through a
certain modeling language and is perceived by a user. While there is not much we can do to reduce
systems’ inherent complexities, we can and should strive to reduce the complicatedness of the
representation to the bare necessities without sacrificing accuracy and details. OPM with its minimal
ontology of stateful objects and processes favorably responds to this challenge.

While the emphasis of the book is on OPM, because of the relatively wider spread use of SysML, Dov
has included SysML with adequate presentation of its syntax and semantics, as well as synergies with
OPM, comparison with OPM in terms of such factors as length of the standard specification, and ways
OPM can replace many SysML diagram kinds with a single diagram kind. The coverage of both
languages in the same book is unique, as Model-Based System Engineering (MBSE) books to date have
mostly used SysML. This dual coverage of OPM and SysML is highly valuable, since the reader gets
deeper perspective on MBSE that penetrates beneath the idiosyncrasies of a particular conceptual
modeling language.

I recommend using this textbook for an intermediate or advanced course in model-based system
engineering, product development, engineering design, and software engineering. It would be ideal for
courses that attempt to show how various disciplines come together to form a multi-disciplinary product.
With OPM now formally recognized as an ISO specification, it can form the backbone of a corporate or

viii Foreword

enterprise modeling framework for technical products and large-scale socio-technical systems. Such a
representation would be especially valuable in conceptual and preliminary design, when much of the
value, cost and risk of a product are established, but when few other modeling frameworks are available
for decision support.'

Professor Edward Crawley Massachusetts Institute of Technology, July 2015

'Edward Crawley is the Ford Professor of Engineering and a Professor of Aeronautics and Astronautics at MIT. He is
a member of the U.S. National Academy of Engineering and serves as the President of the Skolkovo Institute of
Science and Technology in Moscow. Prof. Crawley is the first author of two recent books: “System Architecture:
Strategy and Product Development for Complex Systems” and “Rethinking Engineering Education, the CDIO
Approach”.

Preface

The quest for simplicity in a complex world has occupied thinkers for millennia. How to conceptualize
what humans observe around them and what they wish to design in order to improve the quality of
people’s lives has been one of the major driving forces in advancing civilization. The advent of
computers in the middle of the previous century was a great impetus to fostering thoughts about how to
conceptually represent things in the real world. The initial accepted train of thought produced procedural
programming, which put procedures, routines, functions, etc. at the center of programming. Further
contemplations have led to the idea of putting objects, which are more static in nature, as the anchor of
programs. The shift to the object oriented (OO) paradigm for programming languages, which occurred in
the 1980s and 1990s, was followed by the idea that programming should be preceded by analysis and
design of the programs, or, more generally, the systems those programs represent and serve. Naturally,
the approach which was taken is also object-oriented.

In the early 1990, a plethora of some three dozen object-oriented analysis and design methods and
notations flourished, leading to what was known as the “Methods War”. Around that time, in 1991, when
I moved from University of Kansas to Technion, Israel Institute of Technology, as I was tasked with
teaching software design, I got interested in these topics. It was not long before I realized that just as the
procedural approach to software was inadequate, so was the “pure” OO approach, which puts objects as
the sole “first class” citizens, with “methods” (or “services”) being their second-class subordinate
procedures. However, I could not put my finger on what was missing.

My Eureka moment was in 1993, when I and colleagues from University of Washington were trying
to model a system for automated transforming of hand-made engineering drawings to CAD models, a
topic around which my research focused during that time. Drawing objects as the model’s building blocks
and connecting them on the white board, it dawned on me that not all the boxes in the model were really
objects; some were things that sappen to objects. When I circled those things, a pattern of a bipartite
graph emerged, where the nodes representing objects—the things that exist—were mediated by those
circled nodes, which I immediately called processes. This was the first object-process diagram (OPD)
ever drawn. I realized then that the pendulum of the previously accepted procedural software to the
primarily static OO paradigm moved too drastically. While the shift from procedures to objects as the
focus of interest was a right move, it went too far, as it suppressed the systems’ procedural aspect, which
is essential to faithfully describe how systems change over time.

Forbidding processes, such as cake baking or check cashing, from being conceptual entities in their
own right, and allowing their representation only as methods of object classes, results in distorted models,
in which a check “owns” the cashing method or the cake owns the baking process. In real life, however,
baking is a pattern of transformation of ingredients making up the dough that requires a baker, an oven,
and energy to prepare the dough and convert it into a cake. Similarly, a check cannot cash itself; it
requires a check writer having an account with sufficient funds, a check casher, and a bank clerk or an
ATM. Each of the objects involved in these methods could just as well be the owner of the method.
Modeling baking and cashing as stand-alone processes—conceptual things that represent physical or
informatical object transformation patterns—open the door for creating models that are much more
faithful to the way we conceive reality and convey it to others.

ix

X Preface

Indeed, recognizing processes as bona fide conceptual modeling building blocks beside, rather than
underneath objects, is the prime foundation of Object-Process Methodology (OPM). OPM is founded on
a universal minimal ontology, according to which objects exist, while processes transform them.
Transformation includes object creation and consumption, as well as change of the state of an object.
Therefore, OPM objects are stateful—they can have states. Hence, stateful objects and processes that
transform them are the only two concepts in OPM’s universal minimal ontology. Two other cornerstones
of OPM are its bimodal graphical-textual representation and its built- in refinement-abstraction
complexity management mechanisms of in-zooming and unfolding of a single type of diagram—OPD.

When I tried to publish a paper titled “Object-Process Analysis: Maintaining the Balance between
System Structure and Behavior” with the buds of these ideas in 1993, it was serially rejected off hand
with claims along the line that it had already been proven that what I was suggesting is impossible, like
“mixing water with oil.” Finally, the Journal of Logic and Computation accepted it, perhaps because
being mathematics- rather than software-oriented, it was more tolerant toward ideas that went against the
then new and glorious OO paradigm.

Meanwhile, in 1997, the “Methods Wars” culminated in the adoption of the Unified Modeling
Languages (UML), by the Object Management Group (OMG), making it the de-facto standard for software
design. UML 1 had nine types of diagrams. In 2000, when I attended a Technical Meeting of OMG in
which UML was considered for progression from version 1 to 2, I proposed considering UML for being
extended to handle not just software systems, but systems at large, a proposal that was dismissed off-hand
by most attendees, who were software people. However, following a 2001 initiative of the International
Council on Systems Engineering (INCOSE), in 2003 OMG issued the UML for Systems Engineering
Request for Proposals, and in 2006 OMG adopted SysML (Systems Modeling Language) 1.0
specification, which is based on UML 2. Since then, SysML has become the de-facto standard for
systems engineering.

Meanwhile, the first book on OPM, Object-Process Methodology—a Holistic Systems Paradigm,
(Dori, 2002) was published, and OPM has been successfully applied and papers published in many
diverse domains, ranging from the Semantic Web to defense and to molecular biology. In December 2015,
after six years of work, ISO adopted and published OPM as ISO 19450—Automation systems and
integration—Object-Process Methodology.

The realization and recognition that models can and should become the central artifact in system
lifecycles has been gaining momentum in recent years, giving rise to model-based systems engineering
(MBSE) as an evolving filed in the area of systems engineering. SysML and OPM have been serving as
the two MBSE languages, but since SysML was adopted as a standard about eight years before OPM and
has been backed by top-notch vendors, its adoption is currently more widespread. However, OPM is
rapidly gaining acceptance in academia and its application in diverse industry segments is spreading.

This textbook, designed for both self-learning and as an undergraduate or graduate course, endows its
readers with deep understanding of MBSE ideas, principles, and applications through modeling systems
using both OPM and SysML. The book is comprised of three parts that encompass 24 chapters. Each
chapter ends with a bulleted summary and a set of problems. Solutions to problems may be available in
http://esml.iem.technion.ac.il/.

Part I introduces OPM and SysML via step-by-step modeling of a car automatic crash response

system. Chapter | starts with a description of the system and its initial OPM model. In Chap 2 we
enhance the model with text and animated simulation. Chapter 3 introduces links that connect things in

Preface xi

the model. In Chap. 4 we introduce and use SysML’s first three diagrams. Chapter 5 presents ways for
managing the complexity of systems, while the dynamic aspect of the system is modeled in Chaps. 6 and
7. Abstraction and refinement mechanisms as means to manage complexity are the focus of Chap. 8, the
last chapter in Part 1.

Part 11, Model-Based Systems Engineering Fundamentals, is a formal, theory-grounded exposure to
OPM and SysML that discusses MBSE ontology, conceptual modeling constructs, and applications.
Chapter 9 introduces and defines conceptual modeling. Chapter 10 presents the two basic building blocks
of OPM—objects and processes, while Chap. 11 is about the textual modality of OPM—OPL. In Chap.
12 we turn to an orderly study of SysML with its four pillars and nine kinds of diagrams. The dynamic,
time-dependent aspect of systems is the focus of Chap. 13, followed by studying the structural, time-
independent system aspect in Chap. 14. Following Chap. 15, which deals with participation constraints
and fork links, in Chap. 16 we introduce the four fundamental structural relations.

In Part II1, Structure and Behavior: Diving In, we go to the heart of conceptual modeling, elaborating
on the four fundamental structural relations and whole system aspects, including complexity management
and control. Chapters 17 and 18 discuss aggregation-participation and exhibition-characterization,
respectively. Chapter 19 is about states and values, concepts that are needed for generalization-
specialization and classification-instantiation, both of which are elaborated on in Chap. 20. Chapter 21
concerns complexity management and the refinement-abstraction mechanisms of OPM, as well as
complexity management in SysML. Chapter 22 is about OPM operational semantics and control links—
the way control is managed during execution of the system. In Chap. 23 we specify how to model logical
operators and probabilities. Finally, Chap. 24 is an overview of ISO 19450—Automation Systems and
Integration—Object-Process Methodology, adopted by the International organization for Standardization
in December 2015.

With respect to OPM, this book can be considered a superset of ISO 19450. While OPM, as specified
in this book, is ISO 19450-complaint, the book provides in-depth motivation, rationale, and philosophical
foundations for decisions made during the design of ISO 19450. These cannot be elaborated on in a
standard, which, by its nature, is expected to be short and decisive, with little justifications. OPM points
in the book that are not covered in ISO 19450 can be considered optional, or, in ISO nomenclature,
informative, as opposed to normative—abiding ISO specifications.

This book is a product of six years of work, during which I have made all efforts to make it accurate,
consistent, and formal, while also not lose the human touch and the interest of the future reader. It is my
sincere hope that the book will serve as a reliable reference to MBSE in general and to OPM and SysML
in particular.

xii Preface

0
‘\%@\"é\‘%

00 45,‘;5
participation Change ”’rw & é"‘
\ 9.9 “““ G‘\\‘3\\““s

Physical +
\ - n{lrﬂer:aﬂ % .s'e’?loum';n : ‘?0,, g,\&“-‘;
elec
f” €[e % % Time w‘a\“ g\\‘“\
:o,, relaunns \\\?- stales % % 6,,.,““ Woe é % Ong
relation” W™ %% ",
BEBGBSEESQ]Iagram

II.S'[¢

\}q,b

\\“&‘

Examining the above word cloud of this book (created by a program developed skillfully by Jason
Davies),2 based on close to 140,000 words contained in this book, we can see that the most frequent
words are process, object, and link. Indeed, this is a most faithful testimony that OPM focuses on how to
model systems (two other most frequent words in the cloud) by relating processes to objects using links.
Relation is there too, along with other notable words, including diagram, attribute, structural,
procedural, semantics, state, control, change, effect, agent, time, constraint, and function. Of course,
SysML is there between process and model, near OPD (Object-Process Diagram—OPM’s graphical
modality) and OPL (Object-Process Language—OPM’s textual modality). This list gives a good idea of
what this book is about.

I wish to thank my three MIT collaborators, Prof. Ed Crawley and Prof. Oli de Weck from
Engineering Systems Division and the Aero-Astro Department, and Pat Hale, Director of Systems Design
and Management Program. Special thanks to my PhD student, Yaniv Mordecai, who provided insightful
comments on many of the chapters in this book. I thank the Technion, Israel Institute of Technology,
which provided me with the environment to develop OPM and with the 2013-4 sabbatical to complete
this book. Finally, I wish to thank my beloved wife, Prof. Judy Dori, who provided pedagogical guidance
and moral support, which made it possible for me to finish the book.

Dov Dori Massachusetts Institute of Technology, July 2015

“https://www.jasondavies.com/wordcloud/

http://www.jasondavies.com/
http://www.jasondavies.com/
https://www.jasondavies.com/wordcloud/

Table of Contents

Main ISO 19450-compliant OPM SYMDOLS........cceeriiiuiiiiiiieieeet ettt s eieenee XX1

PART I Model-Based Systems Engineering Introduced

Chapter 1 Ready to Start Modeling?ccccccvvuimeeviniiinieeiiniineeeetese st 3
1.1 The Automatic Crash ReSponse SYSTEIMc.ceieiiriiiiiieieiieere et 3
1.2 The Function-as-a-Seed OPM PrincCiplecocoeoiiiiiiiiiiiiiieee e 4
1.3 Identifying the System’s FUNCHONcceeieiiiiiiiieieeie ettt et sre e aeeeas 5
1.4 Identifying the System’s BenefiCIaryccoovivieviiiieieiieeeiece et 6
1.5 A Process Transforms an ODBJECt.........c.eiieieriiiieriieieieiteie ettt et ae e ae e essesseesseseeseesseeeas 6
1.0 SUMIMATY ...veeniieiieeieeieeee ettt ettt e bt e bt e s et e st e sabee beessteenbeenbeesseeessesnteesssesssesssesnseenseenseesns 7
L7 PTODICINS ...ttt ettt ettt bttt b bt bttt ettt ebe bt na s 8

Chapter 2 Text and Simulation ERRANCEMENLSc.eeeeveeecrieeecieeeeiieeeeieeeeeieeeeaee s 11
2.1 OPL: A Subset of ENGIISIcc.oiiiiiieieeee e 11
2.2 States and Animated STMULALIONooviiieieieiieeeee ettt eae e seen 12
2.3 Animated Execution of the OPM Modelccoiiiiriiiiiiiiiieeeeeeeee e 15
2.4 SUIMIMATY ...vieiieeiieeiteete ettt e ste st et esteesteeseteesseesseessseesseesseessseenseeseesaseanseenseesssesnsesnsesnseesssesnsesnses 16
2.5 PTODICINS ...ttt ettt h bbbttt b e bbbt s et eae b nes 16

Chapter 3 Connecting Things With LINKSccccccoiviiiieniiiiiesieeieee et 19
3.1 Procedural Links vs. Structural Linkscccooeioiiiiiiiiiiieee e e 19
3.2 AddIing ENabIErSc.couiiuiiiiitiiiieee ettt ettt ettt a bttt ne e eaen 19
3.3 Adding Structural LANKScoeoieiiiiiiieee ettt 22
3.4 Physical vs. Informatical Thingsc.ccoeeieiririiineieieieie sttt 23
3.5 Model Facts and OPL Paragraphisccccecuerieieniinienieiieiesieeesieeeeesseseeeae e essesseessessesssessesseennes 24
3.6 Environmental vs. SyStemic Things........c.cccvevieriirierieiiiieseeieieetere ettt esee s seees 24
3.7 Initial and FINAL STAEScc.erieiiiiiiiririeteee ettt ettt st 25
3.8 Triggering State and Event LiNKccccoeoiiiiiiiiinininicieesescseceetec et 27
3L SUMIMATY vttt ettt b e sttt e s bt s a bt e bt e bt e sat e eabe e bt e sbaeeabeeateebeesaneeaseennes 27
R I L0 53 (0] o) (<3 s O USRS 28

Chapter 4 SysML. Use Case, Block, and State Machine Diagrams 29
4.1 The SysML Use Case DIAGram.........ccccveriecieriieienierieiesieeeesteeeessesssesessesssessesssessessesssessesssessessees 29
4.2 SysML Blocks and the Block Definition Diagramceceeveeieriieienenieniesieeseeee e 32
4.3 SysML State Machine DIagramcceceeeieriieieriiiiesieseeiesieeeeieeeteseseeesesseesaessesssessesssessessessees 33
4.4 SUIMIMATY ..ottt ettt ettt ettt ettt sae e e e s bt s ae e b e s bees s e bt eneesaesaeesnesueeaeennesneennenneennen 35
4.5 PTODICINIS ...eeutieiieeiiietteette et et et e st e et e e teestteesbe e be e teessbeesse e seessseesseesseessseanseenseesssesssaeseessseenseenseenes 35

xiii

Xiv Table of Contents

Chapter 5 Refinement Through In-ZOOMING.c..ccoveveveeceierieeiieiieeirieneeeaeenieeeseenns 37
5.1 Measuring Crash SEVETILYccecverieriieiieeieiesteetestestetesteetesteetesseeseesesseensesseensesseensessesnnensesseens 37
5.2 In-Zooming: Refining a Process in @ New OPDcccccoiviriiniiiniinininicceeenceeneneeeeeeeee e 38
R T s T 0) D I s (<SOSR 38
5.4 The Model Fact Representation OPM Principleccooceeoirieieiieienieeseeeeee e 39
5.5 The Crash Severity Attribute and [ts Measurement............cocceveeiererienenieneeiene e 40
5.6 Simulating the System: an Animated Execution Test..........cccooeeviririeninieninieieneeeeneseeeiene 41
5.7 SUITINATY ...vievieeiieeiieiteete et et et e et e bt e s ttesetessbeesseesseessseenseesseessseasseenseessseenseenseesssesssessseenseenseennsenn 42
5.8 PIODICIIIS ...ttt bbbt e e e a e e bt ekttt s e bbb bt e bt ene bt b e 43
Chapter 6 The Dynamic ASPect Of SYSIEMSccueviruineenienieniieiientesieesiestese e 45
6.1 Exiting in Case of Light SEVEIILYceoiiieiieieiieiee ettt 45
6.2 Message Creating and SENAINGceiueeieiirieniieeie ettt sbe et eae e neeeneas 45
6.3 Process Execution Order: The Timeline OPM Principlecoceeoevieieniiininieeneeeceee e 47
6.4 Help Is 0N the WAY! ..ottt ae e te et saeebe e s taesraeesseesbeessaeenseennes 48
6.5 Scenarios: Threads Of EXECULIONciuiiieiiiiiiiieceseee ettt 49
6.0 SUIMIMATYeeiieiiiieiieeie ettt ete et et e e tesabe e teestteseteeseesseesaseesseeseeseseenseenseessseensesnseenseesasesnsesnses 50
6.7 PTODICINS ...ttt ettt et e b e bbbt b e bt st ettt et st be b naen 51
Chapter 7 Controlling the System’s BeRQViOF.cccccocuevcercuiniiisincinieienicneesieeen. 53
7.1 Branching with Boolean ODJECEScc.eiuiiiiiiieiiieie et 53
7.2 Condition Link vs. Instrument Linkcccooiiiiiiiiiiiiiiecee e 55
7.3 Generalization-SPeCIialiZAtIONcccvveriieiieeiiieiieeieeite e ete et seeeteebeesteessaeebeessaessaeesseenseesnseenses 56
7.4 Zooming into Crash SeVerity MEASUIIINEccueruirierririerieeieereeteetesteeaesteesesseessesseessesseeseessessnes 57
7.5 Participation CONSLIAINESc.ccvieierierierierieetestietesteeeesseseessesseessasseeseessesseessesssessessesssensesssessessees 58
7.6 Logical Operators: OR VS. XORccccoiiiiiiiieieiieieie ettt ettt ae e sre e sseessessesseesesnnes 58
7.7 Crash Severity Measuring Refinedc.cccoeieiiiiiiniiiieie et 58
7.8 Scope of Things: Signal as @ Temporary ObJECt.........ccerverieririerierieiere et eee e eeenae e 59
7.9 How iS DIagnoSing DOMNE?........cc.eoieiiiriieieriieieiteie ettt see st esaesse e e sseeneenaeeneenseeneen 60
710 SUIMMATY ..ottt ettt ettt et e ese e saeeanesaeemn e sesueesaeeneenneneennen 60
7 B 5 (0] o] (<3 54T 61
Chapter 8 Abstracting And REfININGccoceueeeueeieeeiiieniieeieesiieeieeseesseeseeesseeseee e 63
8.1 In-Zooming: Refining a Process in @ New OPDccccccvevieiiiriiniinieieceeeeeeeeeeee s 63
8.2 Message Handling IN-ZO0OMEdc.cceecveriiiienieiiieieiieiesteeteste st etesteete e esaestesseessesssessesseensenseens 65
8.3 Structural View of the ACR SYStEIMceeviiiieieiiieieiieieee ettt ereens 67
B4 SUMIMATY ...ttt ettt sttt e ae e st e s b e et e eaeennesaeeanenesaeas 68
T o0 (o) o) (53 ' - PRSP 69

PART Il Foundations of OPM and SysML

Chapter 9 Conceptual Modeling: Purpose and CONLEXt..............ccceeeveveeeceeenceeeireenneann, 75
9.1 Systems, Modeling, and Systems ENINeeringcceccveverrierieriesieneeieseeiesieeieseeeeeseeeeesee s 75
9.2 A Foundational Systems Engineering OPM OntologYcccoveeerieriierieniieienieeienesieeieeee e 76

9.3 Object, State, Transformation, and Process Definedcccoeoerieiiniiiininieiieeeeee e 82

Table of Contents XV

9.4 System and Related CONCEPLScuieiieiiieiieiiieiieeie et ste et eieesee e steesaeebeesteesaeesseessnesnseenseenses 83
9.5 Language and MOACIING.........c.ccvieieriiiieiesieeieetiei ettt evesteesb e teeeseteeseesseeseessesseessesseessesseessessesseas 91
9.0 SUIMIMATYveeiieeiiiiiieiteete ettt ete et e st e e tesabe e ttesteeseteeaeesseesaseesseeseeseseenseenseessseensasnseenseesasesnseenses 94
9.7 PTODIEINS ...ttt ettt e b b bt e e bbbt s et ettt st be b naen 95
Chapter 10 Things: ODbjects And PrOCESSEScccocueveevinieenieiinienieeieneeseeseennenee 97
10.1 The Object-Oriented vs. The Object-Process Approach..........ccccoeeeveiieieninieiineeseeeseeens 97
10.2 Existence, Things, and Transformationsceceeiereririeninienenieescetese e 98
10.3 ODJECE IABIIEILY ...ttt ettt ettt sttt s bt sttt et et eseenesnesaens 99
10.4 SYNAX VS, SCIMANTICSveeuveteeeeerieiesteereestesteetesteessesseeseessesseessesssessessesssessesseessesseessessessssssessesnss 102
10.5 The Procedural Link Uniqueness OPM PrincCiple........cccoeieveerircienienieieniieiene e 106
10.6 The PrOCESS TESt.....ccueruiriiriiriiieiieieeieet ettt ettt ettt ettt b e bbb e 109
10.7 Naming OPM EICIMENALScccuervieiieriiiieieieeiesteeieieeteie et eae e estesteessesesseensesseensessasssensenseenes 111
10.8 Thing DEefiNed........ccvevuieieiieieieeeeet ettt ettt ettt e et eae st enaesseenaenseeneenes 113
10.9 Properties 0f OPM TRINGS.....c.ccccrviiiriniirieieteinnenest ettt sttt ettt 114
10.10 Boundary Cases 0f TRINGSccccoiririeiiiiiiininnecteeeeet ettt 116
10.11 Operator, Operand, and Transformccooceeoirieiereieee e 119
LO.12 SUIMIMATY ..ottt ettt ettt et et s b et e e bt e st e et e st e neeseeem b e eb e em e e beeaeetesaeeneesbeeneanseeneenes 120
LO.13 PrODBICIINIS ...ttt ettt ettt st b e e ettt e et bt e beeste b eneenee 121
Chapter 11 Object-Process Language: The Textccoccoueeeeeeeeneeeciienieecieenieennens 123
11.1 OPL: The TeXtual MOAALItyccvevieieieeieieeieieeie ettt ettt et st aesse e seeeeenseeneees 123
11.2 The Dual Purpose 0f OPLcccooiiiiiniiiiieieininenerctetetee ettt e 124
11.3 The Graphics-Text Equivalence OPM PrinCiple..........cccoeieviiiiiiirienieereeee e 125
11.4 Metamodel of OPM Model StrucCturecoeeeiirieiereeiee et 125
11.5 Reserved and Non-Reserved OPL Phrasescccoooeriiiiieiieiinieeeee e 127
11.6 Motivation for OPM’s Bimodal EXPIessioncccuiecvierieiiienieniesieeseeeieesiee e eneesiee e eveens 129
11.7 Tesperanto: A Human Readable Auto-generated TeXtcoocereerenieieninienineeenceieeen 131
T1.8 SUIMIMATY ..vieuiieiieiieeieeite ettt te st e et e e e st e este e bt e staeesseesbeesseessseenseessaesssesaseensaenssesnsesnseenseenssenns 132
1129 PTODICIMS ...ttt b ettt b e sb e bttt et et e bt bt bese et et eseene e 133
Chapter 12 SysML: Foundations and Diagramscccceeevceevencecnieencnneenennens 135
12.1 UML: Unified Modeling Languagecccoeeeruerienereeereeieseeiieie et 135
12.2 SYSML PAIIATS ...ttt ettt et b e et e ae et st et e beenee b eneenes 136
12.3 Requirements DIAGIAIMcc.eeiiriirieiiiieiest ettt ettt st st sb e eee e ene e 136
12.4 BIOCKS @Nd STIUCHUIE ..ottt ettt ettt sttt e a et be e e e e eseene e 137
12.5 ACHVILY DIAZIAM......coviiviiiiitieiieitieteste et ettt et et et et e e e e saesseessesbeessesseeseessesseesaessesssesseessansenssenes 138
12.6 SEqUENCE DIAGIAM.......ccuveviiiieeietieiesteeterieseetesteetesteereesesseessesseessesseeseessesseessessesssessesssensenseenss 141
12.7 Requirements DIAZIAIM..........cccuirvieieriieieieseeiesteeeeesteete e seeesesteesseseessessesseensesseensesseessensenseenss 143
12.8 Parametric Diagram and Constraint Property BIOCKSccccceeeiirieciinieiierieeceeeeeeeee 146
12.9 SYSML—OPM COMPATISONevveutieeiereeeieiesreetesteestesesseessesseesessesssesesseessesseessessesssessessasssesseenes 148
12.10 SYSML—OPM SYNEIZICS.....ccueruiriiriiniiieieiieiintietietentent ettt st sttt st stesteneebe b et sse s e eneebesaenae 155
T2.11 SUMIMATY ontiiiiiiiiieiieeeeeet ettt ettt ettt e b e st e st e bt e sbtesate e bt e sbtesaeesabeenseenneenas 155

| B B & 0] o) (=) o LT 156

XVvi Table of Contents

Chapter 13 The Dynamic SyStem ASPECEcc.occueeeueercueeeeeeieeireeseeeeseeseeeseenssessaens 157
13.1 Change and EfFECtcveiiiiiieieicee ettt et ne e e enaenes 157
13.2 Existence and Transformation............c.cccveiviiiieeiiiiiecieeie ettt e saeesave e veesseesane e 158
13.3 Procedural LinKS.......c.ccciiiiiiiieiieciiecieeie ettt ettt e teeve et esaeesbeesse e seessseeseesseesaseenseensseans 162
13.4 TransTorming LiNKScooiiiriiiieiet ettt et see e e eneenes 163
LR I 5 21 o) U3 OO PRUSPR 165
13.6 The Preprocess and Postprocess ODJECt SELSc.uevvievuierierieeiieeiiereesreeie e see e esaeeseee e 169
13.7 State-Specified Procedural Links..........ccoccveviiiiiiiiniiiiciiceciere ettt 170
13.8 State-Specified Enabling Links.........c.ccovvieiiieiiiiiiieieieeese et 171
13.9 State-Specified Transforming Linkscccccovvieieiiiieiiiiieiese et 173
13.10 State-Specified Effect LinKs.........coooeiiriieriieieieeieieeeeese et 175
I3, 11 SUMIMATY oniiiniiiiiieeieeeect ettt ettt e b e st e st e e bt e s ate s bt e beesatesateenbeesatesasesabeenseesanesns 179
1312 PIODBICIIS ...ttt sttt b bt na ettt ebe e 181

Chapter 14 The Structural SYStem ASPECt.............cccueeecueeeiiereeiieeeiieesireeesseeesveeseveeens 183
14.1 Structural REIALIONSco.eiuiieieiieiieieeeee ettt sttt et 183
14.2 Reciprocity and Transitivity of Structural Relationscccceovvevieriecieniecieniceee e 188
14.3 Structural Relations as State-Preserving ProCesses.......ccoovvvieriiiieieriieienienienie e 194
14,4 SUIMNIMATY ...eiuiieiieiieeieeiee sttt sttt et et e stteeabe e bt e s bteeateeate e beesasesateenbeesstesaseenseenasesasesaseenseasssenns 194
14,5 PTODICINS ...ttt ettt st ettt et b e bt na et eae e 195

Chapter 15 Participation Constraints and FOVKSccoveevveeviieeecieeecieeeeiee e, 197
15.1 Structural and Procedural Participation CONStraintscccccvervveeieereenieenieerieeseeseeeveeseeeneneens 197
15.2 Structural Participation CONSIIAINESc.ccveeieriieierieiieeieseeeesteesesseeseesseeseessesseessesseessessesseenns 198
15.3 Shorthand Notations and Reserved Phrases...........cccecviiininineneieinneseeeeceeeee e 200
15,4 CardiNalityecveeuieiieeieieieeteste et et ettt e st et e stesstesbeeteesbesseeseessesssessasssessenseessassesseensessaessansenseenss 201
15.5 Procedural Participation CONSLIAINTSc.cceeierieeierieriieienieeieieeeteteeseesesseeaesseessessesssensesseenes 203
15.6 The Distributive Law of Structural Relationsceccoeverieiiininininieieeccrceccceceeniene 205
15.7 Fork, Handle, and TiNe...........cocueiioueeieeie e e eee et e e e e e e e enneeeennee e 207
15.8 The Tine ThiNg Set.......cciviriiiiiiiiiiriireeeet ettt sttt s 209
15,9 SUIMIMATY ..ottt ettt ettt et e s bt st e et e bt e sutesat e e bt e saeesatesabeenbeenaeeeas 213
I5.10 PrODBICINIS ...ttt ettt e a et bt e et eae et st e e bt enee b eneenes 214

Chapter 16 Fundamental Structural RelQtionsc.ccccceeeeveieiieencieeniiieenieeseeeens 215
16.1 Relation Symbols and PartiCipants...........c.ccceeierierierieriesieneeieseeieieeeeseeeesaesseeaesseessessesseenns 215
16.2 Relation Names and OPL Sentences.........cccecevirirerierieieirininiinienieseeteiteie et 216
16.3 Structural Hierarchies, Transitivity, User-Defined Symbolsccccocoveireniininencncnecncnenn. 217
16.4 SUIMMIATY ...evviiiiiiiiieiieie ettt ettt st ettt et st e s bt e e st e e a e st esaesreeane e eneenes 218
1.5 PIODICIMSccuiiiiiiciiieieeiec ettt et e st e et e et e s taeeabeeabe e taeesseesse e saessaeeaseesseasssesssesnsaenseessseans 218

PART III Structure and Behavior: Diving In

Chapter 17 Aggregation-PartiCiDALIONcccoeeueeeeeeseeeiieeieeeesiie et esie e sieeseeens 221

17.1 UNderlying COMCEPLScecueruieiirtieieeteenierteeeeete et ettt eeee st eseeneesseetesbeeseesteeneenaeeseeeesseensenseeneenes 221
17.2 Aggregation-Participation as @ FOTKcocoiiiiiiiiiiiiieee e 223

Table of Contents xvil

17.3 A Semantic Web EXAMPIEcccuiviiiiiiieiieiieieee ettt ettt st esbe s e snaeens 224
17.4 AGEregate NAMINGcccoviiieiieiieteeteeierteetete st etesteestesseereessesseessesseessessesseessesseessesseessansenseanes 226
17.5 Composite and Shared Aggregation in UML and SysML.........c.ccceeviiieniiiieneiicecieieeienne 227
17.6 EXPressing Parts OTAETc.vvviviieieriicieie ettt ettt ettt b e eseeaesseessessaessensanssenes 229
17.7 Aggregation and Tagged Structural Relationsc.cccevverierienienieienieiese e 230
17.8 Non-Comprehensive AZEIeGatiOn.ccverveerieriereieiereeiesseseesesseeeesseesessessessesssessesseessenseenes 232
17.9 The Parameterized Participation Constraints Mini-Languagec.ccccccceveveervniencncnencnennene 235
I7.10 SUMIMATY ..ottt et sttt et ea e st esae s bt e e e e et eaesaeesnesreeeneneennenes 236
T7. 11 PLODICIMS ..ottt ettt ettt ettt e et e e bt e s beessae et e e baesaseesseesseesssassseesseesssesssesnseenseansseans 237
Chapter 18 Exhibition-CharacteriZAtionccoueeeeueeeseeeeiueeeeiieeniseeesseesnaeesnnneenns 239
18.1 Feature and EXRIDIIOTcc.eoiiiiiiiiirieeee ettt st e 239
18.2 Attribute and Operation: The Two Kinds of Featureccocveviieieiienieierieieceeeceeeeen 241
18.3 Features in UML and SYSML vS. OPMc.cccoiiiiiiiieiieieeeee et 242
18.4 OPM Thing and Feature Name UNIQUENESS.........ccuccueeeerrerereriinienienteteeeieniesiesnensenseeeneenesnenne 243
18.5 The Four Thing-Feature CombIiNations..........c.ccoevveiereeirireneniinrententeeeeeesieseesresteseeeeneeneeneene 244
18.6 Fundamental Structural Hierarchies...........c.cccuieiuiiiiiiiieiecie ettt 248
18.7 The Attribute Naming Problem..........cocooiiiiiiiiie e 249
18.8 Properties of Features and LinkS..........ccceiiiiiiiieiiiiiieiecie et 251
18.9 SUIMIMATY ...ttt et b et h et e bt s e et sb e st e bt eae et sae e aesbeesaebeeneenee 254
I8.10 PrOBICIIIS ...ttt ettt bbbttt sttt 255
Chapter 19 States ANd VAIUEScccccueeiuieiieiiieiiesieeeeee ettt 257
19.1 State DEfINEdveoviieeiieieciiecee ettt e et e e e e be e be e aeeesbeeseesssesnsaensaensseans 257
19.2 State Suppression and EXPreSSION.eevererieiirieiereee ettt st 259
19.3 Value: A Specialization Of Statecccovieiiiieiieiee e 260
19.4 State Transition: When a Process IS ACLIVE......cccoieriiriiiiniiiiienieeeeee e 261
19.5 Path Labels and FIP-FIOP ...ccveoiiiiieiieect ettt ettt s ae e saneen 264
19.6 A Model of the Brain’s “Self-Organized Criticality”ococeeviieeeveereeeeeeeeeeeeeeeeeeenena 266
19.7 State-Specified Tagged Structural Linkscccooirieriiiierieniiieieseeese et 268
19.8 Compound States and State SPACEccvevcverieeieriieieie et eeete sttt et ssee s ssaesesseensenes 271
19.9 SUIMIMATY ...einiieiieiieeieeiee sttt ettt st e e et e s bt e et e et e e beesabesabe e beesatesabeenbeesaeesasesaseenseesasenns 274
1910 PIODBICIIS ...ttt ettt ettt et b e bt 274
Chapter 20 Generalization and INStANLIALIONccccueeeeeeeeeeeeeiieeeiieeeieeeeiee e ns 277
20.1 Generalization-Specialization: INtroduCtionc.cccecieiriiiiinirereee e 277
20.2 TNNETILANCE ...ttt ettt sttt ettt et b et et et e st es e e bt sbeeb et et e st ese et e besbe e eneeneenene 280
20.3 Specialization Through a Discriminating AtribULEccccvererceererieienieeeere et 283
20.4 State-Specified Characterization Linkccccoceririieninieiiini e 285
20.5 Classification-InStantiation.c..coeeuerieteirirenenietet ettt st srea 286
20.6 The Relativity 0f INSEANCEeccveivieieiieiieie ettt ettt et eseeneesaesseennens 288

20.7 Constraining AHIibute VAIUES........cc.ccveieiririririeniicictete ettt 289

xviii Table of Contents

20.8 PrOCESS INSTANCESeeuviiieniiiiieiieet ettt ettt ettt sttt ettt e et st e et b et et eaeenee 290
20,9 SUIMNIMATY ...eetieeiieiiiesteeie et et esttesteesteesteestteeaeeteessseesseesseessseassesnseesseenssesnseesaesssesssesnsesnseessseans 292
20.10 PrODICIMIS ...ttt b bbbttt et e b bbbttt 292
Chapter 21 Complexity Management: Refinement and Abstraction............................. 295
21.1 The Need for Complexity Management.............ccoeeeruereeiereeieneeieeeeceseeseeeee e ee e e e eneenee 295
21.2 The Model CompPleXity ASSEILIONccueeueeiueriieriietieteeteeie st eite st eiee et ete e eeeseeeeeesbeeseeseeneenes 296
21.3 Aspect-Based vs. Detail-Level-Based DeCOmMPOSItIONc.ceccveerieeniieriienieeieenieenieeieeseesneens 297
21.4 The Completeness-Clarity Trade-0ffc.ocoveviiiiiiiiiiceecee s 298
21.5 State Expression and State SUPPIESSION.......ccvevirrieierieeieriieierreeeeteeteesesreeeesseeaesseesessesssenns 299
21.6 Unfolding and FOIAINGcccocviriieieriiiieie ettt ettt sae e e s te s eeseenes 300
21.7 In-Diagram and New-Diagram Unfolding............cceeuirieriirieiienieieneeieneeeeie e 301
21.8 POTt FOLAINE.....cteieieiiieiieieeit ettt ettt ettt st e et e s et e eseessesseessesseessenseeseensesseensessenssens 302
21.9 In-Zooming and OUt-ZOOMING..........ccuerueerrerrerrierrerrerteeeesseeseessesseessessessessessessesseessesseessessesssens 302
21.10 Synchronous vs. Asynchronous Process Refinementc.ccecevverininenencnicnenencneniencnnens 305
21.11 The Equivalence between In-Zooming and Unfolding...........cccccevveverincnininenencnicnneniencenens 306
21.12 The System Map and the Ultimate OPD...........ccccooiiiiiiiiiieeeieeececeee e 307
21.13 The OPD Object Tree and FOTESt.........ceouiiiriiiiiieieeieie ettt 310
21,14 OUL-ZOOMUINE ...ttt ettt ettt ettt b ettt et et s bt e e s bt e et e bt eb e et e ebeeneesbeeseenbesanebeebeenes 311
21.15 SImMpLifying an OPDcc.coiiiiiiiii e sttt 313
21.16 Abstraction Accounts for Procedural Link Precedenceccceoeeevoiiininineneieeecec 315
21.17 Link Migration upon IN-ZOOMINGc.cccveeeriieieriereeriesieeieseesesseesessesseessesseessessesssessesssenns 318
21.18 View Creating: The Fourth Refinement Mechanism............cccceevverieiinincienisieeieceeieeee 318
21.19 Middle-Out as the De-facto Architecting PractiCe...........cuecveviecierieienierieienieiesieeeesee e 319
21.20 Navigating Within an OPM System Modelccooviririiiniiieieeeeeeeee e 320
21.21 SUINIMATY ..eeutteriiieieentieeite ettt te sttt et e sttt st e bt e bt e sabeeab e e bt e satesabeenbeesaaeeabeeabeesabesnseenbeensaesnsesnseas 321
21.22 PIODICIMS ...ttt ettt ettt et e st e et e et e ene et e eneensesmeensesneensenseeneenseeneennesneennens 324
Chapter 22 OPM Operational Semantics and Control Linksccccccoueeecveeennnan. 327
22.1 The Event-Condition-Action Control Mechanism.............ceccveverierienienieineneneneeseeeeeeeeee 327
22.2 Precondition, Preprocess and Postprocess ObJect SEtsccevvverrereerienieiienieieeeeieseeie e 328
22.3 Kinds of Control LINKS.......cccociiiriiriiiiiiiiieesescet ettt ettt 328
22,4 EVENE LINKS...c.vitiiiiieiiiiite ettt sttt ettt ettt ebe 329
22.5 CoNAIION LNKSeeiiiieiiiii ettt sttt et esee et ae st et e seensenseeneeneesneennens 333
22.6 EXCEPLION LANKS.....ooiiiieiiiii ettt ettt et sttt et e st et e sneenesneeneens 340
22.7 Transformation RAte...........ccieiiiieiiiii ettt st 342
22.8 Computing With OPMoiuiiiiiiiiit ettt ae s 344
22.9 Sets and TEETALIONSocueeueeiiieieiietieteete ettt ettt e sttt e e s bt et e et e e st et eae e bt sbeeneenbeeneenes 346
22.10 Operational Semantics in In-Zoomed Process CONteXtS.......cccuerruirreeruerrieerieeneenieerieeneenneens 346
22.11 Involved Object Set Instance Transformationsc..ccvevvereereereeieriesieeese e e esee e eenenns 353
22.12 UML’s Object Constraint Language (OCL)cccccvevuieieriireeieniecieieereeeesee et 354
22,13 SUIMIMATY evvieiieiiiieieeeie et et esitesete et esteesttesbeebeesseeasseeaseessaesssessseenseesssessseenseesssesssesnsesnseesseeens 355

0 U (o) o) 1S3 1 TSR 356

Table of Contents Xix

Chapter 23 Logical Operators and Probabilitiescccccceeevevceeecienieeeceenieannns 357
23.1 Logical AND Procedural LinkKs..........ccoccieeierieieniieiesieeieieeeete ettt enaesneennens 357
23.2 L0ZICAL NOT ...ttt ettt sttt ettt b e s a st ebea 359
23.3 Logical XOR and OR Link Fans...........cccoceiiriiiiiiii e 360
23.4 Diverging and Converging XOR and OR Linksccceooirieiiniiiinieeeeee e 362
23.5 Combinatorial XOR and Combinatorial OR...........cccccieriiriiiiiiieiecieceee e 365
23.6 State-Specified XOR and OR Link Fansccccccovviiiiiiiiieniieieciecsieseeie et 367
23.7 Multiple Control Links Have OR SEmanticsc.ccerrievieriiiierieiieienreeiesreeeeenesieesesreenessens 368
23.8 Link Probabilities and Probabilistic Link Fans.............ccccoeivieriinieniinieiiceeie e 370
23.9 SUIMNIMATY ..eeetieeiieiiieriteeie et et et te st et esteesetesabeebeessbeenbeeateessbessseenseessaesssesnseensaesssesnsesnseenseesseeans 373
23,10 PrODICIMSeviieeiieieeiieieeit ettt ettt et et este st e et e s b e esseseeseensesseensesseessanseessensesseensesseensens 373

Chapter 24 Overview of ISO 19450cccoovueveriiniiiiiiiiieiieeeseeeeteee e 375
24.1 The ISO 19450 INtrOQUCLION ...c.vveevieiiieeieeiierieeeie et eseeetteeveesteeeteeebeeseesseessseeseesseessseesseesseeans 375
24.2 ISO 19450 Terms, Definitions, and Symbol Sectionsc..cecevieiiniirenienieniieneeeeee 377
24.3 Object-Process Methodology Principles and CONCeptscccvvvververrieienrieienieeeeieseeeesreeeeenns 378
24.4 The Four Annexes 0f ISO 19450coveieiieieiieieie ettt a e eseens 380
RETETEICES ...ttt ettt sttt ettt e et e e st e beeseesbe st e essesseeseessesseensesseessesenssenes 387
OPM Principles at @ GIANCEcc.eeviriieiiriieieie ettt ettt ae st te st eeaesseeseesesseensesseensensenssenes 393

Main ISO 19450-compliant OPM Symbols

Things: stateful objects and processes

thing value thing
property (notation) object stateful object process
Informatical Recipe
Recipe
(fat
essence
Physical Hammer
(shaded) e
Systemic Drill _
Balance Producing
(SOlid) [faulty] [operational}
affiliation
Environmental | i : Recipe : _-"E i ".’
Record : : + EXporting |
(dashed) | oo { (outoatea : o POring
Fundamental structural links
. aggregation- exhibition- generalization- classification-
modality Lo s DA . ..
participation characterization specialization instantiation
Graphics -
Object-Process
Diagram (OPD) /8\
i s |
Textual -
Object-Process | Whole consists of | Exhibitor exhibits Specialization is a Instance is an instance of
Language (OPL) | Part. Attribute. General. Class.

XXi

XXii Main ISO 19450-compliant OPM Symbols

Tagged structural links

unidirectional tagged link bidirectional tagged link

Reciprocal tagged link
is mother of is mother of family o
Sarah > |saac Sarah <=5 Isaac Sarah |< Isaac

Sarah is mother of Isaac.
Isaac is son of Sarah.

Sarah is mother of Isaac. Sarah and Isaac are family.

Procedural transforming links

consumption link result link effect link in-out link pair

- Affectee Affectee
: (&) G
=\ m
\/
@ Resultee @

State Changing

Consuming consumes Creating yields Affecting affects E:hanges Affectee from
Consumee. Resultee. Affectee. ":p:’t state to output
state.

Procedural enabling links

agent link instrument link
Agent Instrument
0
Agent handles Processing requires
Processing. strument.

Model-Based Systems

This book focuses on conceptual systems modeling with OPM—Object-Process Methodology, and
SysML—Systems Modeling Language. SysML is an accepted de-facto standard of the Object
Management Group (OMG) since 2006, while OPM has become ISO 19450 publically available
specification in 2014. Leaving theoretical background and discussions to Part II and detailed technical
specifications to Part III, this first part introduces OPM and SysML via a running case study of a car
automatic crash response system that we model step-by-step, exposing modeling principles and practices
as we go. Chapter 1 starts right away with a description of the system to be modeled and an initial, gentle
OPM model. In Chap. 2 we enhance the model with text and animated simulation. Chapter 3 introduces
links that connect things in the model. In Chap. 4 we pause modeling the automatic crash response
system with OPM and move to introducing and using SysML's first three diagrams: Use case, block, and
state machine diagrams. Resuming modeling the system with OPM, Chap. 5 will expose us to in-
zooming—the most powerful refinement mechanism that enables managing the complexity of systems.
The dynamic, behavioral, time-dependent aspect of the system is the topic of Chap. 6. In Chap. 7, we are
exposed to specifics of controlling the system's behavior. Deepening our knowledge about abstraction
and refinement mechanisms as means to manage complexity is the focus of Chap. 8, the last one in Part I.

Chapter 1
Ready to Start Modeling?

...all models are wrong; the practical question is how wrong do they have
to be to not be useful.

Box and Draper (1987)

With diagrams the meaning is obvious, because once you understand how
the basic elements of the diagrams fit together, the meaning literally
stares you in the face.

Steve Cook (1999)

We live in a world of interconnected systems. In fact, as humans, each of us is a highly complex system
living in a host of socio-political-technological systems that are no less complex. In order to understand and
design complex systems, it is necessary to have a methodology and a language for building models that can
express what these systems do, why they do it, how they do it, and what they need in order to do it. While
the visual and intuitive nature of diagrams has made them widely used means for building models of
systems, natural language text is also an important way of conveying complex ideas. Formal diagrams are a
graphic language in that they contain interconnected symbols, expressing meaningful facts and statements
about the world. Combining graphics with text reinforces our ability to specify complex ideas in science and
engineering.

1.1 The Automatic Crash Response System

We introduce conceptual modeling using OPM, and later SysML, using a running example of specifying the
GM OnStar Automatic Crash Response (ACR) system. The specification that we model provided below
was taken almost literally from an early version of OnStar Technology’s description on the OnStar company
website.'

OnStar’s in-vehicle safety, security, and information services use Global Positioning System (GPS)
satellite and cellular technology to link the vehicle and driver to the OnStar Center. At the OnStar
Center, advisors offer real-time, personalized help 24 hours a day, 365 days a year. ...

The accelerometer located within the Sensing and Diagnostic Module (SDM) measures the crash’s
severity. In the event of a moderate-to-severe frontal or side-impact crash, data is transmitted
from the affected sensors to the SDM. The SDM sensor also can identify a rear impact of

'http://cms.cerritos.edu/auto/basic-its/ost.htm.

© Springer Science+Business Media New York 2016 3
D. Dori, Model-Based Systems Engineering with OPM and SysML, DOI 10.1007/978-1-4939-3295-5 1

http://cms.cerritos.edu/auto/basic-its/ost.htm
http://cms.cerritos.edu/auto/basic-its/ost.htm
http://cms.cerritos.edu/auto/basic-its/ost.htm

4 Ready to Start Modeling?

sufficient severity. Regardless of whether the air bags deploy, the SDM transmits crash
information to the vehicle’s OnStar module.

Within seconds of a moderate-to-severe crash, the OnStar module will send a message to the
OnStar Call Center (OCC) through a cellular connection, informing the advisor that a crash has
occurred. A voice connection between the advisor and the vehicle occupants is established. The
advisor can then conference in 911 [emergency] dispatch or a public safety answering point
(PSAP), which determines if emergency services are necessary. If there is no response from the
occupants, the advisor can provide the emergency dispatcher with the crash information from
the SDM that reveals the severity of the crash. The dispatcher can identify what emergency
services may be appropriate. Using the Global Positioning System (GPS) satellite, OnStar advisors
are able to tell emergency workers the location of the vehicle.

The “big picture” that emerges from this system description is that the ACR system aims to provide
an automatic response in case of a severe car crash. In the following sections we methodically model this
system using OPM and then SysML.

1.2 The Function-as-a-Seed OPM Principle

In order to start an OPM model of a system, the first step is to determine the function of the system. The
function is the main process of the system, which is designed to deliver value—benefit at cost—to the
system beneficiary. The system beneficiaries are the person or people who get value from using the system.
Identifying the system’s function is critical, as it expresses the motivation for engineering the system. This
function will be the top-level process of our OPM model. Determining the system’s function is not just
important and recommended, it is also a basic principle, known as the finction-as-a-seed OPM principle:*

The Function-as-a-Seed OPM Principle

Modeling a system starts by defining, naming, and depicting the function of the system, which is
also its top-level process.

The term “function-as-a-seed” underscores the centrality of starting off the modeling process in a way
that focuses on the function of the system; that is, the value that the system provides to its beneficiary. As
the next few chapters show, this function is the seed from which the entire model gradually evolves. This
guideline may be counterintuitive, since many engineers tend to start with the form—the objects, the
substance of which the system is comprised—rather than the function, which is the process due to which
beneficiaries would use the system in the first place. Function delivers value, while form draws cost that
must be paid to achieve that system’s function.

Given the centrality of the system’s function, it is worth contemplating what this function really is and
what it should best be called so everybody involved in the modeling will be on the same page. An
appropriate function clarifies and emphasizes the central goal of the system being modeled. Deliberation

’This is the first of 13 OPM principles, which are listed throughout the book in a frame and also appear at the end of
the book for quick reference after Chap. 24 under the heading “OPM Principles at a Glance”.

Dori — Model-Based Systems Engineering with OPM and SysML 5

regarding the function often provokes a debate between the system architecture team members at this
early stage, but this is highly valuable. Such discussions frequently expose differences and often even
misconceptions among the participants regarding the system that they set out to architect, model, and
design. Thus, agreement on the system’s function and its most appropriate name increases the likelihood
of ending up with a useful model.

1.3 ldentifying the System’s Function

The OnStar system description above makes it clear that the main function of the system—its purpose and
the value it delivers—is to automatically provide response in case of a car crash. Therefore, we call this
function Automatic Crash Responding, and this is the top-level process of the system we are about to start
modeling. OPM has just one type of diagram, which is called the object-process diagram (OPD). Any OPD
is built using two OPM building blocks: objects and processes.

|An object is a thing that exists or might exist. ‘

While objects exist, processes happen or occur, and they transform objects by generating, consuming,
or affecting them.

|A process is a thing that transforms an object. ‘

Collectively, objects and processes are called things.

|A thing is an object or a process. ‘

We start by modeling the system diagram—the top-level object-process diagram (OPD)—in our OPM
model. The OPM symbol for a process is an ellipse with the process name recorded within it.

Automatic Crash

Responding

Fig. 1.1 Automatic Crash Responding modeled as a process

6 Ready to Start Modeling?

Figure 1.1 describes the Automatic Crash Responding process in OPM notation using OPCAT,” an
OPM-based modeling software environment such as OPCAT (Dori et al. 2003). It is highly recommended
that the reader installs OPCAT and follows the modeling activities presented here.

Based on the definition of a process as a thing that transforms an object, no process is meaningful
unless it transforms at least one object. That object is known as the transformee of the transforming
process or the operand of the system’s function.

1.4 ldentifying the System’s Beneficiary

A man-made, artificial system is designed to benefit at least some of its stakeholders. The stakeholders that
benefit are the system’s beneficiaries. The beneficiary of the Automatic Crash Responding process, which is
also the transformee in our case, is the driver and any additional passengers who occupy the crashed vehicle.
This group of people is the object Vehicle Occupants Group. Figure 1.2 shows the OPD of Fig. 1.1 updated
with this object. The OPM symbol for object is a rectangle with the object name recorded within it. This is
also the standard symbol used in UML—the Unified Modeling Language (OMG UML 20111, 2011S)—and
SysML, where it is referred to as a block.

Vehicle Occupants Group

Automatic Crash

Responding

Fig. 1.2 Vehicle Occupants Group is added as an object to the Automatic Crash Responding process

1.5 A Process Transforms an Object

We have defined an object as a thing that exists or might exist. Our object, the Vehicle Occupants Group,
does exist, as it did prior to the occurrence of the Automatic Crash Responding process. So what

3The object-process diagrams (OPDs) in this book were drawn using OPCAT, a software environment that enables
OPM-based modeling. OPCAT can be downloaded and installed free from http://esml.iem.technion.ac.il/, a website
that also contains an OPCAT hands-on tutorial and many articles on OPM. OPCAT tutorial is also found on that site.

http://esml.iem.technion.ac.il/

Dori — Model-Based Systems Engineering with OPM and SysML 7

transformation does the Vehicle Occupants Group undergo? To answer this question, we examine the
following definition of transformation.

Transformation is the creation (generation, construction) or consumption
(elimination, destruction) of an object or an effect (change of state) of an existing
object.

In our case, the state of the Vehicle Occupants Group has clearly changed. In other words, the Vehicle
Occupants Group has been affected by, and consequently benefited from, the occurrence of the
Automatic Crash Responding process. To express the fact that the Automatic Crash Responding process
affects (changes the state of) the Vehicle Occupants Group object, we insert a link between the process
and the object. The link, shown in Fig. 1.3, is the effect link—a bidirectional arrow, <—=—Dbetween the
affecting (state-changing) process and the affected object; that is, the object whose state has changed as a
result of the process occurring.

Vehicle Occupants Group

Automatic Crash
Responding

Fig. 1.3 An effect link is added between the Automatic Crash Responding process and the Vehicle Occupants
Group object, indicating that the process affected (changed the state of) the object

Our model currently contains three elements. The first is the Automatic Crash Responding process,
the second is the object Vehicle Occupants Group, and the third is the link between the process and the
object.

1.6 Summary

e We have started modeling the Automatic Crash Responding system using OPM.
e OPM has a single diagram type: the object-process diagram (OPD).

e OPM is built of objects, which exist, and of processes, which transform objects.
e Object transformation is object creation, object consumption, or object change.

8 Ready to Start Modeling?

e We recognize processes—Automatic Crash Responding in our example—as stand-alone OPM
building blocks that are separate from objects.

e Objects and processes enable concurrent modeling of the system’s structure and behavior in the
same OPD.

e Transformation is object creation, consumption, or state change.

1.7 Problems

An engineering student was asked to sketch a graphical representation of the system of garbage recycling
came up with the sketch in Fig. 1.4.

55),
)

Fig. 1.4 The Recycling System—a graphic representation

What things in the sketch represent objects?

What things in the sketch represent processes?

What elements in the sketch represent relations?

Are there concepts in the sketch that do not fall in any of the above categories? If so what are
they? What should they be called?

The baggage handling system case study that we start evolving below will serve as the basis for
problems at the end of each chapter. You can do the modeling manually, but it is strongly advised

that you use an OPM modeling software package such as OPCAT (downloadable from
http://esml.iem.technion.ac.il/).

A NN -

A passenger arriving at an airport deposits her baggage with the airline she is flying with. A
baggage handling system manages the transfer of the baggage to the passenger’s destination.

5. What is the function of the system? Phrase it as an OPM process name.
6. Draw the function as the main process in a new OPD.
7. Identify the main beneficiary of the system.

http://esml.iem.technion.ac.il/

Dori — Model-Based Systems Engineering with OPM and SysML 9

8. Add the beneficiary to the OPD as an object and link it to the process defined as the system’s
function.

. Identify the operand of the system’s function.
10. Add the operand to the OPD and link it to the process.

Identify other main objects that the process affects, add them to the OPD, and link them to the
process.

Chapter 2
Text and Simulation Enhancements

We went next to the School of Languages. ... The first Project was to shorten
Discourse by cutting Polysyllables into one, and leaving out Verbs and Participle,
because in Reality all things imaginable are but Nouns. ... However, many of the most
Learned and Wise adhere to the new Scheme of expressing themselves by Things.

Jonathan Swift, Gulliver’s Travels (1726)

Winograd and Flores (1987) noted that “Nothing exists except through language... In saying that some
‘thing’ exists (or that it has some property) we have brought it into a domain of articulated objects and
qualities that exist in language.”

Indeed, language greatly enhances our ability to understand systems and communicate our
understanding to others. This chapter presents two enhancements to OPM models: textual model
representation and animated model simulation.

We introduce the object-process language (OPL) as the textual modality of OPM that complements
the graphical representation through OPDs (object-process diagrams). We show the equivalence between
this graphical specification and the natural language specification through OPL. The chapter also shows
another important means of enhancing model understanding: its animated simulation.

2.1 OPL: A Subset of English

In Fig. 2.1, an effect link has been added between the Automatic Crash Responding process and the
Vehicle Occupants Group object. This link expresses the fact that the process affected the object; that is,
changed it in some way. As soon as the effect link is drawn, OPCAT (the OPM modeling software
environment we use) automatically generates the first object-process language (OPL) sentence:

Automatic Crash Responding affects Vehicle Occupants Group.

This is a clear and unambiguous sentence in plain English that was generated immediately, in
response to the modeler linking the two things, and it explains what OPCAT has “understood” from this
operation.

Figure 2.1 shows a partial screenshot of OPCAT. The top pane contains the OPD and the bottom
contains the OPL sentence generated in response to the modeler’s insertion of the effect link.

In OPCAT, the default color of OPL words or phrases (word sequences) that represent objects is
green; this is the same color as the corresponding object boxes in the OPD. Likewise, the default color of
phrases representing process names in OPL is blue, which is also the color of the corresponding process
ellipses.

The graphics-text conversion is a two-way street: just as it was possible to extract the OPL paragraph
above from the OPD in Fig. 2.1, that OPD can be reconstructed from its OPL paragraph; that is, the
collection of OPL sentences that specify in text what the OPD specifies in graphics. As an exercise, the

© Springer Science+Business Media New York 2016 11
D. Dori, Model-Based Systems Engineering with OPM and SysML, DOI 10.1007/978-1-4939-3295-5 2

12 Text and Simulation Enhancements

graphics-text equivalence principle can be verified by reconstructing Fig. 2.1 versa. It is easier to edit the
graphics and get the immediate textual feedback.

1 s0 i

Vehicle Occupants Group

OPD (Object-
Process Diagram)

Automatic Crash
Responding

OPL (Object-
Process Language)
paragraph | I

|Automatic Crash Responding affects Vehicle Occupants Group.

L

Fig. 2.1 A screenshot of OPCAT showing the OPD on top and the first object-process language (OPL) sentence
generated in response to the modeler’s insertion of the effect link

The ability to switch back and forth between graphics and text means that OPM system specification
writers and modelers are less likely to make costly design errors. Moreover, readers of the textually
specified model are more likely to fully comprehend the system and detect mistakes or omissions. The
specification reader can fill gaps in his or her understanding of the system that may have formed while
examining one modality by looking at the other one. In doing so, the reader reinforces familiarity with the
specification and can more easily detect design errors or omissions.

2.2 States and Animated Simulation

States are important entities in a conceptual model. In this section, we introduce states and show how an
OPM model can be simulated by animation to play out its dynamics, particularly its state transitions. So
far, we have modeled the fact that the object Vehicle Occupants Group was affected by the process
Automatic Crash Responding. To identify the actual nature of this effect, we need to be more specific. To
this end, at any point in time during which we inspect a certain object, that object may be in a certain
situation, which we refer to as a state.

Dori — Model-Based Systems Engineering with OPM and SysML 13

A state is a situation or position at which an object can be, or a value it can assume,

for some positive amount of time.

Since states are possible situations or values of an object, they have no “life” of their own; they have
meaning only in the context of the object to which they belong and within which they reside.

2.2.1 The Effect of a Process on an Object

The effect that a process has on an object is a change in the state of that object. In other words, the
process transforms the object from its input state (the state before the process occurred) to its output state
(the state after the process occurred). Therefore, at any given point in time, a stateful object is in one of its
states or in transition between two of its states.

Vehicle Occupants Group
{possibly injured} {being helped}

Automatic Crash
Responding

Fig. 2.2 The states of Vehicle Occupants Group are added: possibly injured is the input state and being helped is
the output state

In order to be specific about the effect that the Automatic Crash Responding process has on the
Vehicle Occupants Group object, we first need to come up with appropriate names for the states of this
object, both before and after the occurrence of the process. Immediately after the crash, the Vehicle
Occupants Group is possibly injured; after Automatic Crash Responding, they are being helped. These
are the corresponding input and output states of the Vehicle Occupants Group object with respect to the
Automatic Crash Responding process.

Figure 2.2 shows the OPD after adding the two states of Vehicle Occupants Group, with possibly
injured being the input state and being helped—the output state. The symbol of state is a rounded corner
rectangle—rountangle' for short—that encloses the state name, which starts with a lower-case letter. The
state symbol is drawn inside the rectangle of the object that “owns” the state. This adding of states
created the following new OPL sentence:

Vehicle Occupants Group can be possibly injured or being helped.

'This term was coined by D. Harel.

14 Text and Simulation Enhancements

OPL sentences in this book are written in Arial font. Reserved phrases, such as “can be”, are in regular
font while all the rest (including commas and periods) are in bold font.

2.2.2 From an Implicit Effect to an Explicit State Change

Having specified the two states of the object Vehicle Occupants Group, we can now be more specific
about the effect—the state change—that the occurrence of the process Automatic Crash Responding has
brought about. We do this by replacing in Fig. 2.3 the single bidirectional effect link with an input-output
link pair (also called input-output specified effect link), which is a pair of unidirectional arrows, one from
the input state to the process and the other from the process to the output state.

Vehicle Occupants Group

[possiblyinjured] [bemg helped]

Input state
Output state

Input link Automatic Crash Output link
Responding

Fig. 2.3 The effect link in Fig. 2.2 is replaced by an input-output link pair that explicates the change of state of the
Vehicle Occupants Group from the possibly injured input state to the being helped output state

The arrow from the input state to the process is the input link, and the arrow from the process to the
output state is the output link. Together, these two links constitute the input-output link pair. In response
to this editing of the model, the previous OPL sentence, “Automatic Crash Responding affects Vehicle
Occupants Group.”, is replaced by the following OPL sentence:

Automatic Crash Responding changes Vehicle Occupants Group from possibly injured to being helped.

By specifying the affecting process and the affected object with its input and output states, this
sentence accurately reflects the details of the dynamics of the system.

2.2.3 State Naming

The names of states must reflect the various relevant situations in which their “owning” object can be at
any given point in time. For example, off, standby, and on are three possible states of a machine, which
would lead to the following OPL sentence:

Machine can be off, standby, or on.

As noted, the convention is that, unlike names of things (objects or processes), which have a capital
letter at the start of each word, state names are always written in lower case. More descriptive names,

Dori — Model-Based Systems Engineering with OPM and SysML 15

such as “possibly injured” or “being helped”, as in our case study, should be given. It is important to
check that the resulting OPL sentence makes sense.

2.3 Animated Execution of the OPM Model

One of the most attractive and useful features of an OPM model, which enables it to be visualized and
tested, is its executability; that is, the ability to simulate a system by executing its model via animation in
a properly designed software environment.

Figure 2.4 shows three stages of executing the OPM model in Fig. 2.3. The screenshot on the left-
hand side shows the system before the Automatic Crash Responding process occurs. At this stage,
Vehicle Occupants Group is at its input state, possibly injured, which is marked by the state being solid
(colored brown).

Automatic Crash

Automatic Crash
Responding

Responding

Fig. 2.4 Executing the OPM model shown in the OPD of Fig. 2.3. Left: the system before the Automatic Crash
Responding process starts. Center: the process in action; the object is in transition from its input state to its output state.
Right: the system after the Automatic Crash Responding process has terminated

The screenshot in the center of Fig. 2.4 shows the process in action, marked as solid (colored blue).
During the time that the Automatic Crash Responding process is active (that is, when it executes), the
object Vehicle Occupants Group is in transition from its input state, possibly injured, to its output state,
being helped. This is marked by both states being semi-solid (light brown).

Observing the animation in action reveals that the input state gradually fades out while the output
state becomes solid. At the same time, two red dots, shown in the middle of both arrows, travel along the
input-output link pair, denoting the “control” of the system; that is, where the system is at each time
point. One red dot travels from the input state to the affecting process. At the same time, the second dot
travels from the process along the output link to the output state. Finally, the screenshot on the right
shows the system after the Automatic Crash Responding process had terminated. At this stage, Vehicle
Occupants Group is at its output state, being helped.

The animated execution of the system model has several benefits. Firstly, it is a dynamic visualization
aid, which helps both the modeler and the target audience to follow and understand the behavior of the
system over time. Secondly, similar to a debugger of a programming language, it facilitates verification
of the system’s dynamics and spotting of logical design errors in its flow of control. Therefore, it is

2You may want to try it yourself if you have modeled the system with OPCAT: Click the “Test System” film icon.

16

Text and Simulation Enhancements

highly recommended that the system model be animated frequently as it is being constructed, so that
design errors do not accumulate, but are corrected as soon as they are made.

2.4 Summary

OPM has two equivalent representation modalities: the graphic—object-process diagram (OPD)
and the textual—object-process language (OPL).

The OPL sentences and the OPD complement each other, as they appeal to the parallel visual
and verbal cognitive processing channels of the human brain.

A state is a situation at which an object can be.
An effect link indicates some state change of the linked object by the linked process.

An input-output link pair indicates the specific state from and to which the process changes the
object.

An OPM model is amenable to animated simulation, which facilitates understanding the
system’s dynamic aspect and testing its logical flow.

2.5 Problems

Continuing with the Baggage Handling System that you modeled in Chap. 1, let us assume that the
current model is presented in Fig. 2.5.

1.

Match a corresponding OPL sentence for each link in the OPD of the Baggage Management
System in Fig. 2.5.

Add the states unloaded and loaded to the object Baggage.

Replace the effect link between the process in your model and Baggage by an input-output link
pair.

Dori — Model-Based Systems Engineering with OPM and SysML

Passenger

Baggage Handling

Airline

Baggage

Baggage
Location

((ovon) (Gestnaton))

Fig. 2.5 System Diagram—top-level Object-Process Diagram (OPD) of the Baggage Handling System

4. Update the OPL sentence to reflect the change you made.
5. Add to your model and link the remaining objects from the specification above.
6. Using OPCAT, simulate the system by animating it.

Chapter 3
Connecting Things with Links

... The linking words or linking phrases are the set of words used to join concepts to
express the relationships between the two concepts. ... Picking the appropriate
linking words to clearly express the relationship between two concepts is possibly the
most difficult task during the construction of concept maps.

Alberto J. Cafias, cmap.ihmc.us/docs/linkingwords.html (retrieved 2014)

Links are graphical expressions of relations between things. OPM links connect processes with objects or
their states, providing meaning to relationships among them. This chapter expands the use of links in our
model and explains the semantics of various kinds of links.

3.1 Procedural Links Versus Structural Links

The links we have been using so far—the effect link and the input and output links—are procedural links.

A procedural link is a link that specifies a dynamic aspect of the system by connecting

an object (or one of its states) and a process.

Procedural links can be transforming or enabling. Transforming links express transformation—
generation, consumption, or state change—of the object by the process to which it is linked. Enabling
links express enablement. They connect a process to an enabler—an object that enables the occurrence of
that process but is not transformed by that process.

Structural links model the structure of the system by expressing long-term relations between things in
the model. Structural links include aggregation-participation (whole-part), generalization-specialization,
and other long-lasting relations.

A structural link is a link that specifies a static aspect of the system by connecting an

object to another object or a process to another process.

3.2 Adding Enablers

The top-level OPD that we have been modeling is called the System Diagram (SD). Often called a context
diagram, the SD provides a “50,000-foot view” of the system. It allows the modeler and all the
stakeholders interested in understanding the system via its OPM model to quickly grasp the function—the
main process of the system, which in this case is Automatic Crash Responding. The SD also shows the

© Springer Science+Business Media New York 2016 19
D. Dori, Model-Based Systems Engineering with OPM and SysML, DOI 10.1007/978-1-4939-3295-5 3

http://cmap.ihmc.us/docs/linkingwords.html

20 Connecting Things with Links

beneficiary. In our case, Vehicle Occupants Group is also the operand of the system; it is the main object
transformed by the system’s function, with its input and output states.

We are not quite done yet; while the function and the operand are important, they do not provide the
full picture of the system, even at this most abstract level. Objects that enable this function should be
presented in addition to the beneficiary. These enablers include human and non-human objects, which in
OPM are referred to as agents and instruments, respectively.

3.2.1 Adding an Agent and an Agent Link

Reading through our system description, we note that the advisor is a major human player in our system,
so we would like to model her. A human, as part of an OPM system, is an object referred to as an agent.

An agent of a process is a human or a group of humans that interacts with the system

to enable and/or control that process, but is not transformed by it.

Vehicle Occupants Group

{possibly injured} {being helped}

Automatic Crash
Responding

Advisor

Fig. 3.1 Advisor is added as the agent of Automatic Crash Responding using the agent link from Advisor to
Automatic Crash Responding. The optional stick figure also indicates that the object is a human
The agent link, —e, shown in Fig. 3.1, is a “black lollipop”—a connecting line starting at the object
and ending with a black circle at the process end. This symbol denotes that the object linked to the
process is a human whose presence is mandatory for the process to happen.

The agent link indicates that there is a “human in the loop”, usually indicating that an interface is
required between the human—the agent—and the system in order for the agent to interact with it. Fig. 3.1
shows Advisor added as an agent to the Automatic Crash Responding process. The process cannot start
or be sustained without the agent, but the process does not transform the agent: It does not create or
consume it, nor does it change the agent’s state. Hence, agent is a human enabler of the process. The
OPL sentence that is generated as a result of adding the agent link is:

Advisor handles Automatic Crash Responding.

Dori — Model-Based Systems Engineering with OPM and SysML 21

The OPL reserved word handles denotes the need for an agent to enable the process. While the Vehicle
Occupants Group object is a group of people, they not an agent. These people are the beneficiary and
operand of the system—they do change and are hence transformed by the system’s function and benefit
from it.

3.2.2 Adding an Instrument and an Instrument Link

While Advisor is an agent (a human enabler), our system also has an inanimate enabler—an instrument.
The instrument that enables the system’s function, Automatic Crash Responding, is the automatic crash
response (ACR) system, which we shall call ACR System. The instrument is denoted by an instrument
link—a white lollipop, —O. Similar to the agent link, the instrument link is a line that connects the object
to the process that requires that instrument. Like the agent, while the instrument is needed for the process
to happen, the instrument is not transformed (created, consumed, or affected) by the occurrence of this
process.

An instrument of a process is a non-human that interacts with the system to enable

and/or control that process, but is not transformed by it.

Vehicle Occupants Group

{ possibly injured J { being helped J
A

ACR System

Automatic Crash
Responding

Advisor

Fig. 3.2 ACR System is added as instrument of Automatic Crash Responding using the instrument link from ACR
System to Vehicle Occupants Group

Figure 3.2 shows the instrument ACR System added using the instrument link from Advisor to Vehicle
Occupants Group. The instrument link is the line ending with a blank circle at the process end, which
denotes that the object at the origin of the link is an instrument with respect to this process. An instrument
is an inanimate, non-human enabler of the process; in other words, the process cannot start or take place
without the existence and availability of the instrument throughout the process duration. Like the agent,
the instrument is not transformed as a result of the process occurrence.

The OPL sentence that OPCAT generated as a result of adding the instrument link is:

Automatic Crash Responding requires ACR System.

22 Connecting Things with Links

The OPL reserved word requires denotes the need for an instrument to enable the process.

|An enabler is an agent or an instrument.

3.3 Adding Structural Links

At this stage in the modeling of the system, we have already modeled a portion of the system diagram
(SD), which is the top-level OPD. An additional thing (object or process) that we should include in the
SD is the Vehicle, since this is the object that the driver and passengers occupy—the Vehicle Occupants
Group—and it is also part of the ACR system.

occupies Vehicle Occupants Group

{ possibly injured } [being helped }

3\ A

ACR System

Vehicle Automatic Crash

Respondin
e p g

Advisor

Fig. 3.3 Vehicle is added as part of the ACR System, and the tagged structural link from Vehicle Occupants Group to
Vehicle is added with the tag “occupies”

Figure 3.3 shows our SD with Vehicle added and linked to these two objects with two links. These
two links are called structural links. The first is aggregation-participation link, from ACR System to
Vehicle. The second link is tagged structural link from Vehicle Occupants Group to Vehicle. We next
discuss each one of these structural links.

Vehicle is connected via an aggregation-participation (whole-part) link as part of the ACR System.
The aggregation-participation symbol is 4, a solid equilateral triangle with its tip directed upwards and
linked to the whole, and its base linked to the part or parts. This graphical aggregation-participation link
is expressed textually the following OPL sentence:

ACR System consists of Vehicle.

The OPL reserved phrase consists of denotes the aggregation-participation relation, with the whole
(ACR System in our case) preceding it and the part (Vehicle in our case), or parts, following it.

Dori — Model-Based Systems Engineering with OPM and SysML 23

Vehicle is connected to Vehicle Occupants Group via a second type of structural link—the tagged
structural link. A tagged structural link is an open arrow that points from one object to another. The tag is
a “user-defined” phrase—a phrase that is defined by the modeler and recorded along the link, expressing
the nature of the structural relation between the two connected objects (or processes). In our model, the
link’s tag is occupies. It is bold since it is defined by the modeler and is not an OPL reserved phrase.
Adding the tagged structural link initiates the generation of the following OPL sentence:

Vehicle Occupants Group occupies Vehicle.

Tags in tagged structural links provide the modeler with the ability to express the semantics of any
structural relation between any two objects or any two processes in the system. As the above OPL
sentence demonstrates, a tagged structural link gives rise to an OPL sentence in which the name of the
object connected to the source of the link’s arrow appears first (Vehicle Occupants Group in our case),
followed by the tag name (occupies), followed by the name of the object connected to the destination of
the link’s arrow (Vehicle).

3.4 Physical Versus Informatical Things

Things (objects or processes) are classified by their essence attribute into two kinds: physical things and
informatical things. All the objects in our model so far have been physical, as denoted in Fig. 3.3 by the
shadow behind each object.

The default essence value of a thing can be determined by the system modeler. If the system is an
information system, it makes sense to set the default essence value of a thing as informatical, because
most of the things in such a system would be informatical. In this case, if a thing is informatical and it is
already mentioned in at least one OPL sentence, no additional OPL sentence is required to indicate that
this thing is informatical. If, however, the thing is physical, this is denoted in a dedicated OPL sentence.
For example, assuming that the system we are modeling was set with informatical essence value, the OPL
sentence below was added to denote the fact that the essence of Vehicle is physical.

Vehicle is physical.

As for Automatic Crash Responding, which is our main process and the system’s function, it is
possible at this point to say that it is informatical, because it only involves conveying the information that
the vehicle has been involved in a crash and that there has been a subsequent call for help for its
occupants. The actual helping process, which is physical, is outside the scope of this system. The essence
of the Automatic Crash Responding process can be changed later to physical if we realize that it involves
one or more physical subprocesses.

24 Connecting Things with Links

3.5 Model Facts and OPL Paragraphs

As we have seen, each time we introduced a link between two things or changed the essence of a thing
from informatical to physical, at least one OPL sentence was added or modified. Thus, as we model, facts
start accumulating and be expressed in the model.

‘A model fact is a relation between things or states in the model.

We have been gradually accumulating OPL sentences, which collectively constitute the OPL
paragraph and together the textual modality. The OPL paragraph describes in plain English precisely
what the OPD—the graphical modality—describes visually.

Currently, the OPL paragraph reads as follows.

Vehicle Occupants Group is physical.
Vehicle Occupants Group can be possibly injured or being helped.
Vehicle Occupants Group occupies Vehicle.
Advisor is physical.
Advisor handles Automatic Crash Responding.
ACR System is physical.
ACR System consists of Vehicle.
Vehicle is physical.
Automatic Crash Responding requires ACR System.
Automatic Crash Responding changes Vehicle Occupants Group from possibly injured to being helped.
In order to save space, we take the liberty to omit the sentences expressing the physical essence of
things in most of the OPL paragraph examples that follow, since this is obvious from the shading in the

OPD.

3.6 Environmental Versus Systemic Things

The text that we have started using as the basis of our model is not written in a way that facilitates the
modeling process. Details about the system’s structure and behavior are scattered throughout the text. We
first encounter the crash in the sentence “The accelerometer ... measures the crash severity.” Later we
read: “Within seconds of a moderate-to-severe crash ...”

Combining these specifications with our previous personal knowledge about car crashes, we realize
that the specification author meant to express the fact that a Crashing process has occurred. This process
is not systemic; that is, it is not part of the system. Rather, it is external to the system—it happens in the
system’s environment: Crashing adversely affects Vehicle and possibly the Vehicle Occupants Group,
and the ACR System needs to respond to the outcomes of this unfortunate process.

Things that are not part of the system, but interact with it, are referred to as environmental. These
environmental things are contrasted with systemic things—things that are part of the system. Graphically,
environmental things are marked by a dashed contour, as opposed to the solid contour of systemic things.
In Fig. 3.4, Crashing can be identified as an environmental process by its dashed contour and as a
physical process by its shading. This is also reflected in the following OPL sentence:

Dori — Model-Based Systems Engineering with OPM and SysML 25

BT Vehicle Occupants Group
' . Crashing .'," [possibly injured] [being helped J
- VR - ‘ A
i O&,Q\“ ACR System
Vehicle Automatic Crash
Responding ;
Advisor

Fig. 3.4 Crashing is added as an environmental process that affects Vehicle
Crashing is environmental and physical.

Vehicle Occupants Group can also be considered as environmental, because it is not part of the ACR
System but rather the beneficiary and the operand—the object on which the system operates to transform
it. In our case, the transformation is from the possibly injured state to the state of being helped. Figure
3.4 displays Vehicle Occupants Group as a physical object by its shading. This is also reflected in the
following OPL sentence:

Vehicle Occupants Group is physical.

The thing’s attribute whose values are systemic and environmental is called affiliation.

3.7 Initial and Final States

As soon as Crashing occurs, Vehicle is affected. Figure 3.4 shows this via the effect link, which is the
bidirectional arrow between Crashing and Vehicle. However, the exact nature of the effect—the state
change—is not yet specified in the model. To make the model clearer, we have omitted, for now, the
aggregation-participation link from ACR System to Vehicle. To make the change explicit, the input and
output states of Vehicle in Fig. 3.5 are specified as intact and crashed. The corresponding OPL sentence
is:

Vehicle can be intact or crashed.

The input state, intact, is the initial state; that is, the state at which the object starts its lifecycle after
being generated. This is denoted graphically by the thick contour around intact. The output state,

26 Connecting Things with Links

crashed, is the final state; that is, the state from which the object cannot exit. This is denoted graphically
by the double contour around crashed. Textually, by the corresponding OPL sentence specifies the two
states:

Vehicle is initially intact and finally crashed.

Using the initial and final state symbols, possibly injured and being helped are designated in Fig. 3.5
as the initial and final states of Vehicle Occupants Group, respectively:

Vehicle Occupants Group is initially possibly injured and finally being helped.

Vehicle Occupants Group

l . 1

| Crashing '.' [possibly injured] [being helped]
e _ g \ A

ACR System
/ Vehicle {1
Automatic Qrash
intact ‘ J— Responding — | P
Visor

Fig. 3.5 The effect of Crashing is made explicit by replacing it with an input-output link pair that specifies
the input and output states of Vehicle. The event link from the crashed state of Vehicle triggers
Automatic Crash Responding

Having specified the states of Vehicle, we replace the single effect link between Crashing and Vehicle
by an input-output link pair. The semantics of this change can be best understood by examining the OPL
sentences generated before and after this replacement. Originally, the OPL sentence that corresponded to
the OPD in Fig. 3.4 read as follows:

Crashing affects Vehicle.
After replacing the effect link in Fig. 3.4 by the input-output link pair in Fig. 3.5, the OPL sentence is:
Crashing changes Vehicle from intact to crashed.

The latter sentence is clearly more informative, as it tells us specifically from what input state to what
output state the Crashing process changed Vehicle. However, this additional detail comes at the expense
of loading the OPD with two links—the input and output links—instead of the single effect link.

Dori — Model-Based Systems Engineering with OPM and SysML 27

3.8 Triggering State and Event Link

As soon as Vehicle enters its crashed state, the function of the ACR System—Automatic Crash
Responding—is triggered. To model this, we draw an instrument event link from the state crashed to the
process Automatic Crash Responding.

As Fig. 3.5 shows, an instrument event link is a procedural link that is graphically similar to an
instrument link with an additional control modifier—the letter e next to the circle. The semantics of this
link is a combination of the semantics of the instrument link with that of triggering an event. In our case,
this links denotes the fact that entry of Vehicle into its crashed state is an event that initiates the process
to which it is linked. In other words, the semantics of the event link is that once Vehicle enters the
crashed state (from which the event link originates), the Automatic Crash Responding process (to which
the event link is directed) is initiated. The instrument component of the link indicates that Vehicle is not
transformed (neither consumed nor changes its state) by the Automatic Crash Responding process it
triggers. The OPL sentence generated in response to inserting this event link is:

Crashed Vehicle initiates Automatic Crash Responding, which requires crashed Vehicle.

This OPL sentence reflects the combined semantics of the event control modifier, which is expressed
by the reserved OPL word initiates, with that of the instrument link, which is expressed by the reserved
OPL word requires. AS the sentence demonstrates, Vehicle at its crashed state is simply crashed Vehicle.

3.9 Summary

e Enablers are required for a process to occur, but are not affected by the occurrence of that
process.

e An agent is a human enabler, while an instrument is a non-human enabler.
e Two types of links connect entities with each other: structural links and procedural links.

o Procedural links, which are between a process and an object or one of its states, express the
behavior of the system; for example, an effect link.

o Structural links express persistent, long-term relations between two connected objects or between
two connected processes in the system; for example, an aggregation-participation link.

e Since the structural and the procedural links are expressed in the same diagram, they help
integrate the structure and the behavior of the system.

e Things—that is, objects and processes—are classified by their
o Essence into physical things and informatical things, and by their
o Affiliation into systemic things and environmental things.

e A process is triggered by an event link.

28

Connecting Things with Links

3.10 Problems

When a passenger arrives at the airport with her baggage, she checks it in. The airline loads the
baggage on-board the aircraft.

1.

Define three states of Baggage based on the holder or the location of the baggage from the time
the Passenger arrives at the Airport until Baggage is loaded on the Airplane.

Add three states to the OPD you started to construct in the previous chapter (remember to use
lower-case letters).

What is the OPL sentence that describes the states of Baggage?

What is the process that changes Baggage from the first state to the second state?

Add this process to the OPD along with the input link from the first state to the process and from
the process to the second state.

What is the OPL sentence that describes the change of Baggage states?

Repeat problems 4—6 with the process that changes Baggage from the second state to the third.
Perform animated simulation on your model by triggering each one of the two processes and
watch the states change as expected. Provide screenshots of the model at the various states.

When the aircraft arrives at the destination airport, the baggage is unloaded and returned to the
passenger.

9.

Based on the text above, repeat problems 7—8 with the process that changes Baggage from the
third state to the first.

Chapter 4
SysML: Use Case, Block, and State
Machine Diagrams

SysML supports the specification, analysis, design, verification, and validation of a
broad range of complex systems. These systems may include hardware, software,
information, processes, personnel, and facilities.

OMG SysML, v1.3 p.1 (Accessed June 20, 2014)

We leave OPM for a while and turn to start our parallel SysML model. SysML is a multi-view language,
where each view uses a different type of diagram. There are nine SysML diagram types in total. In this
chapter we are exposed to three diagram types: the use case diagram, the block definition diagram, and
the state machine diagram. The use case diagram shows the context of the system and how the system is
used to bring value to at least one of its actors. The block definition diagram presents the blocks of the
system—major entities of interest. The state machine diagram shows how states of blocks in the system
are changed. Comparing OPM and SysML, we already see that the approaches they take are different and
complementary. OPM uses a single model that combines the various system aspects, while SysML uses a
number of diagram types, each focusing on some particular aspect of the system.

4.1 The SysML Use Case Diagram

We start our model with the use case diagram, since this is the view that is used to elicit requirements
and to provide initial understanding of the system and its surroundings.

IA use case is a way the system is used, a service it provides to at least one of its users.

According to the OMG SysML 1.3 (2012) standard, a use case diagram “describes the usage of a
system (subject) by its actors (environment) to achieve a goal that is realized by the subject providing a
set of services to selected actors” (OMG SysML 1.3, 2012, p.145).

Before drawing use case diagrams, use cases need to be written in text. This text takes on different
formats. Depending on need, use cases are written in varying degrees of formality. They can be

® brief—short one-paragraph summary, usually of the main success scenario;
® casual—informal paragraph format, where multiple paragraphs describe various scenarios; and

e fully dressed—the most elaborate level, where all the steps and variations are written in detail,
and there are supporting sections, such as preconditions and success guarantees.

Figure 4.1 is a preliminary use case diagram of the Automatic Crash Response (ACR) system.

© Springer Science+Business Media New York 2016 29
D. Dori, Model-Based Systems Engineering with OPM and SysML, DOI 10.1007/978-1-4939-3295-5 4

http://www.omg.org/spec/SysML/1.3/PDF/

30 SysML: Use Case, Block, and State Machine Diagrams

The name of the use case in our use case model is “Automatically respond to crash.” As Fig. 4.1
shows, the use case is depicted as an oval with the name inside it. The system users are called actors.

An actor is an external entity that interacts with the system and can get services from
it.

An actor is depicted either as a human stick figure, or as the stereotype «actor»; see Table 4.1. Two
actors appear in the use case diagram in Fig. 4.1: Vehicle Occupants and Advisor. An actor is by
definition an external entity. Unlike OPM, SysML does not require that the actor be a person; it can be
anything with which the system interacts.

uc ACR-System)

ACR-System

/ Advisor

A |

R —
Vehicle [T
Occupants

Automatically
respond to
crash

Fig. 4.1 A preliminary SysML use case diagram of the Automatic Crash Response (ACR) system

Vehicle Occupants are undoubtedly an external entity, since they are not part of the system, but
rather its users and beneficiaries. The case for the Advisor is not that clear-cut, since the Advisor can be
considered as part of the system, and rather than getting a service from the system, she is the one that
provides the service. However, the requirement that an actor gets a service is not mandatory, and as a
human, the Advisor interacts with the system. In this model, we exclude humans from being considered
part of the system; hence Advisor is also an actor. Each one of the two actors is linked to the use case via
a communication path—a line between the actor and the use case.

The system which provides the required function in a use case diagram is called subject.

A subject in a use case diagram is the system that provides the service.

Dori — Model-Based Systems Engineering with OPM and SysML 31

A use case subject is depicted as a rectangle with the subject name at the rectangle's top center. As
Fig. 4.1 shows, the subject in our use case diagram is called ACR-System.

The entire use case diagram is depicted within a diagram frame—a rectangle that is required for any
SysML diagram. In its upper leftmost corner, a diagram frame has name tag—a rectangle with a tapered
bottom right corner—which contains the heading name. The heading name has the following syntax:

<diagramKind> [modelElementType] <modelElementName> [diagramName]

The fields diagramKind, which is bolded, and modelElementName are mandatory. Each diagramKind
has a two or three lower case letter abbreviation. As shown in Fig. 4.1, the diagramKind of our use case is
uc, while the diagramName is ACR-System. The two other tokens, modelElementType and
diagramName are optional, and if they appear, they are enclosed within brackets, enabling the diagram
reader to tell them apart.

Table 4.1 lists the main elements of a use case diagram, their semantics and symbols.

Table 4.1 The main elements of a use_case diagram, their semantics and symbols

Element:
. Symbol
Semantics
Use Case:
A service the system (subject) provides to at least one UseCaseName
actor
Actor: %
An external entity that interacts with the system and
can get services from it ARGHians
o e N
bubject: SubjectName
The system that provides the service(s)
Communication path:
A connection between an actor and a use case

Guillemets, also known as the symbols for rewind («) and fast forward (»), are angle quotes, as the
ones surrounding the following word: «guillemetsy». In SysML, a word within a pair of guillemets denotes
a stereotype—an extensibility mechanism that enables creating new model elements.

A stereotype is depicted as a rectangular box with the stereotype name, such as “block™ within a pair
of guillemets, «block», recorded in the top middle of the box, as is the case with «actor» in Table 4.1. The
name of the actor, ActorName, is recorded beneath the «actor» stereotype notation.

32 SysML: Use Case, Block, and State Machine Diagrams

4.2 SysML Blocks and the Block Definition Diagram

A SysML block is a modular component which defines a collection of features that describe a part of the
system or another element of interest. A SysML block, which roughly corresponds to a UML class, may
include both structural and behavioral features, such as properties and operations. A block can include
properties to specify its values, parts, and references to other blocks.

A SysML block definition diagram (bdd) defines features of blocks and relationships
between blocks, such as associations, generalizations, and dependencies.

The block definition diagram captures the definition of blocks in terms of properties and operations,
and relationships, such as a system hierarchy or a system classification tree. A related SysML diagram is
the internal block diagram (ibd), which captures the internal structure of a block in terms of properties
and connectors between properties.

bdd ACR-System)
ACR-System Automatic-Crash-Response
provides
benefit
from
Advisor
Vehicle
Occupants

Fig. 4.2 A preliminary block definition diagram of the Automatic Crash Response (ACR) system
Figure 4.2 is a preliminary block definition diagram (bdd) of the Automatic Crash Response (ACR)
system. The diagramKind, bdd, denotes this. This bdd expresses the two major blocks of the system and
the relation between them, as well as the major actors and their relations the blocks.

This two blocks in the bdd are ACR-System and Automatic-Crash-Response. They are linked by the
ReferenceAssociation labeled “provides”. Advisor is shown as an actor which is part of the ACR-System.
This whole-part relation is expressed by the black diamond, the SysML symbol for whole-part relation.

Dori — Model-Based Systems Engineering with OPM and SysML 33

Vehicle Occupants is another actor. It is linked by the ReferenceAssociation labeled “benefit from” to the
Automatic-Crash-Response block (Fig. 4.2).
Table 4.2 The main elements of a block definition diagram, their semantics and symbols

Element: Symbol

Semantics

Block
A modular component which defines a col- «block»
lection of features to describe a part of the BlockName
system or another element of interest.

Actor:
An external entity that interacts with the % «actor»
. . ActorN
system and can get services from it ActorName

ReferenceAssociation:
A link between blocks indicating the nature o1
of their association

» association1 property1
{ordered} 1..*

PartAssociation:
A link between blocks indicating that the - association _ property
block linked to the diamond is the whole 01 {ordered) 1.
Generalization:
A link between two block indicating that the >
block linked to the triangle is the general one

4.3 SysML State Machine Diagram

SysML has a diagram type that is dedicated to modeling states of a block and possible transitions among
them—the state machine diagram, or stm in short. Following the idea presented initially by Harel (1987,
1988), the SysML State Machine package defines a set of concepts that can model discrete behavior
through state transitions. The state machine can represent behavior, expressed as the state history of an
object in terms of its transitions and states.

Figure 4.3 is a SysML state machine diagram (stm) of the Vehicle Occupants Group. It is similar to
the OPD in Fig. 2.3 in that both contain the same two states for the Vehicle Occupants Group. The stm
symbol used to denote a state is a rountangle—the same as in OPM. The main difference between the two
is that stm is not of the entire ACR system. Rather, it is only of the Vehicle Occupants Group block. The
OPM process Automatic Crash Responding is expressed in the stm as a trigger by the same name, which
causes the transition from the possibly injured state to the being helped state.

The black circle in Fig. 4.3 is the initial state. This state is referred to as a pseudo state since it is not a
real state, just an indication to the diagram reader where to start. It is linked to the initial state, possibly
injured, of the block whose state machine is modeled, which in our case is Vehicle Occupants Group. The
black circle with the white rim in Fig. 4.3 is the final (pseudo) state—it is pointed to by the (real) final
state—being helped. These two symbols enable identification of the initial and final states in a state
machine diagram, respectively. As we shall see later, OPM denotes an initial state using a bold line of the

34 SysML: Use Case, Block, and State Machine Diagrams

state rountangle frame, and a final state—by a double rountangle frame. This eliminates the need for the
two kinds of pseudo states that SysML uses.

stm Vehicle Occupants Group /'

possibly Automatic Crash Responding

injured

being
helped

Fig. 4.3 A SysML State Machine diagram (stm) of the ACR system
Table 4.3 The main elements of a state machine diagram, their semantics and symbols

Element (node) name:
Semantics

State Machine Diagram: ot OwneaStaaMachinet
A diagram specifving possible states of a block, transitions

between them. and conditions for those transitions.

Symbol (Syntax)

State:
A situation a block can be at during its lifetime. Can be State2
simple (atomic, non-decomposable) or composite.

Composite State:
- N

A state enclosing lower level. possibly atomic (non- /. !
composite). states. T)
State1
LS >
State2 J
LSS P
Transition:
A connection between two states specitving how states in a
state machine change. Labeled by a trigger. which is trigger{guard]\activity

associated with an event, optional [guard]. which is a
condition for the trigger. and ‘activity, which is a possible
action done during the transition.

Dori — Model-Based Systems Engineering with OPM and SysML

Table 4.3 shows the main elements of a state machine diagram, their semantics and symbols. As the
table shows, a state can be composite and contain inner, lower-level processes. A transition can be
labeled, in addition to a trigger, also by an optional guard in brackets and one or more optional activities

that syntactically follow the backslash symbol (\), which are actions done during the transition.

4.4 Summary

e SysML has nine types of diagrams that model various aspects of the system

e The use case diagram is often the first to be prepared since it provides the context of the system

and how actors interact with it.

e Block is a basic unit, akin to class in UML, used in the block definition diagram and internal

block diagram. It serves to define the structure of the system.

e State machine diagram is a SysML diagram that specifies the possible states of relevant blocks

in the system and transitions between these states.

4.5 Problems

1. Draw a SysML use case diagram of the system described below.

baggage handling system manages the transfer of the baggage to the passenger’s destination.

A passenger arriving at an airport deposits her baggage with the airline she is flying with. A

Draw a block definition diagram of the system in the system described above.

3. Baggage Location has states passenger, origin airport, aircraft, destination airport, other

location. Model this using a SysML state machine diagram and indicate what causes transitions

between states.

4. Compare the three types of diagrams created in the three problems above in terms of their

information content.
What can be said about the system by looking at each diagram alone?
6. How can the information be integrated to obtain a complete view of the system?

Chapter 5
Refinement Through In-Zooming

The deepest parts of the ocean are totally unknown to us... What goes on in those
distant depths? What creatures inhabit, or could inhabit, those regions twelve or
fifteen miles beneath the surface of the water? It’s almost beyond conjecture.

Jules Verne, 20,000 Leagues under the Sea (1869)

The previous chapters have exposed us to the basic concepts of OPM, yet we have barely scratched the
surface of the system we are modeling. In this chapter, we specify more details about the system while
revealing some more modeling concepts of OPM and how they can be utilized to represent our system in
more detail. In order to examine the text that specifies the system we are modeling, we return our focus to
information from the first sentences:

“The accelerometer ... measures the crash severity.”
We combine this information with that from a sentence in the sequel:

1l

“Within seconds of a moderate-to-severe crash, the OnStar module will send a message ...’

The text skims over important information that we need to glean indirectly. We have already modeled
the fact that the Vehicle is (at state) crashed. The phrase “moderate-to-severe crash” indicates that we
need to model the crash severity, as this determines whether a message will be sent. The implicit
assumption, which we model here, is that if the crash is light, it is unlikely to have caused an injury, so
the system should not be activated. Consequently, it makes sense to have Crash Severity Measuring as the
next process to model.

5.1 Measuring Crash Severity

We have already determined that Automatic Crash Responding is the function of our ACR System. This
is the main process in the system diagram, SD—the top-level OPD. The Crash Severity Measuring
process, which we are about to model, is clearly not at the same level of centrality as Automatic Crash
Responding. Instead, it is a subprocess of Automatic Crash Responding. Moreover, as we understand the
system now, it is going to be one (perhaps the first) of several subprocesses of the Automatic Crash
Responding function.

We could try modeling Crash Severity Measuring in a way similar to Crashing. However, this is
probably not a good idea, for several reasons. Firstly, Crashing is an environmental process. Secondly,
modeling Crash Severity Measuring at the same level as Automatic Crash Responding could be
interpreted as meaning that these two processes are at the same level of importance, although they
obviously are not. Thirdly, our OPD is already starting to be somewhat crowded, and we would like to
keep it simple and readily understandable.

© Springer Science+Business Media New York 2016 37
D. Dori, Model-Based Systems Engineering with OPM and SysML, DOI 10.1007/978-1-4939-3295-5 5

38 Refinement Through In-Zooming

5.2 In-Zooming: Refining a Process in a New OPD

New-diagram in-zooming is an OPM modeling process that creates a new, descendant OPD, in which the
details of the in-zoomed process—its subprocesses and objects associated with them—can be specified. In
our case, Automatic Crash Responding is in-zoomed, making it possible to refine this process by modeling
its subprocesses and their interactions with lower-level objects in a new OPD at a level beneath the SD level.
Figure 5.1 shows the Automatic Crash Responding process after it was in-zoomed and after its first
subprocess, Crash Severity Measuring, was drawn inside it near the top of the enclosing ellipse of the
Automatic Crash Responding process. The links that were attached to Automatic Crash Responding have
migrated to be attached to Crash Severity Measuring.

Vehicle Occupants Group

ACR System [possibly injured] [being helped [uninjured]
\ A
Vehicle
Automatic Crash
intect X Responding
.
‘ Crashing Crash Severity

Measuring

Fig. 5.1 The Automatic Crash Responding process is in-zoomed, showing its first subprocess, Crash Severity
Measuring, nested inside it

5.3 The OPD Tree

The OPD in Fig. 5.1 does not replace the SD that we have been working on. Instead, it is a new OPD that
comes in addition to and at a lower level than SD. SD is always the only top-level OPD—it is the roof of the
OPD tree. Figure 5.2, which is a screenshot of OPCAT, shows both the top-level OPD, SD (in the left

Dori — Model-Based Systems Engineering with OPM and SysML 39

window), and the new one, called SD/—Automatic Crash Responding in-zoomed (to the right of SD). Figure

5.2 also shows at the OPD hierarchy pane on the left hand side the OPD process tree, which currently has
just two OPDs: SD and SD1.

Satem E01 Wew Notaion Oparalon G4nacn Help
EEE [e Bed W00 e=E Ee8 Sol [he & see &
Modela. =) : iR m=nl-] 5D 1 Autansatic Crash Fespording n-roomo

i eosaan Sawser ‘ K '

Vehicle Occupants Group
———

TEmso s St Vehicle Occupants Group ACR System [V"**“'*'"‘"“ t\“"'?‘_'"_""'-’J, L[el
KR =01 Aot pov e (TR passioly njured being helped A
S| G |Cmm) ()

e 2 £ -] ! Veicle
e ACR System o

. 1] Automatic Crash
,
Vehicle " - i)
e N

i Respending
Automatic Crash
Responding

< Crashing 3

Crash Severity
Measuring

3
U

| Teaen Doo AAAR = AP LR AN

Fig. 5.2 A screenshot of OPCAT, concurrently showing two OPDs: SD (left) and SD1—Automatic Crash Responding in-
zoomed (right). The OPD hierarchy tree is presented on the left pane

SD and SD1 are the two OPDs that currently constitute the OPD set; that is, the set of OPDs,
organized as a process tree, which together specify the system. The OPD set keeps growing as additional
OPDs are gradually constructed to increasingly refine the model and make it more concrete. The ability to
add a descendant, subordinate OPD whenever the one currently under work reaches its congestion limits
makes it possible to avoid over-cluttering any single OPD.

The OPL sentence that links the OPL paragraph of SD to the OPL paragraph of SD1 is:
Automatic Crash Responding from SD zooms in SD1 to Crash Severity Measuring.

This kind of sentence indicates the hierarchical relationships between any two OPL paragraphs
representing OPDs from adjacent hierarchy levels. In our cases, it indicates that SD1 is a child of SD.

5.4 The Model Fact Representation OPM Principle

The tagged structural link in SD from Vehicle Occupants Group to Vehicle, which in Fig. 3.3 is labeled with
the tag occupies, is not repeated in SD1 (Fig. 5.1). This omission is a presentation choice based on the
following model fact representation OPM principle.

The Model Fact Representation OPM Principle

An OPM model fact needs to appear in at least one OPD in order for it to be represented in the
model.

40 Refinement Through In-Zooming

This principle stipulates that it is enough for a model fact to appear only once in any OPD of the OPM
model in order for it to be valid for the entire model. This principle does not preclude the possibility of
representing any model fact any number of times in as many OPDs as the modeler wishes. However,
although any number of entities can be included in any OPD, for the sake of clarity and avoiding clutter,
it is often highly desirable to include only those elements that are necessary in order to grasp a certain
aspect or view of the system. In our case, we have elected not to include the tagged structural link in SD1,
as it does not add to comprehension of the point we want to make in this OPD.

5.5 The Crash Severity Attribute and Its Measurement

The first Automatic Crash Responding subprocess, Crash Severity Measuring, determines Crash Severity.
Crash Severity is a new object not yet modeled. Crash Severity is not just a new object; it describes Vehicle.
In other words, it is an attribute of Vehicle. This attribute becomes relevant as a result of the Crashing
process.

An attribute is an object that characterizes a thing.

In our case, Crash Severity is the attribute that characterizes the object Vehicle. Figure 5.3 shows
Crash Severity linked to Vehicle via an exhibition-characterization structural relation. The exhibition-
characterization symbol is an equilateral black triangle inside a larger white one, like this: A, The tip of
this triangle is linked to the exhibitor, which is the object Vehicle, and its base is linked to the object
Crash Severity, which is an attribute of Vehicle.

As an object in its own right, this attribute has four states. More precisely, since states of an attribute
are called values, Crash Severity has four values: none, light, moderate, and severe. These are shown in
Fig. 5.3 inside Crash Severity. The OPL sentence that enumerates these values is as follows:

Crash Severity can be none, light, moderate, or severe.

As soon as Crashing occurs, the state of Vehicle changes from its initial intact state to its final crashed
state. Upon entry of Vehicle to its crashed state, the state-specified instrument event link from the
crashed state to Crash Severity Measuring initiates this subprocess. Crash Severity Measuring is the first
(and currently the only) subprocess of the in-zoomed Automatic Crash Responding process. Crash
Severity Measuring changes Crash Severity from its initial state, none, to exactly one of the three other
states.

Figure 5.3 expresses this graphically by way of (1) the input link from the none value of Crash
Severity to the Crash Severity Measuring process, and (2) the three alternative output links emanating
from the same point on the ellipse of Crash Severity Measuring to each one of the three values, light,
moderate, and severe, joined by a dashed arc. This dashed arc indicates the XOR (exclusive OR) logical
operator among links. In OPCAT it shows up automatically only when the XOR’ed links emerge from a
common point, as is the case here, or arrive at a common point (as in Fig. 6.2).

The facts that these three output links originate from the same point and that a dashed arc connects
them together symbolize the XOR logical operator between the links: Crash Severity Measuring
determines that Crash Severity can have precisely one of its three possible output values: light, moderate,
or severe, but not any two or all three at the same time. Indeed, the OPL sentence that describes this state
change is:

Dori — Model-Based Systems Engineering with OPM and SysML 41

Vehicle Occupants Group
ACR System [possibly injured] [[being helped]] [[uninjured]]
\

Vehicle

[intact []\
A

\

A o

Crash Severity

Crash Severity
Measuring

L5
moderate
>
severe

Fig. 5.3 Crash Severity, with its four states, is added as an attribute of Vehicle. The state none is the initial and input
state, and light, moderate, and severe are the possible output states of the Crash Severity Measuring process

Crash Severity Measuring changes Crash Severity from none to exactly one of light, moderate, or severe.

5.6 Simulating the System: An Animated Execution Test

At this point, it is worthwhile to start carrying out an animated execution of the system at its current design,
in order to test its conceptual operation. Figure 5.4 shows the system after the (environmental) process
Crashing has changed the state of Vehicle from intact to crashed, which was the event that has initiated the
Automatic Crash Responding process. Within this process, Crash Severity Measuring is about to be
finished, changing the attribute Crash Severity of Vehicle from none to one of the light, moderate, or severe
states.

42 Refinement Through In-Zooming

possibly injured e

Fig. 5.4 Animated execution of the system at its current design: Crash Severity Measuring has just finished, changing
Crash Severity from none to severe

5.7 Summary

e In-zooming is a refinement mechanism that helps manage system complexity.
e Zooming into a process creates a new OPD with an inflated in-zoomed process.

e Lower-level processes (subprocesses) are nested within this in-zoomed process and they can be
linked to lower-level objects inside or outside the in-zoomed process.

e Recursive in-zooming results in an OPD set that has a tree structure, in which lower-level OPDs
model increasingly refined details about the system.

e The model fact representation OPM principle stipulates that in order for an OPM model fact to be
represented, it needs to appear in at least one OPD in order for it to be represented in the model.

e Using this principle helps decrease diagram clutter, making each diagram simple enough to be
grasped without cognitive overload.

Dori — Model-Based Systems Engineering with OPM and SysML 43

5.8 Problems

Continuing with the Baggage Handling System, let us assume that the current model is presented in Fig. 2.5.

1.

oo koUW

Check if all the enablers—agents and instruments—of the Baggage Handling process appear in
Fig. 2.5. If there are missing enables, add them.

What is the appropriate link type between Airline on the one hand and Aircraft and Airline
Personnel on the other? Add the links the model.

What is the appropriate link between Passenger and Baggage? Add it to the model.

Which objects are physical? Express this in the model.

Which objects are environmental? Express this in the model.

Which objects in the model should be stateful? Add the relevant states to each such object.

Chapter 6
The Dynamic Aspect of Systems

The expert may, in the process of explaining some idea or description of a behavior,
suddenly reach for pad and draw sketches of what he/she does, and say “it has to look
like this” or “I know just by looking at the chart if something is wrong.”

Firlej and Helens (1991)

Continuing with modeling our case study, in this chapter we further discuss process issues, such as
execution order and how to specify that processes are sequential, concurrent, or alternative. These issues
are related to the system's dynamic aspect and to its operational semantics.

6.1 Exiting in Case of Light Severity

Recall that the ACR system specification stipulates:

‘ Within seconds of a moderate-to-severe crash, the OnStar module will send a message ...

Hence, if Crash Severity is light, we wish to model that the Automatic Crash Responding process is
exited and the system finished its execution. To do this, in Fig. 6.1, we add to Vehicle Occupants Group a
third state, uninjured, which is also final. Using a condition link (an instrument link with the control
modifier ¢ next to its circle end) we connect the state light of Crash Severity with a new subprocess,
Exiting, which changes the state of Vehicle Occupants Group to uninjured. In this case, the execution of
the system terminates. The semantics of the condition link is that if the object to which the link is attached
exists, or if the state to which the link is attached is the current object state, then the process executes,
otherwise the process is skipped. The condition instrument link semantics is weaker than that of the (non-
condition) instrument link. The semantics of the latter is that if the linked object does not exist (or is not
at the required state), then the execution of the system stops, waiting for the instrument to become
existent (or at the required state).

6.2 Message Creating and Sending

We continue with modeling what happens in case Crash Severity Measuring has changed Crash Severity
from none to moderate or severe, based on the following text:

Within seconds of a moderate to severe crash, the OnStar module will send a message to the
OnStar Call Center (OCC) through a cellular connection, informing the advisor that a crash has
occurred. Based on the message received, the advisor sends help as needed.

© Springer Science+Business Media New York 2016 45
D. Dori, Model-Based Systems Engineering with OPM and SysML, DOI 10.1007/978-1-4939-3295-5 6

46 The Dynamic Aspect of Systems

Vehicle Occupants Group
ACR System [possivy injureq][[being helped]} [[uninjured]]
3

Vehicle

l intact l }.
7 - ﬁ-) -Z 5 LY ®

A\ —t 2
Crash Severity ,
c

Automatic Crash
Responding

Crash Severity
Measuring

Fig. 6.1 Crash Severity Measuring has determined that Crash Severity is light, so Exiting changes the state of
Vehicle Occupants Group to uninjured

According to this description, following Crash Severity Measuring, as a result of a crash whose Crash
Severity is moderate or severe, a message is created and then sent via the OnStar Call Center to the
advisor, who sends help based on the message. Accordingly, as Fig. 6.2 shows, we add three subsequent
subprocesses: Message Creating, Message Sending, and Help Sending. The following OPL sentence
expresses the XOR relation between the condition links from the moderate and severe states of Crash
Severity to Message Creating.

Message Creating occurs if Crash Severity is exactly one of moderate or severe.

As we recall, the model fact representation OPM principle states that an OPM element needs to appear
in at least one OPD in order for it to be represented. Based on this principle and in order to simplify the
OPD, the environmental process Crashing, which appeared in Fig. 6.1, has been removed from Fig. 6.2.
This enables us to add objects mentioned in the text that are relevant here: the OnStar Call Center and the
Cellular System, which are parts of the ACR System (in addition to the Vehicle), as well as the Advisor
and the Message.

Dori — Model-Based Systems Engineering with OPM and SysML 47

6.3 Process Execution Order: The Timeline OPM Principle

Figure 6.2 shows that if the Crash Severity attribute of Vehicle has a value of moderate or severe, the
Message Creating process creates Message within the scope of the Automatic Crash Responding process.
Message Creating requires both OnStar Call Center and Cellular System as instruments.

Vehicle Occupants Group

ACR System [possibly injured] [[uninjured]] [(blng helped]]
\ i A B

Vehicle)
| intact l F 4 Responding
o
0 v
Crash Severity
Crash Severity Measuring

Message
Creating
@,

Message
Sending

Message

Cellular System Advisor

Fig. 6.2 Message Creating, Message Sending and Help Sending are added as three sequential subprocesses
along with the objects OnStar Call Center, Cellular System, Message, and Advisor

The five subprocesses in Fig. 6.2 are arranged by their execution order (the timeline perspective) from
top to bottom. This is based on the following timeline OPM principle.

The Timeline OPM Principle

The timeline within an in-zoomed process is directed by default from the top of the in-zoomed
process ellipse to its bottom.

48 The Dynamic Aspect of Systems

The timeline OPM principle is followed by default, unless there is indication to deviate from the
timeline. Indications to deviate from the top-to-bottom timeline within an in-zoomed process include
internal events within the scope of the process which can cause loops.

The top-most point of the process ellipse serves as a reference point, so a process whose reference
point is higher than its peer starts earlier. If the reference points of two or more processes are at the same
height (within some tolerance), these processes start simultaneously.

According to the timeline OPM principle, Crash Severity Measuring is executed first, followed by
Exiting (in case of light Crash Severity) or, in case of moderate Crash Severity or severe Crash Severity,
by Message Creating, followed by Message Sending and Help Sending.

6.4 Help Is on the Way!

We go on to model the following text, which describes what happens when the Advisor gets the Message.

A voice connection between the advisor and the vehicle occupants is established. The advisor
then can conference in 911 dispatch or a public safety answering point (PSAP), which determines
if emergency services are necessary, and if so, is it ambulance, helicopter, or both. If there is no
response from the occupants, the advisor can provide the emergency dispatcher with the crash
information from the SDM that reveals the severity of the crash. The dispatcher can identify what
emergency services may be appropriate. Using the Global Positioning System (GPS) satellite,
OnStar advisors are able to tell emergency workers the location of the vehicle.

This description covers a lot of ground and includes a number of new processes, including Voice
Connection Attempting, Public Aid Conferencing, Crash Information Providing, and Emergency Service
Dispatching.

Figure 6.3 shows Help Sending in-zoomed. Voice Connection Attempting creates Voice Connection,
which can be impossible (if the passengers do not respond or there is no cellular connection; not
modeled) or established. If Voice Connection is impossible, the Advisor informs the Emergency
Dispatcher about the value of the Crash Severity and location via the Severity & Location Informing
process. The Emergency Dispatcher is a generalization of 911 Dispatch and Public Safety Answering
Point.

If Voice Connection is established, the conferencing involves Passenger Inquiring by the Advisor and
the Emergency Dispatcher. Either Passenger Inquiring or Severity & Location Informing determines the
Required Emergency Service, which can be none, ambulance, helicopter, or ambulance & helicopter.
This decision is used for Emergency Service Dispatching, which, if needed, sends the appropriate
Emergency Workers Group, an environmental object, on its way to help, changing the state of Vehicle
Occupants Group to being helped.

Dori — Model-Based Systems Engineering with OPM and SysML 49

6.5 Scenarios: Threads of Execution

Figure 6.4 shows a specific tread of execution of Help Sending, which can be traced by following the
state of each object. Voice Connection Attempting creates Voice Connection at state established, leading
to Passenger Inquiring. If this process creates Required Emergency Service at state none, Exiting takes
place, otherwise Emergency Service Dispatching takes place. Either way, the Vehicle Occupants Group
transition to the state of being helped.

. Emergency |
i Dispatcher | Advisor
'

Help Sending

Voice Connection
' Attempting ™ Voice Connection
! Public Safety & Passenger
1 Answering Poil i Inquiring

Severity &
Location
Informing

Message

Vehicle Occupants Group

possibly injured
being helped |

e
| ®O.@®

W - e . Emergency Service

' Emergency Dispatching

+ Workers Group

Required Emergency Sevrice

ambulance &
[none] ambulance helicopter helicopter
< o~

=N

Fig. 6.3 Help Sending is in-zoomed, exposing four subprocesses that culminate in the Vehicle Occupant Group at the
state of being helped. (Note: in this and in the next OPD the c of the condition link is drawn inside the circle)

50 The Dynamic Aspect of Systems

Voice Connection
Attempting A~

impossible

Severity &
- Location
Vehicle Occupants Group Required Emergency Sevrice Informing Message

possibly injured

¢ Emergency Service |
_ Dispatching

Fig. 6.4 Help Sending executed, showing a specific thread of execution in progress. It can be traced by following the
state of each object

6.6 Summary

e The condition link semantics is that if the object to which the link is attached exists, or if the
state to which the link is attached is the current object state, then the process executes, otherwise
it is skipped.

e The XOR relation between procedural links indicates that exactly one of the possible interactions
denoted by these links materializes.

e XOR is denoted graphically by a common point from which all the XOR'ed links originate or at
which they terminate, and a dashed arc through these links whose center is the common links'
point.

e The timeline OPM principle stipulates that the timeline within the context of an in-zoomed
process is directed by default from the top of the in-zoomed process ellipse to its bottom.

Dori — Model-Based Systems Engineering with OPM and SysML 51

e The subprocess execution order is determined by the height of the top subprocess ellipse points,
such that the one at the top starts first.

e If the top ellipse point of two or more subprocesses is at the same height, within a predefined
tolerance, they start simultaneously. This is the way to model process synchronization.

6.7 Problems

Let us consider the OPD in Fig. 6.5. It the OPD obtained by zooming into the Baggage Handling process
in SD in Fig. 2.5, called “SD1 — Baggage Handling in-zoomed”.

Baggage Handling

Baggage

Origin

ZAX Baggage Baggage Handling

Location

Origin Airport

origin

aircraft

Destination Airport F

other

- =

¢ Passenger
., lLeaving ,

0

/%

Lost & Found
Desk i

C)
Lost&Found
Baggage Handling

Passenger

Fig. 6.5 SD1 — Baggage Handling in-zoomed, the OPD obtained by zooming into the Baggage Handling process in
SDin Fig. 2.5

Baggage Handling includes (1) origin baggage handling—airline personnel checking-in a
passenger’s baggage and loading it onto the aircraft at the originating airport, (2) destination
baggage handling—unloading it at destination airport, and (3) returning it to the passenger

1. Model all the enablers—agents and instruments—of the Baggage Handling process.

2. Identify the three subprocesses specified in the frame above. Which subprocess appears in the
OPD but not in the description above?

52

The Dynamic Aspect of Systems

What is the appropriate structural link between Passenger and Baggage that would be consistent
with SD (Fig. 2.5)? Add it to the model.

Baggage Location is an attribute of Baggage whose values (attribute states) are the various
possible locations of Baggage. What are the four Baggage Location values in the model? What
is the initial state and what is the final state? How can you tell?

Add to Baggage a second attribute, called Baggage Holder, with three values: passenger,
security, and airline.

Show how subprocesses of Baggage Handling change the value of Baggage Holder.
How does Origin Baggage Handling change the state of Baggage Location?

What is the semantics of the dashed arc between the arrows from Origin Baggage Handling to
aircraft and other?

Chapter 7
Controlling the System’s Behavior

The picture... corresponds to the concept or memory image associated with the words.
Schapiro (1996)

Control in the context of conceptual modeling is the ability to determine the flow of processes and how
they transform objects under various conditions and circumstances. Several control structures enable us to
determine how the system will behave over time. These include Boolean objects for branching and
control modifiers—condition and event indicators that are added to procedural links and augment their
semantics. In this chapter we discuss and show how control structures are used to model system behavior.

7.1 Branching with Boolean objects

We often need to specify that if some condition holds, do something, otherwise, do something else. In
programming languages we use the “if ... then ... else” or case statements. For example, in our ACR
running example, let us focus on the first Help Sending subprocess, Voice Connection Establishing. The
agents of this process are the Advisor and the Vehicle Occupants Group, while its instruments are the
OnStar Call Center and the Cellular System. Going back to the Help Sending text, we read again:

A voice connection between the advisor and the vehicle occupants is established. ... If there is no
response from the occupants, the advisor can provide the emergency dispatcher with the crash
information...

This implies that we need to model whether the Advisor received a response from the Vehicle
Occupants Group or not. What we need is a branching mechanism as in an “if... then” clause. The OPM
solution to this need is a Boolean object. In most programming languages, a Boolean variable is a logical
variable which can be represented by a single bit, since it has exactly two values, usually called True and
False. Similar to this concept, an OPM Boolean object is an informatical object with two states, which is
generated by a process calling for decision making. In other words, a Boolean object is a dual-state
decision object that is generated as a result of the process of responding to the need to decide. The
Boolean object is created in one of the two states. That state is the one which specifies the decision.

A Boolean object is a dual-state decision object that is generated as a result of the
\process of making a decision of choosing between exactly one of the two possible

States.

© Springer Science+Business Media New York 2016 53
D. Dori, Model-Based Systems Engineering with OPM and SysML, DOI 10.1007/978-1-4939-3295-5 7

54 Controlling the System's Behavior

Vehicle Occupants Group

ACR Sy [possibly injured] [J
stem

x Help Sending

OnStar Voice Connection
Call Center Establishing
; Advisor
|“'g3§'SC‘§tQFﬁR Response Received?
y (=)
: c
Crash Severity E

Crash i A mergency
Information 5 iyl Dispatcher

Conferencing

Providing
Crash Location

& 911 Dispatch
6‘5'?5‘0 Emergency Service
Dispatching

Public Safety
— GPs Answering Point

Fig. 7.1 The states of the Boolean object “Response Received?” determine the system’s behavior

The name of a Boolean object may end with a question mark, in which case its OPL version is put in
quotes, as in “Response Received?” The question should be phrased such that when combined with the
answer using a state-specified instrument link or a condition link the resulting OPL sentence will make
sense, although it might not sound very natural.

As Fig. 7.1 shows, the name of our Boolean object is “Response Received?” and it has the two states,
yes and no. Each one of these states is linked with a condition link, denoted by the letter ¢ next to the
circle of (and in older versions inside) the instrument link. Each condition link is to one of the two
alternative processes. Since by the definition of state an object cannot be at the same point in time in more
than one state, “Response Received?” is cither yes or no, as expressed by the following OPL sentence:

“Response Received?” can be yes or no.

Since both the no and the yes states are respectively connected to the processes Crash Information
Providing and Public Aid Conferencing with condition (rather than instrument) links, exactly one of these
two possible processes can occur: either Public Aid Conferencing occurs and Crash Information Providing
is skipped, or Crash Information Providing occurs and Public Aid Conferencing is skipped. This is how
alternative processes are modeled in OPM. In Fig. 7.1, these two alternative processes are at the same
height to emphasize that one or the other happens, but not both. This is good practice that facilitates the

Dori — Model-Based Systems Engineering with OPM and SysML 55

diagram comprehension, but the flow of control would be the same even if the alternative process ellipse
heights would not be the same.

A Boolean pair is a pair of inverse names for the states or values of a Boolean object.

There are several predefined Boolean pairs that can be incorporated into an automated OPM-
supporting tool. Examples include the Boolean pairs true and false, positive and negative, black and
white, on and off, up and down, black and white, good and bad, right and left, top and bottom, correct
and incorrect, right and wrong, right and left, north and south, high and low, big and small, OK and not
OK, approved and denied, passed and failed, greater than or equal to x and smaller than x (which can
also be written as >=x and <x, where x can be any input number), and greater than x and smaller than or
equal to x (which can also be written as >x and <=x). In addition to these pre-defined Boolean pairs, the
user can, of course, use any other Boolean pair simply by specifying the names of the two states of the
Boolean object.

There is nothing methodologically special about a Boolean object that differentiates it from any other
informatical object, except that is has exactly two states. In the general case, an object can have any
number of states (including zero, in which case it is stateless). Having several states is akin to a “case
statement” in programming languages, as each state, in turn, can be an instrument or a condition for some
subsequent process. If a state-specified instrument link originates from the state, the semantics is “wait
until the object is at the specified state.” If a condition link originates from the state, the semantics is “do
the process if the object is at the specified state, else skip this process.”

7.2 Condition Link Versus Instrument Link

Two links originate from the “Response Received?” Boolean object. One is from the yes state of this
Boolean object to the Public Aid Conferencing process, while the other—from the no state of this object
to the Crash Information Providing process. These two links are condition links.

As Fig. 7.1 shows, a condition link is syntactically (graphically) similar to an event link, except that
the control modifier (the letter inside the blank circle) is “c” (for condition) instead of the letter “e”,
which is the control modifier of the event link.

Semantically, the condition link is akin to an “if...then” command: If the object is at the state from
which the condition link originates, then execution of the target process, i.e., the process to which the
link’s circle is attached, is attempted. If the object is not in the state linked to the condition link, or if not
all the preconditions for the occurrence of this process are fulfilled, the process is simply skipped.

The preconditions for a process occurrence include existence of all the process’ consumees (objects
that the process needs to consume), affectees (objects whose state the process changes), which must all be
in their input state, and enablers (agents and instruments).

This semantics is partly expressed by the two OPL sentences corresponding to the two condition links:
Public Aid Conferencing occurs if “Response Received?” is yes.
and

Crash Information Providing occurs if “Response Received?” is no.

56 Controlling the System's Behavior

Like an instrument link, a condition link can also originate from a stateless object (an object without
states) rather than from an object’s state. In this case, if the object exists (either from the beginning of the
system execution or because it was created at some point during the system execution), then execution of
the target process is attempted, and if not—the process is skipped.

Comparing the condition link to the instrument link, we see that the semantics of a condition link is
weaker than an instrument link. This is so because in the case of a condition link, the process being
triggered is skipped if not all the preconditions for the occurrence (execution) of that process are fulfilled.
Conversely, in the case of an instrument link, the execution of the system halts and waits until all the
conditions for the target process occurrence are fulfilled. In a programming language terms, the condition
link is analogous to “if...then”, whereas the instrument link is analogous to “wait until...” Indeed, the
OPL reserved phrase of the condition link is “occurs if’, while for the instrument link it is “required”.

7.3 Generalization-Specialization

Let us now consider the text that follows:

... The advisor then can conference in 911 dispatch or a public safety answering point (PSAP)...
If there is no response from the occupants, the advisor can provide the emergency dispatcher with
the crash information.

Three help entities are mentioned here: 911 Dispatch, Public Safety Answering Point, and Emergency
Dispatcher. From the text it is evident that the entity getting the crash information, Emergency
Dispatcher, is a generalization of both 911 Dispatch and Public Safety Answering Point. Conversely, 911
Dispatch and Public Safety Answering Point are both specializations of Emergency Dispatcher.

Generalization-specialization is a powerful structural relation, which provides for abstracting any
number of objects or process classes into superclasses. Syntactically, the generalization-specialization
relation is a white triangle whose tip is linked to the generalizing link and whose base—to the specializing
ones. In Fig. 7.1, this link is shown connecting the general Emergency Dispatcher to the two
specializations, 911 Dispatch and Public Safety Answering Point. The OPL phrase expressing this relation
is “is @” (or “is an”). The following OPL sentences express this:

911 Dispatch is an Emergency Dispatcher.
Public Safety Answering Point is an Emergency Dispatcher.

More succinctly, these two sentences can be expressed as one:
911 Dispatch and Public Safety Answering Point are Emergency Dispatchers.

Semantically, the generalization-specialization link induces inheritance of features, states, and links
from the generalizing superclass—the general to its subclasses—the specializations. For example, the
single agent link from Emergency Dispatcher to Emergency Service Dispatching in Fig. 7.1 is inherited
to both 911 Dispatch and Public Safety Answering Point. This is an example of the power of
generalization and the inheritance it induces: instead of drawing six agent links from 911 Dispatch and
Public Safety Answering Point to each one of the three bottom subprocesses in Fig. 7.1, only three are
drawn, but they are interpreted as six.

Dori — Model-Based Systems Engineering with OPM and SysML 57

7.4 Zooming into Crash Severity Measuring

We left some of the system specification early in the text, so this part is not yet modeled. Let us back up
and complete the model based on what we read:

The ... ACR system uses front and side sensors as well as the sensing capabilities of the Sensing
and Diagnostic Module (SDM) itself. The accelerometer located within the SDM measures the
crash severity.

Vehicle Occupants Group

[possub\y injured] being helped §

ACR System T

Emergency Service
Dispatching

Crash Severity
Measuring

Vehicle e =
rash Severi
“
zeill Front Sensor -
light
—
2.M | Side Sensor "-
> moderate
Sensing and >
r Diagnostic Module @ severe
SDM Sensor
Accelerometer

Fig. 7.2 Zooming into Crash Severity Measuring

The focus here is on using sensors to measure the crash severity with objects that we have not yet
included in our model. We already have modeled the process Crash Severity Measuring as the first
subprocess of Automatic Crash Responding (see Fig. 6.3) and the Sensing and Diagnostic Module as the
instrument of this process. Therefore, to add details, such as the various sensors and their sensing
processes, what we need to do now is zoom into Crash Severity Measuring.

Figure 7.2 is an OPD in which Crash Severity Measuring is in-zoomed, showing that it consists of two
subprocesses: Sensing and Diagnosing, which are performed sequentially in the top-to-bottom order of
their appearance in the in-zoomed process: First Sensing, then Diagnosing. Not surprisingly, the Sensing
and Diagnostic Module is the instrument for both these subprocesses. Therefore, the instrument link from

58 Controlling the System's Behavior

this object touches the outer Crash Severity Measuring process, acting like parentheses in algebra to
denote that it applies to all the subprocesses within it.

7.5 Participation Constraints

The instruments of Sensing are also front and side sensors, as well as a sensor inside the Sensing and
Diagnostic Module, which we model as SDM Sensor. Since the number of front and side sensors in not
specified, and all we know is that there is more than one of each kind, we model Vehicle (which, in turn,
is part of the ACR System) as having two to many objects of the class Front Sensor and two to many
objects of the class Side Sensor. In the OPD in Fig. 7.2, this is expressed by the participation constraint
2..m appearing next to Front Sensor and Side Sensor. The corresponding OPL sentence is:

Vehicle consists of Sensing and Diagnostic Module, 2 to many Front Sensors, and 2 to many Side Sensors.

7.6 Logical Operators: OR Versus XOR

The Sensing process does not need all or even some of the sensors to generate a Shock Signal—one is
enough. Yet, more than one sensor can generate the Shock Signal. This is the definition of the OR logical
operator. OR is semantically more relaxed than its XOR counterpart, providing for one or more inputs or
outputs rather than exactly one. XOR requires that exactly one of several alternatives be selected. For
example, as Fig. 7.2 shows, a XOR logical operation between three links of the same type from
Diagnosing to the three states light, moderate, and severe, is expressed by the single dashed arc whose
center is the common origin of these links. While XOR is denoted by one dashed arc, OR is denoted by
two dashed arcs, as shown by the three instrument links ending at the same point on the ellipse of the
Sensing process in Fig. 7.2.

The OPL sentence that expresses the OR operator is simply:
Sensing requires SDM Sensor, Side Sensor, or Front Sensor.

Comparing this to the XOR in the same OPD, we see that XOR is expressed by the reserved OPL phrase
“exactly one of”, as in the following OPL sentence.

Diagnosing changes Crash Severity to exactly one of light, moderate, or severe.

7.7 Crash Severity Measuring Refined

Reading the specification more carefully, we notice that we did not model the following sentence:
The accelerometer located within the SDM measures the crash severity.

Instead, in Fig. 7.2 we modeled the Accelerometer as the instrument for the Diagnosing subprocess. From
its name, we deduce that the function of the Accelerometer is the measure acceleration, so although this is

Dori — Model-Based Systems Engineering with OPM and SysML 59

not explicitly specified, in Fig. 7.3 we add the process Acceleration Measuring, with Accelerometer as its
instrument and Acceleration Measuring as its resultee—the object that results from this process.

7.8 Scope of Things: Signal as a Temporary Object

Inspecting the content of the in-zoomed Crash Severity Measuring in Fig. 7.3, we realize that in addition
to the two processes it also contains two objects, Shock Signal and Acceleration Signal. Indeed, this is
also reflected in the following three corresponding OPL sentences. The first one is:

ACR System

Vehicle Occupants Group

[possibly injured] [being helped }<{~
T

Emergency Service
Dispatching

‘ E Vehicle

In-vehicle ACR
Subsystem

Crash Severity
Measuring

Crash Severity

none

light

Sensors Set

Sensing and

: Diagnostic Module

Sensing Unit

Acceleration ¥

Signal

= moderate

| severe

il

Accelerometer

Diagnostics
Unit

Fig. 7.3 Crash Severity Measuring refined

Crash Severity Measuring zooms into Impact Sensing, Acceleration Measuring, and Diagnosing in that sequence,
as well as Acceleration Signal and Shock Signal.

This sentence lists the three subprocesses that get exposed in the in-zoomed Crash Severity
Measuring: Impact Sensing, Acceleration Measuring, and Diagnosing. The reserved phrase “in that
sequence” indicates that the top-to-bottom order in which the subprocesses are listed is their execution
order. This list of processes is followed by the reserved OPL phrase “as well as”, followed by the list of
two contained objects: Shock Signal and Acceleration Signal. The reserved OPL phrase “as well as”

60 Controlling the System's Behavior

separates between the list of processes and the list of objects in an in-zoomed process. The subprocesses
are parts of the in-zoomed process while the objects are attributes of that in-zoomed process. For an in-
zoomed object, the order would be reversed: The list of objects would come first, followed by “as well
as”, followed by the list of processes. In this case, the internal objects are parts of the in-zoomed object,
while the internal processes are operations of that in-zoomed object.

The two informatical objects Shock Signal and Acceleration Signal are created inside the Crash
Severity Measuring process by two of its subprocesses. They are then immediately consumed by the third
subprocess, Diagnosing, and disappear. In general, objects inside an in-zoomed process are temporary:
they exist and are recognized solely within the scope of that process. This would remain true even if we
use two instrument links instead of the two consumption links. If we wish to preserve these objects, they
must reside outside the in-zoomed process.

7.9 How Is Diagnosing Done?

As we retargeted the Accelerometer to be the instrument of Acceleration Measuring, we stripped
Diagnosing off its instrument. How then is Diagnosing carried out?

Pondering into the name Sensing and Diagnostic Module as the part of the system that has a sensing
capability and the Accelerometer as one of its parts, we conclude that Sensing and Diagnostic Module
must also contain a part that is in charge of the diagnosis. Hence we model the Sensing and Diagnostic
Module as consisting of three parts: the Accelerometer and two other parts. One is the Sensing Unit
(which in Fig. 7.2 was called SDM Sensor), and the other is the Diagnostics Unit. This structure is
modeled in Fig. 7.3 and is expressed in the following OPL sentence:

Sensing and Diagnostic Module consists of Accelerometer, Sensing Unit, and Diagnostics Unit.

Examining Fig. 7.3 we see that Sensing Unit is part not just of Sensing and Diagnostic Module, but
also of the newly introduced object Sensors Set. Indeed, another OPL sentence in our OPL paragraph
reads:

Sensing and Diagnostic Module consists of Accelerometer, Sensing Unit, and Diagnostics Unit.

7.10 Summary

e A Boolean object has two states and is used for modeling flow of control.

e A condition link has a control modifier ¢ added to a procedural link, augmenting its semantics
with skip meaning.

e Generalization-specialization is a fundamental structural relation that induces inheritance of
features (attributes and operations), links, and states from the general thing to the specialized
thing.

e Participation constrains enable specifying how many objects of the same class participate in a
relation.

Dori — Model-Based Systems Engineering with OPM and SysML

61

e ORis arelaxed version of the XOR logical operator that allows any subset of participating links
to be active at once, rather than exactly one of them, as XOR does.

e Objects within an in-zoomed process are recognized only in the scope of that process. If they are
used in places outside that scope they must be placed outside the in-zoomed process.

7.11 Problems

Figure 7.4 is SD1.1—Origin Baggage Handling in-zoomed. This is the OPD obtained by zooming into

the Origin Baggage Handling process in SD1 (Fig. 6.5).

| Airport
: Origin Airport Origin

Airline Personnel

Aircraft

Baggage
A

IATA Tag

aggae Holder

passenger

airline

A Baggage Handling
— Airport Personnel Checking In
Security S i
! Airport Facility Set gcurty Scresiing
Security Clearance
Obtained?
Yes
Sorting & Loading

A

security

i * aircraft other

Baggage
Location

Fig. 7.4 SD1.1—Origin Baggage Handling in-zoomed

62

Controlling the System's Behavior

0 2 N oo kU

Checking In creates (yields) an object—what is it?

Checking In also affects another object—what is it? What are the input and output states of
Checking In?

Who is the agent for Security Screening?

What object does Security Screening create?

What type of object is it?

Explain how this object controls branching.

What subprocess affects Baggage Location?

Can you find a loop in the OPD? Describe it.

How is it possible that in Fig. 6.5 the process Origin Baggage Handling changed Baggage
Location from origin to either aircraft or other, while here, in Fig. 7.4, the process Sorting &
Loading changes the same object, Baggage Location, also from origin to either aircraft or other?

Chapter 8
Abstracting and Refining

Make everything as simple as possible, but not simpler.
Albert Einstein

So far we always increased the refinement (detail) level of our model and we did it via zooming into
processes. There are cases where we need to decrease the refinement level, or, in other words, abstract the
model. This can happen when we realize that there are too many details already squeezed into a single
diagram, making it too crowded and hence less comprehensible. We do not want to delete details of the
model, as they are important for complete system specification. Yet we want then taken out of a specific
crowded diagram. We do this by creating a new OPD at an intermediate detail level by zooming out of
the too detailed OPD and creating one at a higher level of abstraction. In this chapter we focus on this
abstracting process and then discuss and improve a structural view of the system.

8.1 In-Zooming: Refining a Process in a New OPD

Reading carefully the sentence:

Regardless of whether the air bags deploy, the SDM [Sensing and Diagnostic Module] transmits
crash information to the vehicle's OnStar module.

It looks like airbags are not really essential in our model. However, examining the sentence further,
we notice that our model is missing a subprocess of transmitting the crash information from the Sensing
and Diagnostic Module to the OnStar Module, which apparently is another part of the ACR System located
inside the Vehicle that we have not yet modeled.

The natural place to add the OnStar Module object and the Crash Info Transmitting process is in the
OPD in Fig. 6.2, which, for the sake of convenience, is shown here again as Fig. 8.1. As we see, this OPD
is already crowded, so adding it OnStar Module as an object and Crash Info Transmitting as a fifth
subprocess inside Automatic Crash Responding would further complicate it, making it even less
comprehensible. An important objective in OPM modeling is to keep each OPD sufficiently clear and
readable in order to avoid overwhelming the diagram reader. Thus, we need to figure out a way to add the
new things without overcomplicating this or any other OPD.

Examining the four subprocesses in Fig. 8.1 we notice that the two middle ones, Message Creating
and Message Sending, are of similar nature to that of Crash Info Transmitting, the new subprocess we
wish to introduce. The solution will therefore be to merge Message Creating and Message Sending into a
new subprocess which we will call Message Handling. Then, we will zoom into this new process in a
new, separate OPD, exposing three subprocesses: Message Creating, Message Sending, and Crash Info
Transmitting. The merging of Message Creating and Message Sending results in process out-zooming, in
which two or more processes are abstracted them into a higher-level process.

© Springer Science+Business Media New York 2016 63
D. Dori, Model-Based Systems Engineering with OPM and SysML, DOI 10.1007/978-1-4939-3295-5 8

64 Abstracting and Refining

Vehicle Occupants Group

ACR System [possibly injured] [[uninjured ﬂ [[being hefpedﬂ
\ A)

Vehicle Automatic Crash

intact []\ Responding
\
Q .
Crash Severity
Crash Severity Measuring
c
O
Message
Creating
o Message
5
Message
Sending

OnStar Call Center

Advisor

Cellular System '

Fig. 8.1 Message Creating and Message Sending are about to be out-zoomed and replaced by Message Handling

Doing so has another advantage: in Fig. 8.2 we define an aggregate object, called In-vehicle ACR
Subsystem as a part of Vehicle. Having done this, we can now model only In-vehicle ACR Subsystem as
part of ACR System rather than modeling the entire Vehicle as part of ACR System. This new In-vehicle
ACR Subsystem object consists of OnStar Module and all the other objects inside Vehicle that are part of
the ACR System. This modification further simplifies the OPD. Figure 8.2 indeed looks simpler than its
previous version in Fig. 8.1.

This simplified version enables us to explicate the relation between Advisor and OnStar Call Center
without overcomplicating it. We add a tagged structural link with the tag operates from, yielding the
following OPL sentence:

Advisor operates from OnStar Call Center.

Dori — Model-Based Systems Engineering with OPM and SysML 65

ACR System Vehicle Occupants Group
[possibly injured] [] [bemg helped]<
1 ' %

Vehicle

|intacl I

Automatic Crash
Responding

Crash Severity

Crash Severity

none =
Measuring

V\(c Exiting
Advisor

lignt

=
d

moderate

24 Message Handling

I

severe

Onstar Call Center (i Seﬁ, I

Message

Cellular System

Fig. 8.2 Abstracting Message Creating and Message Sending from Fig. 8.1 into Message Handling. Link colors
facilitate OPD comprehension and highlight the c of instrument condition links inside the circle

8.2 Message Handling In-Zoomed

Figure 8.3 presents the OPD in which Message Handling is zoomed into. We rename Message Creating to
be Crash Info Creating. As the two XOR'ed event links from the moderate and severe states of Crash
Severity, this process is triggered either by a moderate or a severe crash.

Only two of the four values of are modeled in Fig. 8.3: moderate and severe. To remind the diagram
reader that there are additional values that are not shown here, the “at least one other state” symbol—a
small state symbol with ellipsis (three dots)—is added at the bottom of Crash Severity. The corresponding
OPL sentence is:

Crash Severity can be moderate, severe, or at least one other state.

66 Abstracting and Refining

ACR System

Vehicle

%C

rash Severity essage Message
andling
C)
i Crash Info
In-vehicle ACR w ; Crash Severety Info
Subsystem - Creating
(|
A\
Crash Location
Sensing and 4
Diagnostic Module Crash Info
Transmitting :
——/ Progression
GPS sdm module
Message
Sending onstar module
OnStar Module
;

Cellular System

OnéStar Call Center

K is located In

Fig. 8.3 Zooming into Message Handling

When a process like Message Handling is in-zoomed, there are initially no internal subprocesses, so
all the procedural links that start from or end at the in-zoomed process are placed along that process
ellipse contour. As the modeler specifies the internal subprocesses, each one of these links must be
migrated (in GUI terms, its process end needs to be dragged) to the appropriate subprocess. Gradually, all
the links surrounding the parent, in-zoomed process trickle inwards until none is linked to the parent
process, as shown in Fig. 8.3. This should be done unless the link applies to all the subprocesses inside
the in-zoomed process, in which case it should be left there. A link touching the parent process is
supposed to be linked to each one of the subprocesses inside that process. An example appears in Fig. 8.2,
where crashed Vehicle is instrument to all the four subprocesses inside Automatic Crash Responding.

The Message Creating process creates the informatical object Message, which consists of two parts:
Crash Severity Info and Crash Location. Crash Severity Info is created by the Sensing and Diagnostic
Module, while Crash Location—by the GPS. These two objects are therefore modeled as instruments of
Crash Info Creating. These details of which module creates what part are not modeled at this level; they
would be shown in the next level down, when Message Creating is in-zoomed.

Dori — Model-Based Systems Engineering with OPM and SysML 67

8.3 Structural View of the ACR System

As Fig. 8.5 shows, the structure of the ACR System has undergone quite a few changes. I would be
beneficial to examine the entire structure alone without any dynamic aspects of processes and state
transitions. OPCAT provides such an automatic facility. Figure 8.4 shows the automatically-generated
structural view of the ACR System, after manual rearrangements for improved readability. A four-level
hierarchy is exposed, which is also expressed in the following OPL sentences, where the indentation helps
realize the hierarchy.

ACRSystem i

| E———
I 1 | OnStar Call Center
In-vehicle ACR |
Subsystem GPS
| Sensors Set Cellular System
| 2.
]2.m F ; -
ront Sensor
Side Sensor
Sensing and OnStar Module
x Diagnostic Module
Diagno_stics Accelerometer
Sensing Unit Unit

ACR System consists of OnStar Call Center, Cellular System, GPS, and In-vehicle ACR Subsystem.

In-vehicle ACR Subsystem consists of Sensing and Diagnostic Module, Cellular System, GPS, OnStar Module,
and Sensors Set.

Sensing and Diagnostic Module consists of Accelerometer, Sensing Unit, and Diagnostics Unit.

Sensors Set consists of 2 to many Front Sensors, 2 to many Side Sensors, and Sensing Unit.

Fig. 8.4 The automatically-generated structural hierarchy of the ACR System

Examining the OPD and the corresponding OPL, two objects stick out as ones in need of remodeling:
GPS and Cellular System. The reason is that each one of these objects is part of both ACR Subsystem and
In-vehicle ACR Subsystem. However, In-vehicle ACR Subsystem is also part of ACR System. While this
is not a contradiction, it is an inconsistency, because GPS and Cellular System are both direct and indirect
parts of ACR System. As we know, neither GPS nor Cellular System in their entirety are parts of the In-
vehicle ACR Subsystem; ecach has components both inside and outside the vehicle.

68 Abstracting and Refining

ACR System A

OnStar |
: L Call Center |
In-vehicle ACR [] ars | :
—— | Cellular System |
|] I ;
| |_|In-vehicle GPS | |Ex-vehicle GPS | | Cell Phone Ex-vehicle
w Cell System
Sensors Set | '
| 1 2.m
2.m
. | Front Sensor
Side Sensor] =
I OnStar Module
Sensing and
: Diagnostic Module

|
i - 1 - Accelerometer '
Diagnostics : .

Unit ‘

Sensing Unit |

Fig. 8.5 The structural hierarchy of the ACR System after resolving the inconsistencies with GPS and Cellular System

The solution for this inconsistency, presented in Fig. 8.5, is to break each of these two objects into two
parts: GPS is split into In-vehicle GPS and Ex-vehicle GPS, while Cellular System is divided into Cell
Phone and Ex-vehicle Cell System. Both In-vehicle GPS and Cell Phone are parts of In-vehicle ACR
Subsystem, while Ex-vehicle GPS and Ex-vehicle Cell System are both parts of ACR System but not of
the In-vehicle ACR Subsystem.

8.4 Summary

e While the objective of OPM-based modeling is to go top-down and refine model facts as we go,
to avoid diagram clutter it is sometimes required to abstract two or more processes in the
crowded OPD and create a new OPD at an interim level.

e Abstraction can be achieved by process out-zooming: Creating an abstract process, which, when
in-zoomed, will include the out-zoomed subprocesses (and possibly others).

e Right after a process is in-zoomed, all the procedural links are still attached to it.

Dori — Model-Based Systems Engineering with OPM and SysML 69

As subprocesses are added, procedural link edges should be dragged from the in-zoomed process
ellipse to the appropriate subprocesses.

Only links that apply to all the subprocesses inside the in-zoomed process should remain
attached to the in-zoomed process.

A structural view is achieved by removing all the processes and the procedural links from the
model.

The structural view enables focusing on the system structure and examining possible structural
improvements.

8.5 Problems

During Sorting & Loading, the Airline Personnel carries out Baggage Sorting, changing the
Baggage Holder from security to airline. This Baggage Sorting process can result in correct or
incorrect sorting. If sorting is correct, Loading of the Baggage to the correct Aircraft takes place,
so the Baggage Location changes from origin to aircraft. Otherwise, loading of incorrectly sorted

baggage changes its Baggage Location from origin to other.

In the OPD SD 1.1.1 in Fig. 8.6, Sorting & Loading from Fig. 7.4 is in-zoomed. Referring to Fig. 8.6
and Fig 7.4, answer the following questions.

1.
2.

N o ook

What is “Soring Is Correct?”” what is it used for?

Correct Sort Loading is above Incorrect Sort Loading. Does this mean that the former process
will always be performed prior to the latter? Explain.

Can both Correct Sort Loading and Incorrect Sort Loading happen in the same execution of
Sorting & Loading? Explain.

Is it possible that when Baggage Location is other, the Baggage Holder is security?

Under what condition does the process Sorting & Loading takes place? Explain.

Why does only Origin Airport and not Destination Airport appear is the OPD?

In Fig. 7.4, there is a XOR relation to states aircraft and other of Baggage Location. When
Sorting & Loading is in-zoomed in Fig. 8.6, this XOR relation does not show up. Is this OK?
Explain.

Why is the XOR relation to states aircraft and other of Baggage Location needed in Fig. 7.4?
What two instrument links end at the Sorting & Loading? Explain the meaning of this, and why
Aircraft is only linked with Correct Sort Loading?

70

Abstracting and Refining

Security Clearance
Obtained?

hS

Airport Facility Set

Baggae Holder

security

Airline Personnel

Sorting & Loading

)

Sorting Is |~
Correct?

yes

[

@,
Correct Sort
Loading

Fig. 8.6 SD1.1.1—Sorting & Loading in-zoomed

Incorrect Sort
Loading

Ia

Origin Airport

Aircraft

Baggage
wcaﬁon

ircraft

2

n

If the baggage is not located in the destination airport (Baggage Location is other), Lost&Found
Handling occurs. The Lost & Found Desk uses the SITA World Tracer and the IATA Tag to locate
the baggage. If it is located, Corrective Handling takes place, otherwise the passenger is

reimbursed.

In the OPD SD1.2 in Fig. 8.7, Lost&Found Baggage Handling is in-zoomed. Referring to Fig. 8.7,
answer the following questions.

10.
11.
12.
13.
14.

15.

What are the attributes of Baggage?

Under what condition does Baggage Locating happen?

What are the instruments of Baggage Locating?
What kind of thing is Baggage Located?
Can Reimbursing and Corrective Handling both happen at the same execution of Lost&Found

Baggage Handling? Explain.

What states of what attributes of Baggage does Corrective Handling change? From what state to

what state?

Dori — Model-Based Systems Engineering with OPM and SysML

71
Lost & Found '7
Lost&Found Baggage
Dess Baggage Handling 9929
A\
Passenger .
Baggage Locating \ATA Tag
SITA Baggage
World Location
Tracer Baggage Located? -
=
'
i : aircraft
Compensation Reimbursing
Corrective Handling
Baggae Holder

5
) (8
3'

B passenger

Fig. 8.7 SD1.2—Lost&Found Baggage Handling in-zoomed—the OPD obtained by zooming into the Lost&Found
Baggage Handling process in SD in Fig. 6.5

Part |l

Foundations of OPM

and SysML

Part I was an informal introduction to OPM and SysML, in which we used a detailed case study of the
Automatic Crash Response system. We have discussed aspects of OPM and various SysML diagram
kinds. Part II provides a more formal and theory-grounded exposure of OPM and SysML. It covers in an
orderly fashion the ontology, conceptual modeling constructs, and applications. Chapter 9 introduces and
defines what conceptual modeling is and what is its purpose and context. Chapter 10 presents the two
basic building blocks of OPM—objects and processes. In a similar fashion to the way Part I is structured,
Chap. 11 is about the textual modality of OPM—OPL. In Chap. 12 we turn to an orderly study of SysML
with its four pillars and nine kinds of diagrams. The dynamic, time-dependent aspect of systems is the
focus of Chap. 13. This is naturally followed by studying the structural, time-independent system aspect
in Chap. 14. Following Chap. 15, which deals with participation constraints and fork links, in Chap. 16
we introduce the four fundamental structural relations. This concludes Part II. In Part 111, titled Structure
and Behavior—Diving In, we turn to elaborate on each of the four fundamental structural relations
separately and continue with whole system aspects, including complexity management and control.

Chapter 9
Conceptual Modeling: Purpose and
Context

A conceptual model is a formal model, in which every entity being modeled in the real
world has a transparent and one-to-one correspondence to an object in the model.

Simmons (1994)

Before going into formal presentations of OPM and SysML as conceptual system modeling languages and
OPM as a systems engineering methodology, we discuss the theoretical aspects underlying the framework of
systems, systems architecture, and systems engineering, within which conceptual modeling is a valuable
intellectual activity.

9.1 Systems, Modeling, and Systems Engineering

Systems are all around us. Natural systems have been around for eons, and biological organisms have
evolved into extremely complex systems. Artificial, human-made systems, products, and services are also
becoming increasingly complex. Systems of infrastructural nature, such as air traffic control, the Internet,
and electronic economy, are orders of magnitude more complex than products individuals normally use. The
combination of miniaturization and computational power has been so pervasive that even common
household products exhibit intelligent features embedded within increasingly minuscule, commodity-like
hardware, giving rise to the emerging Internet of Things—a conglomerate of weakly interconnected devices
of all kinds, creating a loosely coupled mega system-of-systems.

9.1.1 Science and Engineering: Commonalities and Differences

The main difference between science and engineering is that scientists aim to explore and understand
observable physical, informatical (cybernetic) and human phenomena, while engineers, who are informed
by scientific discoveries, architect, design, develop, maintain and evolve artificial systems for the benefit of
humans. Sometimes, engineers are required to perform reverse engineering—the exploration of an existing
system whose function, structure, behavior, or working principles are not available and unknown.

Considering this exploratory character of reverse engineering, science can be thought of as reverse
engineering of nature. When a system is being designed (by engineers) or investigated (by scientists),
details about it accumulate quickly. The collected facts, be they real, assumed, contemplated or
conjectured, become so voluminous that they are hard to master without an orderly way of making sense
of what is being revealed. Managing these facts is mandatory in order for them to make sense as a whole.
In view of the rapid development of systems’ complexities, the need for an intuitive yet formal way of
documenting designs of new systems or collected information about existing ones becomes ever more

© Springer Science+Business Media New York 2016 75
D. Dori, Model-Based Systems Engineering with OPM and SysML, DOI 10.1007/978-1-4939-3295-5 9

76 Conceptual Modeling: Purpose and Context

apparent. This, in turn, requires a solid infrastructure for recording, storing, organizing, querying, and
presenting the knowledge being accumulated and the creative ideas that build on this knowledge.

9.1.2 Conceptual Modeling and Model-Based Systems Engineering

The process of representing system-related knowledge in both science and engineering is conventionally
referred to as conceptual modeling, and the outcome of this activity is a conceptual model. Subsequent,
higher order cognitive activities, including understanding, analyzing, designing, presenting, and
communicating the analysis findings and design ideas, can be based on the evolving conceptual model.

The vision of the Massachusetts Institute of Technology Engineering Systems Division (MIT ESD,
2015) is that “the fundamental principles and properties of engineering systems are well-understood, so
that these systems can be modeled, designed, and managed effectively.”

Conceptual modeling, which often precedes or done alongside mathematical and physical modeling, is
the primary activity required for engineering systems to be understood, designed, and managed. Modeling
is the process underlying model-based systems engineering (MBSE), the focus of this book. MBSE is
not just about modeling, as some people mistakenly perceive; it is systems engineering (SE) that is based
on formal modeling of various kinds—conceptual, mathematical, and physical). The conceptual model is
the comprehensive underlying blueprint—the reference artifact that constitutes the source of authority of
the various system aspects—requirements, performance, functionality, structure, dynamics, and many
other physical and informatical (cybernetic) aspects. Thus, MBSE requires a rigorous conceptual
modeling methodology that encompasses a universal ontology, a language, a set of principles and
guideline, and a supportive modeling software environment.

Understanding physical, biological, artificial, and social systems requires a well-founded, formal, yet
intuitive methodology and language that is capable of modeling the complexities inherent in these
systems in a coherent, straightforward manner. The same modeling paradigm, the heart of the
methodology, should serve for both designing new systems (engineering) and for studying (science) and
improving existing ones. It should apply to artificial as well as natural systems and represent both equally
faithfully. A common, unified conceptual modeling framework for both artificial and natural systems is
most important, because complex engineered systems and physical phenomena often mutually affect each
other. For example, in order to model a system such as an aircraft, a satellite, a ballistic missile defense
system, or a medical device, one must understand the relevant mechanical, electrical, chemical,
biological, and physical principles that govern both the system and the environment in which it operates
and with which it interacts.

9.2 A Foundational Systems Engineering OPM Ontology

lOntology is a set of concepts and their relations in some domain of discourse. ‘

The size of the ontology is the number of concepts and relation in the ontology. Systems science and
engineering are in need of a well-defined foundational, universal, general, necessary and sufficient ontology
that would underpin concepts and terms it uses in order for them to be precise and unambiguous. The
following minimal ontology principle provides a good starting point for our discussion.

Dori — Model-Based Systems Engineering with OPM and SysML 77

The minimal ontology principle

If a system can be specified at the same level of accuracy and detail by two languages of different
ontology sizes, then the language with the smaller size is preferable to the one with the larger
size, provided that the specification comprehensibility of the former is at least comparable with
that of the latter.

Not only does this principle make perfect sense; it is also in line with the long accepted Ockham’s
Razor (Ockham, 1495)—a principle attributed to 14™ Century logician and Franciscan friar William of
Ockham, England, which states that “Entities should not be multiplied unnecessarily” (in Latin:
“Pluralitas non est ponenda sine necessitate”). Often called the principle of parsimony, three more useful
variation on Ockham’s Razor follow.

o “When you have two competing theories that make exactly the same predictions, the simpler one is
the better.”

e “One should not increase, beyond what is necessary, the number of entities required to explain
anything” (Helighen 1997).

e “One should always choose the simplest explanation of a phenomenon, the one that requires the
fewest leaps of logic.”

The reason for adding to the minimal ontology principle the condition “... provided that the
specification comprehensibility of the former is at least comparable with that of the latter” is that taken to
extreme, one can argue that the binary code of 0 and 1 is the shortest, so it is the best. This is true for
computers, for which real human comprehension is (still?) meaningless anyway. For humans, from a
semantic viewpoint, a binary specification of any non-trivial system (e.g., a computer program in machine
code, to make the case clearer) is completely undecipherable without disproportionate effort. Therefore
we require that both ontologies enable specification (or modeling) of systems with about the same level of
comprehensibility, or better yet, that the specification that uses the smaller ontology is more
comprehensible. If the ontology is defined carefully and is grounded on deep philosophical foundations,
there is not necessarily a tradeoff between the size of the ontology and the specification length or
comprehensibility of the system modeled based on that ontology.

Ockham’s Razor inspired also the minimum description length (MDL) principle (Rissanen 1978), a
method for inductive inference that provides a generic solution to the model selection problem, i.e., how
does one decide among competing explanations of data given limited observations. MDL is based on the
insight that any regularity in a given set of data can be used to compress the data by describing it with
fewer symbols than the number of symbols needed to describe the original data. In a similar vein, we
formulate the following minimal conceptual modeling language OPM principle.

The Minimal Conceptual Modeling Language OPM Principle

A symbol system—a language—that can conceptually model a given system using ontology with
fewer diagram kinds and fewer symbols and relations among them is preferable to a larger
language with more diagram kinds and more symbols and relations among them.

Using the smaller ontology puts less cognitive load on the human modeler, making the conceptual
model more comprehensible and communicable to all the stakeholders without compromising the fidelity

http://pespmc1.vub.ac.be/asc/PRINCI_SIMPL.html

78 Conceptual Modeling: Purpose and Context

and detail level of the model. We can rephrase the above principle almost inversely: A language with
fewer symbols and fewer diagram kinds that is based on a universal ontology can describe any system
with better comprehensibility than a language with more symbols and more diagram kinds.

Alleviating the human cognitive load is highly desirable, because the modeler must cope with the
inherent, irreducible complexities of man-made systems to be built (systems engineering) or natural
systems to be investigated (science), so reducing the unnecessary complexity (often called
complicatedness) by providing a simpler language is of tremendous value.

9.2.1 Objects Exist, Processes Happen? Some Thought-Provoking Q&As

If we accept the minimal ontology principle, then we need to find the minimal universal ontology—the
ontology that is necessary and sufficient to model the universe and systems in it. We start by first asserting
that anything in the universe either exists or happens. We proceed with a series of questions and answers
designed to lead us to insights about a possible minimal universal ontology.
Q1: Assuming that everything in the universe is a thing, what can things in the universe “do”?

A1: Things can exist or happen. Any thing can either exist or happen. Nothing can be said to neither
exist nor happen, in fact or potentially, and physically or informatically.
Q2: What would be a general name for all the things in the universe that exist or might exist physically or
conceptually?

A2: Objects exist or might exist.

Q3: What are the things in the universe that happen or might exist physically or conceptually?
A3: Processes happen or might happen.

Processes cannot just happen in vacuum, without “doing” something, which leads to the next question.

Q4: What are the things to which processes happen?
A4: Processes happen or might happen to objects.

Q5: What do processes do to objects?
AS: Processes transform objects.

Q6: What does it mean for a process to transform an object?
AG6: Transforming an object by a process means one of the following three options:
1. creating (generating) an object,
2. destroying (consuming) an object, or
3. affecting (changing) an object.
Q7: What does it mean for a process to affect an object?
AT7: A process affects an object by changing its state.
Hence, objects must be stateful, i.e., they must have states.
Q8: In what way are things semantically associated? Is this the only way?
A8: Things are semantically associated through relations. Relations are the only way we can think
about the way things relate or refer to or are associated with each other.
Q9: Is there a difference between how objects and processes are related?
A9: Objects are associated to objects (and processes to processes) via structural (static) relations,
while objects and processes are associated via time-dependent procedural (dynamic) relations.

Dori — Model-Based Systems Engineering with OPM and SysML 79

Q10: what are the two universal aspects, i.e., the two aspects from which things in the universe can be
viewed, considered, and described?

A10: The two universal aspects are (1) structure—the way objects relate to each other and processes
relate to each other—and (2) behavior—the way processes transform objects over time.

9.2.2 The Object-Process Theorem

The answers to the questions above can be thought of as universal axioms, because while they make
sense, they are difficult to prove. If we accept these axioms, the conclusion is that things—stateful objects
and processes—and relations among them are the only three elements needed to describe the universe!
We can use the universal axioms to prove the following Object-Process Theorem.

The Object-Process Theorem

Stateful objects, processes, and relations among them constitute a minimal universal ontology.

Proof:

The proof is based on (1) necessity and (2) sufficiency of stateful objects, processes, and relations
among them as the only three kinds of elements needed to constitute a minimal universal ontology.
Accordingly, the proof is divided in two parts: necessity and sufficiency.

Part 1—necessity: Stateful objects and processes are necessary to specify the two universal aspects,
structure and behavior: Specifying the structural, static system aspect requires stateful objects and
relations among them. Specifying the procedural, dynamic system aspect requires processes and
relations between them and the objects they transform.

Part 2—sufficiency: Things can either exist (we call these things stateful objects) or happen (we call
them processes) and nothing else. Things can be associated with each other only through relations.
Therefore, things (objects and processes) and relations among them are the only elements needed to
specify facts or ideas. Q.E.D.

9.2.3 The Object-Process Corollary

The Object-Process Theorem gives rise to the following Object-Process Corollary.

The Object-Process Corollary

Using stateful objects, processes, and relations among them, one can conceptually model any
system in any domain.

Since according to the Object-Process Theorem stateful objects, processes, and relations among them
constitute a minimal universal ontology, and the universe is the union of all the domains it comprises, this
assertion makes sense. One possible exception to this is the subatomic particle quantum domain, where
our macro-world distinction between objects and processes becomes blurry. For example, electrons and
photons are described as both particles (objects) and waves (processes). As soon as we step into the
atomic and molecular level, e.g., molecular biology (Somekh et al. 2014), the Object-Process Corollary
becomes valid, and OPM becomes a viable and attractive modeling paradigm.

80 Conceptual Modeling: Purpose and Context

This first version of the Object-Process Corollary says nothing about the level of complexity of the
systems that are amenable to being modeled with stateful objects, processes, and relations among them.

9.2.4 The Object-Process Assertion: The Basis for OPM

Combining the Object-Process Corollary with the Model Complexity Assertion, we get the following
Object-Process Assertion.

The Object-Process Assertion

Using stateful objects, processes, and relations among them, along with refinement mechanisms
of in-zooming and unfolding, one can conceptually model systems in any domain and at any level
of complexity.

Combining the Object-Process Theorem, according to which stateful objects, processes, and relations
among them constitute a minimal universal ontology, with the minimal ontology principle, the optimal
conceptual modeling language must have just two types of concepts—stateful objects and processes,
collectively called things—along with relations among them. Collectively, things and relations are the
only two OPM’s elements.

Things in the same system must be related, either directly or indirectly. Graphically, these relation are
expressed by links. Things and links are collectively called elements, and so element is the top-level OPM
concept.

An OPM element is a thing or a link.

9.2.5 Why Not Just One Kind of Thing? A Graph with Nodes and Links?

One may argue that an even more minimalistic representation than three kinds of elements—objects,
processes, and relations among them—could be just two: things and relations among them. Indeed, quite a
number of knowledge representation frameworks have come up with this idea of representing knowledge via
a graph with nodes of just one kind and links connecting them. Some of these frameworks, which vary in
their level of formality, are surveyed in Dori (2004). These include the concept maps (Arnheim 1969),
entity-relationship diagram (Chen 1976), semantic networks (Lehman 1999), conceptual graphs (Chein and
Mugnier 1992), and systemigrams (Blair et al. 2007). Looking at examples of graphs expressed in these
approaches, one quickly reveals that since there is only one kind of node, there is no distinction between an
object and a process, so the ability to distinguish between structure and behavior—the two distinct facets
that must be represented in any model—is severely crippled, or even nonexistent. At the small price of
increasing the number of elements in the ontology from two to three, we gain a tremendous capability of
concurrently modeling both the structure and the behavior of a system.

Indeed, objects are the things that exisz. Relations among them constitute the structure of the system.
This is the static, structural aspect of the system. To understand the system’s dynamic, procedural aspect,
to know what happens to objects in the system and how it operates to provide value, a second,
complementary type of thing is needed—a process. We know of the existence of an object if we can name
it and refer to its unconditional, relatively stable existence, but without processes we can neither tell how
this object is created or destroyed, nor how its states change over its lifetime.

Dori — Model-Based Systems Engineering with OPM and SysML 81

A stateless object is an object that has no states. A stateful object is an object that has one or more
states. These states are stable in the sense that it takes a process to switch an object from one of its states
to another, and as long as no process acts on the object, the object remains in the same state.

Figure 9.1 presents the main symbols of OPM. The symbols for object, state, and process are
respectively shown as the first (left-most) group of symbols. The rest of the symbols are links: structural
links are shown in the middle group and procedural links—in the right-most group. Their names and
semantics have been mentioned in Part I, and will be further elaborated as we proceed.

Objects and processes, collectively referred to as OPM things, are the two types of OPM’s universal
building blocks. OPM views objects and processes as being on equal footing, so processes are not
necessarily subordinate to or owned by objects. Symmetrically, objects are not necessarily inferior to
processes, nor are processes necessarily owned by objects.

Things (and state) Structural Links Procedural Links

D0 o AAAA= A28 2PMAL XN

Fig. 9.1 The three groups of OPM element symbols

State is depicted in Fig. 9.1 between object and process. Discussed in more detail later on, state is a
situation in which an object can be at some point during its lifetime.

9.2.6 The Thing Importance OPM Principle

In OO, objects “own” processes, which in the OO jargon are called operations, or services, or methods.
OPM takes a different stand: Major system-level processes can be as important as, or even more important
than objects in the system model. In particular, we already noted that the top-level process of a system (or
subsystem) is its function, the top-level value-providing and purpose-serving process, for the performance of
which the system is built and used. Hence, a process must be amenable to being modeled independently of
any particular set of objects involved in its occurrence. Therefore, OPM views both objects and processes as
first-class citizens. They stand on equal footing; neither has supremacy over the other. Rather, their
importance is related the model hierarchy as expressed in the following thing importance OPM Principle.

The Thing Importance OPM Principle

The importance of a thing T in an OPM model is directly related to the highest OPD in the OPD
hierarchy where T appears.

For example, the object ACR System and the process Automatic Crash Responding in Fig. 1.2 are of the
same relative importance, as they show up for the first time in SD, the System Diagram, which is the top-
level OPD. Indeed, the object ACR System is required for the process Automatic Crash Responding to take
place, so one cannot argue for the supremacy of the object ACR System over the process Automatic Crash
Responding or vice versa.

82 Conceptual Modeling: Purpose and Context

Being able to tell objects and processes apart and use them properly in a model is key to modeling in
OPM. To define these fundamental concepts and to communicate their semantics, we next discuss the
concepts of existence and transformation.

9.3 Object, State, Transformation, and Process Defined

Since objects OPM can be physical or informatical (cybernetic), we define object as something that captures
these two facets without committing to either one, while including the element of “existence throughout
time.”

An object is a thing that exists or can exist physically or informatically.

The object’s existence can be physical or informatical. It can be as simple as a block of ice, a word in
a book or a record in a file, or as complex as an organization, the Internet, a human brain, or a galaxy.

A state is a possible situation or position at which an object can be for some positive

amount of time.

This definition implies that a state has a meaning only within and in the context of an object. A state
has no meaning out of the contexts of its owning object. For example, states of the object Organization
can be private or public, and states of the object Record can be locked or unlocked. The states private and
locked have no meaning outside the context of their respective owning objects.

Transformation is (1) creation (generation, construction), (2) consumption

(elimination, destruction), or (3) effect—change in the state of an object.

Transformation takes a positive amount of time.

A process is a thing that transforms an object.

By this definition, a process must be associated with at least one object: the one which that process
transforms. For example, Freezing is a process that changes the state of Water form liquid to ice. This is
the basis for the object transformation by process OPM principle.

The Object Transformation by Process OPM principle

In a complete OPM model, each process must be connected to at least one object that the
process transforms or one state of the object that the process transforms.

A non-trivial synchronous process (i.e., a process whose subprocesses have a defined order of
execution) comprises a hierarchical network of subprocesses. At every level of the process hierarchy there
is a time-induced partial order on the processes, i.c., some processes must end before others start, while
others can occur in parallel to other processes or as their alternatives.

Dori — Model-Based Systems Engineering with OPM and SysML 83

9.4 System and Related Concepts

Deferring the formal definition of system for just a little, this is a good place to add a couple of questions to
our line of questions from Sect. 9.2.1:

Q11: What are the two main aspects all systems share?
A11: Being part of the universe, all systems can be viewed from the two major aspects: structure and
behavior.

Structure is the static aspect, it relates to the question what is the system made of? From the
structural aspect, a System is a finite set of components and their time-invariant interconnections.

Behavior is the dynamic aspect, it relates to the question how does the system change over time?

Q12: What is the additional major aspect that pertains primarily to premeditated man-made systems?

A12: Function—the utilitarian, subjective aspect: Why is the system built? For whom? Who are the
beneficiaries who gain from operating it? What value do these beneficiaries get from the system’s
operation?

To some extent, biological organisms can be argued to be systems which provide functions that
benefit themselves or other systems, but such (often mutual, e.g., symbiotic) benefits are a result of
evolutionary processes rather than a premeditated intention, which is characteristics of humans as “tool
building” organisms. Indeed, as the Smithsonian Institute (2015) experts indicated:

Spanning the past 2.6 million years ... stone tools provide evidence about the technologies, dexterity,
particular kinds of mental skills, and innovations that were within the grasp of early human toolmakers...

Function is a key concept in man-made systems; it is a process which provides (functional) value to a
beneficiary. The beneficiary is a person or a group of people, and the value is their benefit at cost—the
difference between the system’s perceived benefit and the system’s cost. Based on this definition of
function, we define system as follows.

A system is a function-providing object.

This succinct definition is quite unorthodox. It is worth comparing this definition to the definition of
system in ISO/IEC 15288 standard. According to ISO/IEC 15288, system is a combination of interacting
elements organized to achieve one or more stated purposes. The standard definition is compatible with
ours, since it contains the element of purpose, which is akin to function—providing value to some
beneficiary. Our definition of a system is more general in that it does not require that the system be
combined of interacting elements. While that description is generally true, it does not convey the essence
of a system. In complex systems, and even more so in systems-of-systems, such as the international air-
traffic control system, whose emergent function is to regulate the air transportation worldwide, there are
numerous interacting physical and informatical parts, including airplanes, airports, communication
networks, and air carriers.

84 Conceptual Modeling: Purpose and Context

handle”

Hammer Cordless Brad Nailer

Mail can be loose or stuck.

- Carpenter handles Nail-Driving.
Carpenter ®{ Naik-Driving Nail-Driving requires either Cordless Brad Nailer or Hammer.
7 Nail-Driving changes Nail from loose to stuck.
Nail Y
()

Fig. 9.2 Two concepts for a nail-driving system: Top-left: hammer; Top-right: DEWALT 18-Volt 18-Gauge 2 in.
Cordless Brad Nailer; Botto-left: OPD of the Nail-Driving System; Bottom-right: The corresponding OPL'

In a simple system, such as a nail-driving system—the hammer shown at the top-left of Fig. 9.2, being
a combination of two interacting elements—head and handle—the number of interacting parts is not the
predominant feature. What is important is that the hammer is a system that provides the function of nail
driving. Looking closely at this hammer, one can distinguish lower-level functional elements, such as
claw to extract nails, but they are not really separate parts, further emphasizing the functional aspects of
this system. The same function of nail driving can be accomplished by a much sophisticated system, such
as the one presented on the top-right of Fig. 9.2. Although this is a much more complex system, it
provides basically the same nail-driving function (and is indeed called “nailer”).

The OPM model (the OPD and the corresponding OPL) at the bottom of Fig. 9.2 emphasize the
common function of these two systems. The difference between the two systems is in several

performance metrics that can be deduced from the following description, provided in the Web site of this
product: “The DEWALT DC608K—I18 Gauge 2 in. Cordless Brad Nailer delivers consistent nail

'From this point on, the OPDs are not shaded, as they are accompanied by their corresponding OPL paragraphs. The
colors of the various OPL phrases in the OPL here are as they appear in OPCAT. In subsequent OPLs, reserved OPL
phrases are in non-bold Arial font, and non-reserved phrases—in Bold Arial.

Dori — Model-Based Systems Engineering with OPM and SysML 85

penetration into both soft and hard joints. The sequential operating mode allows for precision placement
and the bump operating mode provides the user with production speed. The straight magazine, accepts 18
gauge nails ranging in lengths from 5/8 in. to 2 in. Its 12-position dial allows the user to move between
applications without having to re-acquire exact depth setting.” As we see, the function of this system is
described as delivering “nail penetration”, same as a hammer, albeit possibly with better speed, power,
and accuracy. Thus, according to our definition of system, both hammer and the Cordless Brad Nailer are
nail driving systems.

A subsystem, also known as a component, or a module, is a part of the system, which,
in itself, does not provide the function that system provides.

The system is comprised of subsystems or modules or components—all being objects—which only
when put together deliver the (emergent) function, making it a system. This is a good place to define a
system-of-systems (SoS), which in the sense explained below, can be thought of as the “opposite” of a
subsystem.

A system-of-systems, (SoS) is a system whose set of subsystems contains at least two

systems.

This definition of SoS implies that a SoS is comprised of at least two components, each of which is a
system in its own right, and therefore, by definition, has its own function. In other words, if we take a SoS
apart, we will end up with at least two functioning entities. Since a SoS is also a system, it has an
emergent function of its own in addition to the functions of its constituent systems. For example, the
global air traffic control system is a SoS whose function is air traffic controlling. It is comprised of many
systems, such as airports, national aviation authorities, national and international airspaces, the
International Air Transport Association (IATA, the trade association for the world’s airlines, representing
some 250 airlines a 84% of total air traffic; IATA 2015), international air traffic communication
protocol, emergency regulations, aircraft carriers, aircrafts, pilots, crews, passengers, and much more.
Many of the comprising systems, such as airport and air carrier, are SoSs in their own right. Conversely,
while a highly complex system, aircraft, for example, is not a SoS, because operating on its own, none of
its components, such as wing or fuel tank or fuselage, can provide any substantial function. In the rest of
the book, most of the claims about a system are applicable also to subsystems and SoSs.

9.4.1 Default System Naming

In spoken language, simple systems, such as a hammer, are often called tools, more complex systems, such
as an electric current meter, are instruments, and yet more complex ones are “systems,” but they all provide
some function—their stated goal—and the difference between them is their level of complexity. A default
system name is the name of the function this system provides followed by the word “system.” For example,
the system called printer, whose function is printing, can be called “printing system.” A hospital is a health
level improving system, a chair is a sitting system, a home is a residing system, a bathtub is a bathing
system, and an airplane is a flying system. Indeed, searching the Web for images of a “bathing system” and
a “sitting system”, one gets an incredible variety, some of which are presented in Fig. 9.3, of what people
refer to as bathing (top) and sitting (bottom) systems. The common function of the former is their ability to
cleanse or sooth people, and the latter—to seat people with some level of comfort.

86 Conceptual Modeling: Purpose and Context

X133 1 TR r
2epiebuk ;@M D
it E < b
“Hhild @ Sl o

Fig. 9.3 Search results of images of “bathing system” (top) and “sitting system” (bottom)

Figure 9.4 is an OPM model of the Nail-Driving function and the Nail-Driving System—the instrument
for achieving this function. The method used with each kind of Nail-Driving System can be captured in the
diagram as a specialization of Nail-Driving. Hammer and Cordless Brad Nailer are two such
specializations; they are incarnations of two different concepts for achieving the system’s function: The
Hammer, which is basic, and the Cordless Brad Nailer, which is more complex (and consequently more
expensive).

Nail-Driving System

Nail can be loose or stuck.

Carpenter handles Nail-Driving.

Hammer and Cordless Brad Nailer are
Carpenter ———@(Nail-Driving Nail-Driving Systfams.

Cordless Brad Nailer Nail-Driving requires Nail-Driving System.
Nail-Driving changes Nail from loose to

A
stuck.
Nail

Fig. 9.4 OPM model of the Nail-Driving function and Nail-Driving System with its Hammer and Cordless Brad Nailer
specializations

Hammer

9.4.2 Involved Humans: Stakeholder, Beneficiary, Customer, User, Supplier

System stakeholders are entities that are concerned with the system.

Dori — Model-Based Systems Engineering with OPM and SysML 87

A stakeholder is an individual, an organization, or a group of people that has an

interest in, or might be affected by, a system.

Below we define the main stakeholder types. One or more of the system stakeholders is the
beneficiary—the stakeholder that extracts value and benefits from the system.

A beneficiary is a stakeholder who extracts value and benefits from the system.

Customers (either real or potential) are key stakeholders.

A customer is the stakeholder who orders the system and sponsors its development,
implementation, deployment, and support, or purchases a product that is part of the

system.

The first kind of customer in the definition above is usually an organization who needs a specially-
designed system and orders it from the supplier (defined below). The second kind is usually an individual
who purchases a consumer good that was designed and manufactured by a supplier based on the
anticipation that people will be willing to pay for it because the customer foresees the value that this
system (in this case product, defined below) would deliver. Either way, without customers it is hard to
imagine why a system would be developed in the first place.

A user is a stakeholder who operates the system or directly interacts with it.

For relatively simple systems, such as household products, the customer and the user are the same. For
example, a car owner who drives it is the customer, user, and beneficiary, while other passengers are only
beneficiaries. Beneficiaries of a national missile defense system are the country’s citizens, although they
are neither the users nor the customers. The supplier is another key stakeholder.

A supplier is a stakeholder who oversees the development, support, and maintenance

of the system or product.

Other stakeholders might include regulators, the judicial system, the public, and entities that might be
affected by the system.

9.4.3 System Source: Natural or Atrtificial

Systems originate from a source, which can be natural or artificial (human-made). The source determines
the mechanism through which the system has become functional. In natural systems, this is a result of the
actions governed by the laws of physics. In biological systems, a subset of natural systems, principles of
evolution play an additional critical role.

As this book focuses on engineering of artificial systems, from this point on, unless otherwise
specified, the term system will refer to an artificial system. The mechanism through which a system is
created and becomes functional involves some level of intellectual and physical human endeavor, be it as
primitive and as rudimentary as it might be. When this endeavor becomes considerable and passes some
threshold of complexity while showing signs of planning and coordination, we call it engineering, and

88 Conceptual Modeling: Purpose and Context

more recently, systems engineering. Non-trivial systems, which are the focus of interest of systems
engineering, comprise a significant amount of processes acting to transform a large number of
interconnected objects (the system’s components) in a way that enables the attainment of the system’s
function.

A socio-technical system, also known as engineering system, is a system that
integrates technology, people, and services, combining perspectives from engineering,

management, and social sciences.

Products are designed and manufactured by a commercial entity and sold to another entity for profit.

|A product is a commercially-viable system. ‘

Since a system is an object, a product is a commercially-viable object. Analogously, a service is a
process that is sold by a commercial entity for profit.

|A service is a commercially-viable process. ‘

Here we refer to a business service. In the world of software, a service is similar to a method, or an
operation. More specifically, in Service-Oriented Architecture, the concept of service includes any
interface provided by a component in the system to other components, and by a system to other systems.

9.4.4 Function, Structure, and Behavior Definitions Refined

Having defined beneficiary, we can now refine our definition of function.

A function of an artificial system is its top-level value-providing process, as perceived

by the beneficiary.

For example, the function of a hammer is nail driving, the function of a printer is printing, the function
of chair is sitting, key and lock—locking and unlocking, window—ventilating and lighting, refrigerator—
food shelf life prolonging, fire alarm—fire break alerting. More complex systems have higher-level, more
abstract functions. Thus, the function of the system called hospital is patients’ health level improving.
Each patient is a beneficiary of this system, the customer may be a government or a private entity, and the
medical staff constitutes the group of users. As another example, the function of a missile defense system
is defending a country from a missile attack. The customer of the system is that country’s government, the
user is its military, and the beneficiary is the people living in that country.

At lower levels of subsystem or component, a subsystem’s function can also benefit the system’s
higher-level function or other systems or subsystems. For example, Dictionary.com provides the
following nouns for rudder:

1. Nautical: a vertical blade at the stern of a vessel that can be turned horizontally to change the
vessel’s direction when in motion.

2. Acronautics: a movable control surface attached to a vertical stabilizer, located at the rear of an
airplane and used, along with the ailerons, to turn the airplane.

Dori — Model-Based Systems Engineering with OPM and SysML 89

In both the nautical and the aeronautics cases, rudder is a subsystem of a vehicle—a vessel and an
airplane, respectively, with the function of changing course or turning or navigating the vehicle. This
function of the rudder is part of the function of the vehicle, which is people and goods moving, and which
requires also propulsion, supplied by the vehicle’s propulsion subsystem.

Structure is the static, time-independent aspect of the system:

Structure of a system is its form—the assembly of its physical and informatical

components along with the long-lasting relations among them.

Behavior is the varying, time-dependent aspect of the system:

Behavior of a system is it dynamics—the way the system changes over time by

transforming systemic (internal) and/or environmental (external) objects.

9.4.5 The Need for Concurrent Structure-Behavior Modeling

During analysis and design, facts and ideas about objects in the system and its environment, and processes
that transform them are gathered and recorded. For almost each process that is discovered or contemplated,
the first questions asked refer to the objects involved in this process. Similarly, for each object identified in
the system, a key question is what processes this object participates in. As soon as a new object is introduced
into the system, the process that transforms it or is enabled by it begs to be modeled as well.

There is thus intimate cohesion of the two key system facets: structure (objects and relations among
them) and behavior (processes and their relations to objects). Due to this structure-behavior
complementarity, system analysts and architects intuitively and justifiably tend to model the structure and
the behavior of the system concurrently.

With its single, unifying object-process model, OPM caters to this structure-behavior concurrent

modeling requirement. It enables modeling these two major system aspects at the same time within the
same model without the need to constantly switch between different diagram types.
For an investigated (as opposed to an architected) system, the researcher tries to make sense of gathered
observations and to understand their cause and effect relations. In a sense, an attempt is made to reverse-
engineer the system under study, which is the task of scientists. In both the architected and the
investigated system cases, the system’s structure and behavior go hand in hand, and it is very difficult to
understand one without the other, so presenting both in the same single diagram makes sense.

9.4.6 System Architecture

With the understanding of what structure and behavior are, we can define a system’s architecture.

Architecture of a system is the combination of the system’s structure and behavior

which enables it to perform its function.

90 Conceptual Modeling: Purpose and Context

It might be interesting to compare our definition of architecture to the one used by the U.S. DoD
Architecture Framework (DoDAF 2007), which is based on IEEE STD 610.12:

Architecture: the structure of components, their relationships, and the principles and guidelines
governing their design and evolution over time.

TOGAF (2011) provides a similar definition in response to the question “What is an Architecture?”

An Architecture is the fundamental organization of something, embodied in its components, their
relationships to each other and the environment, and the principles governing its design and
evolution.

The common element in both definitions and our definition of architecture is the system’s structure.
However, the DoDAF and TOGAF definitions lack the integration of the structure with the behavior to
provide the function. On the other hand, the DoDAF definition includes “the principles and guidelines
governing the design and evolution of the system’s component over time”. However, these do not seem to
be part of the system’s architecture. Rather, principles and guidelines govern the architecting process,
which culminates in the system’s architecture. Interestingly, DoDAF Architecture Framework Version
2.02, Change 1 (DoDAF 2015), the version of January 2015 does not contain any clear definition of
architecture (and neither does the 2009 edition)!

9.4.7 System Environment and Thing’s Affiliation

In recent years, the term environment has increasingly taken on the meaning of the ecosystem of planet earth
in which we all live and which is continuously compromised as a result of cumulative effects of large-scale
man-made systems (such as power plants) and a large number of smaller scale man-made system (such as
automobiles and aircrafts). Our definition of the system’s environment is indeed compatible with this
realization, as it provides for the possibility that the environment can change as a result of the system’s
function.

The system’s environment is a collection of things that are outside the system but
interact with it.

The interaction of the system with its environment causes the system, and possibly its environment, to
change. To ensure sustainability, systems engineers must make sure to prevent or undo this adverse
change, especially as it pertains to possibly irreversible detrimental effects of current and contemplated
systems on global warming and natural resource depletion. This is not just a moral or ethical obligation—
it is a matter of securing sustainable life on earth of all organisms, including people, beyond the next
couple of decades...

A thing which is part of the system is systemic, while a thing which is part of the system’s
environment is environmental. The OPM thing’s attribute whose values are systemic and environmental
is affiliation. Making the distinction between systemic and environmental things is very important in
modeling, as it indicates what are the things that the architect can have control of and what should be
considered as given. For example, in designing a gas station, is the car systemic or environmental?
Obviously, cars and their drivers are going to interact with the gas station, but the gas station architect
does not have a control over the sizes of the cars and the locations of their gas tank openings—these are
given and must be accounted for. Therefore, car is environmental to gas station.

Dori — Model-Based Systems Engineering with OPM and SysML 91

9.4.8 Function Versus Behavior

The above definitions lead to the conclusion that the function of a system is its top-level process. Moreover,
the architecture of the system, namely its structure-behavior combination, is what enables the system to
execute its top-level process, thereby to perform its function and deliver value to its beneficiary.

The value of the function to the beneficiary is often implicit; it is expressed in process terms, which
emphasize what happens, rather than the purpose for which the top-level process happens. This implicit
function statement can explain why the function of a system is often confused with the behavior or
dynamics of the system. However, it is critical to clearly and unambiguously distinguish between the two,
namely between function and behavior. Behavior is how the system changes along the time dimension.
Function is what value the system delivers to its beneficiary through its operation. Hence, behavior is
objective—it is the way the system changes, regardless of who describes the change, while function is
subjective—it is the value gained from the beneficiary’s perspective. This distinction between function
and behavior is of utmost importance since in many cases a system’s function can be achieved by
different architectures, i.e., different combinations of processes (system behavior) and objects (system
structure).

Consider, for example, a system for enabling humans to cross a river with their vehicles. Two obvious
architectures are ferry and bridge. While the two systems’ function and top-level process—river
crossing—are identical, they differ dramatically in their structure and behavior. Failure to recognize this
difference between function and behavior may lead to a premature choice of a sub-optimal architecture.
In the example above, this may amount to making a decision to build a bridge without considering the
ferry option altogether.

9.5 Language and Modeling

We now turn to definitions that concern language and modeling.

A language is a means of communication among humans, and possibly also machines,
to express concepts, ideas, processes, and methods.

A language comprises two components: syntax and semantics.

Syntax is the language’s set of symbols and rules that specify how the symbols can be
combined to yield syntactically-legal constructs.

Not any syntactically-legal construct in the language is meaningful.

Semantics is the meaning that a subset of the language’s syntactically-legal constructs

conveys.

9.5.1 Model and Modeling

Languages not only enable humans and machines to communicate; they are also means to building models.

92 Conceptual Modeling: Purpose and Context

A model is an abstraction of some portion of conceived reality (the system “as-is”) or

of a contemplated system (the system “fo-be”) expressed in some language.

For example, a sufficiently detailed textual description of a machine part in free English text can be
considered a model of that part. However, this model is not formal as it is expressed in English, a natural,
non-formal language. Hence, at least with current technology, it cannot be automatically constructed or
analyzed, requiring a human in the loop.

A modeling language is a language for constructing models in some domain.

A formal modeling language is a modeling language that has a mathematically-

grounded syntax definition, enabling its automated analysis, checking, and synthesis.

For example, machine drawings of mechanical parts utilize a formal modeling language, drafting, in
which symbols convey formal syntax with agreed-upon semantics that mechanical engineers understand
and share. Thus, a dash-dotted line expressed an axis of symmetry, a dimension set with arrows, guides
and a text box expresses a part’s dimension, etc.

A formal modeling language is expressed using one or two modalities, i.e., modes of expression. Two
prominent modalities for expressing models are graphics and text. OPM is unique in that it is the only
known modeling language which uses these two modalities interchangeably and in tandem.

Modeling is the process of creating a model in some domain using a modeling

language that is appropriate for that domain.

Modeling is a foundational engineering activity. The resulting model is a centerpiece infrastructural
entity that supports the evolution of the system throughout its lifecycle in a “model-based” or “model-
driven” context.

9.5.2 Informal Versus Formal Models

People are used to freely drawing informal models of systems. The ad-hoc symbols in such models are
inconsistent and cannot scale up, allowing for expressing only simple system ideas. An example of such an
informal model is provided in Fig. 9.5. As the legend tells us, hatching of the boxes differentiates between
lifecycle processes and the “product hierarchy”. This ad-hoc model leaves many questions unanswered. For
example, what is the semantics of the implied hierarchy? Is it aggregation? Specialization? Why does a
system contain lifecycle processes alongside products? Why does one product consist of five subsystems
and the other of none? Interestingly, this model appears in an international standard (ISO/IEC 26702 IEEE
Std. 1220-2005), which, of all documents, should maintain the highest level of formality possible. Clearly,
this model lacks formality and presenting it as part of an international standard can be more misleading than
leaving it out.

A formal model is a model expressed in a formal modeling language.

Continuing our machine drawing example, a part drawing is a formal three-dimensional model of that
part. A CAD/CAM system which is designed to “understand” this language can automatically generate an

Dori — Model-Based Systems Engineering with OPM and SysML 93

actual part from this model. As another example, Newton’s second law, F’= mXxa, is a formal model of the
relation between a rigid body’s force, mass, and acceleration, expressed as a mathematical equation.
Interestingly, however, the rigid body, with which this model is concerned, with mass and acceleration
being its attributes, is nowhere to be found in this model. Rather, it is implicit that this is the subject of
this model. This still conforms to our definition of a model as an abstraction of some portion of conceived
reality.

System
Development; Manufac Distribution Operations .
Ny L Disposal
Product Product and test -turing and support| |and training rocess
processes process processes processes P

Subsystem, Subsystem ‘Subsystem, Subsystem Subsystem,

Elements of the product hierarchy
D Life cycle processes

Fig. 9.5 An example of an informal model—Basic building blocks of a system (ISO/IEC 26702 IEEE Std. 1220-2005)

A conceptual model is a formal model of a system which expresses its architecture by
depicting its structure and behavior to a level of detail that is sufficient for its

subsequent detailed design and eventual materialization.

The part of OPM that specifies how to construct Object-Process Diagrams (OPDs) along with their
textual representations in OPL is an example of a conceptual modeling language. SysML is another
example.

A conceptual modeling language is a formal modeling language for constructing

conceptual models of systems.

9.5.3 Complexity Management

In later chapters, we discuss in detail how OPM handles complexity management. Briefly, each thing (object
or process) can undergo two refinement mechanisms: in-zooming and unfolding. In-zooming of processes
specifies the subprocesses of a process and their temporal ordering. In-zooming of objects specifies the parts
of an object and (roughly, to the extent relevant and possible) also their spatial ordering (currently only

94 Conceptual Modeling: Purpose and Context

schematically and in two dimensions). Unfolding of things (objects or processes) exposes their parts,
features (attributes or operations), specializations, or instances. Both refining processes—in-zooming and
unfolding—can be done in the same OPD or in a new OPD. New OPD refining (in-zooming or unfolding)
creates a new OPD in which the refined thing is elaborated to express more details.

9.6 Summary

e Science can be thought of as reverse engineering of nature.

e The Minimal Ontology principle states that if a system can be specified at the same level of
accuracy and detail by two languages of different ontology sizes, then the language with the
smaller size is preferred over the one with the larger size.

e Objects exist, processes happen.
e Ontology is a set of concepts and their relations in some domain of discourse.

e A minimal universal ontology is the ontology that is necessary and sufficient to model the universe
and systems in it.

e The Object-Process Theorem: Stateful objects, processes, and relations among them constitute a
minimal universal ontology.

e The Object-Process Assertion: Using stateful objects, processes, and relations among them, along
with refinement mechanisms of in-zooming and unfolding, one can conceptually model systems in
any domain and at any level of complexity.

e The thing importance OPM principle: The importance of a thing T in an OPM model is directly
related to the highest OPD in the OPD hierarchy where T appears.

e Anobject is a thing that exists or can exist physically or informatically.

e A state is a possible situation or position at which an object can be for some positive amount of
time.

o Transformation of an object is (1) creation (generation, construction), (2) consumption
(elimination, destruction), or (3) effect—change in the state of that object.

e A process is a thing that transforms an object.

o The object transformation by process OPM principle: In a complete OPM model, each process
must be connected to at least one object that the process transforms or one state of the object that
the process transforms.

e A gystem is a function-providing object.

e A stakeholder is an individual, an organization, or a group of people that has an interest in, or
might be affected by, a system being contemplated, developed, or deployed.

e A beneficiary is a stakeholder who extracts value and benefits from the system.

e A customer is the stakeholder who orders the system and sponsors its development,
implementation, deployment, and support.

Dori — Model-Based Systems Engineering with OPM and SysML 95

A user is a stakeholder who operates the system or directly interacts with it.

A supplier is a stakeholder who oversees the development, support, and maintenance of the system
or product.

A function of an artificial system is its top-level value-providing process, as perceived by the
beneficiary.

Structure of a system is its form—the assembly of its physical and informatical components along
with the long-lasting relations among them.

Behavior of a system is it dynamics—the way the system changes over time by transforming
systemic (internal) and/or environmental (external) objects.

Architecture of a system is the combination of the system’s structure and behavior which enables it
to perform its function.

The system’s environment is a collection of objects that are outside the system but interact with it,
causing the system and possibly its environment to change.

The function-behavior distinction: Behavior is how the system changes along the time dimension,
while function is what value the system delivers to its beneficiary through its operation.

A language is a means of communication among humans, and possibly also machines, to express
concepts, ideas, processes, and methods.

Syntax is the language’s set of symbols and rules that specify how the symbols can be combined to
yield syntactically-legal constructs.

Semantics is the meaning that a subset of the language’s syntactically-legal constructs conveys.

A model is an abstraction of some portion of conceived reality or of a contemplated system
expressed in some language.

A modeling language is a language for constructing models in some domain.

A formal modeling language is a modeling language that has a mathematically-grounded syntax
definition, enabling its automated analysis, checking, and synthesis.

A formal model is a model expressed in a formal modeling language.

A conceptual model is a formal model of a system which expresses its architecture by depicting its
structure and behavior to a level of detail that is sufficient for its subsequent detailed design and
eventual materialization.

A conceptual modeling language is a formal modeling language for constructing conceptual
models of systems.

9.7 Problems

1.

Referring to the OPD in Fig. 7.4, find:

= A process which is more important than an object,

96

Conceptual Modeling: Purpose and Context

an object which is more important than a process,
an object and a process of equal importance,

two objects of equal importance, and

two objects of equal importance.

Explain why removing stateful objects, processes, or relations among them from the minimal
universal ontology makes it unusable.

Model a small OPD which is syntactically correct but semantically not.

Explain the connection between the object transformation by process OPM principle and the
definition of process.

Define two architectures for each one of the systems that deliver the following

a.

o a0 o

River crossing
Time-of-day showing
Food shelf-life prolonging
Humans transporting
Movie viewing

Chapter 10
Things: Objects and Processes

Each convex mirror shall have ... marked at the lower edge of the mirror’s reflective
surface... the words “Objects in Mirror Are Closer than They Appear.”

U.S, PART 571 Federal Motor Vehicle Safety Standards, Sec. 571.111 S5.4.2 (2004)

Immanuel Kant said that “Objects are our way of knowing.” While this is obviously true, it is not the
whole truth, but only about half of it. Objects are our way of knowing what exists, or in other words, the
structure of systems. To know what happens, to understand systems’ behavior, a second, complementary
type of things is needed—processes. We know of the existence of an object if we can name it and refer to
its unconditional, relatively stable existence, but without processes we cannot tell how this object is
transformed—how it is created, how its states change over time, and how it disappears. These two
fundamental concepts—objects and processes, generalized as things—are the focus of this chapter.

10.1 The Object-Oriented Versus The Object-Process Approach

As we saw in Sect. 9.2.5, objects and processes are the two types of OPM’s universal building blocks, and
processes are modeled as “first class citizens” that are not subordinate to objects. This object-process
orientation is a principal departure from the object-oriented (OO) software paradigm, which places
objects as the only major players. Objects “own” processes, which in the OO nomenclature are often
called “operations” or “services” or “methods”.

Major system-level processes can be as important as, or even more important than objects in the
system model. Hence, processes must be amenable to being modeled independently of a particular object
class. This is in line with the thing importance OPM principle, introduced in the previous chapter, which
states that the importance of a thing 7 in an OPM model is directly related to the highest OPD in the OPD
hierarchy where T appears. This object-process status equality paradigm enables OPM to conceptually
model real-world systems in graphics and text.

Being able to tell objects and processes apart and use them properly in a model is a key to mastering
OPM. To define these fundamental concepts and to communicate their semantics, we shall first discuss
“existence” and “change,” laying the foundation for defining objects and processes and distinguishing
between them. We will then introduce the “essence of things” and examine the difference between
“physical” and “informatical” things. The word informatical, or cybernetic, refers to a generalization of
being related to data, information, knowledge, expertise, or ingenuity without any reference to their
physical manifestation.

© Springer Science+Business Media New York 2016 97
D. Dori, Model-Based Systems Engineering with OPM and SysML, DOI 10.1007/978-1-4939-3295-5 10

http://edocket.access.gpo.gov/cfr_2004/octqtr/49cfr571.111.htm

98 Things: Objects and Processes

10.2 Existence, Things, and Transformations

Webster’s New Dictionary (1997) defines existence as the noun derived from exist, which is be, have
being, continue to be. To exist means to stand out, to show itself, and have an identifiable, distinct
uniqueness within the physical or mental realm. A thing that exists in physical reality has “tangible being”
at a particular place and time. Because it stands out and shows itself, we can point to it and say: “Now,
there it is.”

To stand out means to present a stable form against a background of something else that exists. The
notion of “background” is essential, for if there were nothing else that existed, there could not be the
contrast of one thing standing out and distinguishing itself from a background of things that exist along
with it. The stable form that the existing thing must exhibit is “substantially unchanging” long enough
(relative to the typical rate of change of the background) for it to be recognized as “standing out.” That
which we cannot identify, nor have its identity be inferred in some way, can have no existence for us. In
other words, “to stand out” requires a continuous identifiability over an appropriate duration of time,
either physically or informatically.

Considering existence along the fime dimension, there are two modes of “standing out,” or existence
of things. In the first mode, the “standing out” takes place during a positive, relatively substantial time
period. This “standing out” needs to be observable in a form that is basically unchanging, stable, or
persistent. We call that which stands out in this mode object. Webster’s Dictionary (1997) defines an
object as a material thing; that to which feeling or action is directed; end or aim, word dependent on a
verb or preposition. The verb on which the object “depends” is the syntactic manifestation of process.
Indeed Dictionary.com defines verb as “The key word in most sentences, the word that reveals what is
happening.” The pattern in our minds of “what is happening” is the process.

10.2.1 Object Refined

An earlier version of Webster’s Dictionary (1984) provides a different set of two relevant definitions for
object:

e Anything that is visible or tangible and is stable in form.
o Anything that may be apprehended intellectually.

These two definitions respectively correspond to our notions of physical and informatical (or cybernetic)
objects. The first definition is the one we normally think of when using the term object in daily usage.
The second definition pertains to the informatical, conceptual, cybernetic, logical, intangible facet of
objects. Informatical objects are different from their physical counterparts in that they have no physical
existence, so they are not subject to the laws of physics. However, the carrier of an informatical object is
a physical object; the existence of informatical objects depend on their being symbolically recorded,
inscribed, impressed, or engraved on some physical medium: a stone, papyrus, paper, an electromagnetic
medium, or a group of neurons in a brain. This is where the physical and informatical aspects of an
informatical object are tangential, giving rise to concepts such as noise and the correspondence between
statistical mechanics and information theory through entropy (Shannon and Weaver 1949).

Since OPM objects are physical or informatical, we define object as something that captures these two
facets without committing to either one, while including the element of “existence throughout time.”

http://en.wikipedia.org/wiki/Information_theory
http://en.wikipedia.org/wiki/Statistical_mechanics

Dori — Model-Based Systems Engineering with OPM and SysML 99

An object is a thing that exists or has the potential of physical or informatical
existence.

This definition is quite remote from the classical definitions of object in the OO literature, which can
be phrased as “An object is an abstraction of attributes and operations that is meaningful to the system.”
For example, in the eBook Object-Oriented Programming Basics with Java, an object is defined as “an
encapsulated completely-specified data aggregate containing attributes and behavior.”

10.2.2 Objects and Human Memories

Qualifying the human brain as a tangible medium that can store intangible things may perhaps seem to
some readers cynical or inappropriate. It therefore deserves special discussion and justification. The
central nervous system, of which the brain is the major part, is the information system in humans and
other organisms. It controls and regulates the entire organism. The human recollection or the mental
record of a thing is still a mostly mysterious way that a thing is inscribed in one’s mind, but progress in
understanding brain structure and function is being constantly made (e.g., Kostovic and Rakic 1990).

Among many other, more elated capabilities of intelligence and emotions, the magnificent capability
of the human brain to remember things qualifies it as a superb recording medium. A human brain stores
vast amounts of data, information, and knowledge of various forms that are the essential basis for
intelligence, including inference, prediction, decision-making and behavior. Human memories are not just
a series of objects representing facts, images, faces, names, shapes, figures, forms, and symbols. They
also include structural and behavioral relationships that exist among these objects, and the rules that
govern them. Anything that is recorded in the human brain is an informatical object. This informatical
object may be the record of some (tangible and/or intangible) set of objects and the processes that the
objects in the set undergo.

10.3 Obiject Identity

The identity of objects is important, yet elusive. Physical objects must be treated differently than
informatical objects. Since a physical object is made of matter (or energy, which, following Einstein’s
teachings can be converted to matter and vice versa), two instances of a physical object are identical if
and only if they occupy the same space at the same time. This is possible if and only if the two are
actually the same object, implying that no two distinctly identifiable instances of a physical object are the
same. Thus, two new identical cars of Model X that just emerged from the assembly line are different
instances of the same object class.

10.3.1 The Identity of Informatical Objects

The situation with object identity is different when informatical objects are concerned, since here the
essential object feature is the idea, concept, pattern, or symbol it represents, rather than physical matter
documenting it. From the physical medium point of view, each informatical object instance, such as a
copy of the same book, is distinct, just like the two cars emerging from an assembly line. However, from

http://www.cs.usfca.edu/%7Eparrt/doc/java/OOProgWithJava-notes.pdf

100 Things: Objects and Processes

the informatical point of view, all the physical copies of some informatical object are the same. Two
copies of the same book are identical insofar as their informatical content (semantics) is considered. They
are printed on separate pages and bound as two distinct physical object instances. Even if one copy is a
paper copy and the other is electronic, from the informatical viewpoint they are still the same.

From the informatical viewpoint, two identical (paper or computer) files containing blueprints and
manufacturing instructions for a Model X car are, the same object, because the informatical content they
convey is identical. Physically, the pieces of media, on which this physical object is recorded, are
different, since they are physical matter that obeys the laws of nature. Likewise, two copies of the same
file are physically different, as they occupy different address spaces in the computer’s primary or
secondary memory. However, when viewed as informatical objects, they are identical.

10.3.2 Process as a Transformation Metaphor

We noted that there are two modes of standing out. The first is in space, the second—in time. In the time
mode of “standing out”, the standing out is still of an object, but this time it occurs “in a changing way”
against a background, which is substantially stable. Because the object that stands out is undergoing
transformation, it may have different names before and after the transformation. It is convenient to think
of the thing that has brought about a transformation as some carrier that is “responsible” for this
transformation.

When we are inclined to think in this way, what we really are thinking about is the patterned
changing, the series of transformations that one object or more undergo. For the convenience of language
or thinking, we associate this patterned changing with the “carrier,” to which we mentally assign the
“responsibility.” We define transformation as a generalization of change, generation and destruction of an
object.

Transformation is generation (construction, creation) or consumption (destruction,

elimination) or change (effect, state transition), of an object.

10.3.3 Process Definition Refined

According to Webster’s dictionary (1997), a process is “a state of going on, series of actions and changes,
method of operation, action of law, outgrowth.” The American Heritage Dictionary (1996) defines
process as “a series of actions, changes, or functions, bringing about a result.” In Dictionary.com, verb,
which is roughly the syntactic analogue of process, is defined as “The key word in most sentences, the
word that reveals what is happening.”

We call the carrier that causes transformation process, and we say that the process is “that which
brought about the transformation” of an object. However, that carrier is just a metaphor, as we cannot
“hold” or touch a process, although that process may be entirely physical, as it involves transformation of
one or more physical objects. The only thing(s) we may be able to touch, see, or sense in any other way,
is the object being transformed. We can measure one or more of the object’s attribute values at certain
points in time, or as the process is transforming that object. For example, we can measure the values (in
degrees Celsius) of the temperature attribute of an iron bar object as it undergoes the process of heating,
or we can touch it and feel it getting hotter relative to some past time point, but we cannot touch the
heating process.

Dori — Model-Based Systems Engineering with OPM and SysML 101

At any given point in time before, during, or after the occurrence of the process, the observed object
can potentially be different from what it was in a previous point in time. Using our human memory, we
get the sense of a process by comparing the present form of the object being transformed to its past form.
Hence, a process exists only as a concept, a mental construct in humans’ minds. We give names to
processes to refer to changing patterns of objects. Focusing on transformation, we adopt the following
definition.

Earlier we said that objects exist and processes happen. Here we just said that a process exists, but
only as a mental construct. In this regard, we could think of processes as (mental) objects too, and devise
a modeling paradigm that is based only on objects as “first class citizens”, arguably having an even more
compact universal ontology than OPM. Indeed, this is the object-oriented approach. However, as we
show throughout the book, the value of adding process as a concept in the universal ontology that is
separate from object far exceeds the price of adding another concept to this ontology.

A process is a mental construct representing a pattern of object transformation.

This definition of process acting on an object immediately implies that no process has meaning unless
it is associated with at least one object—that which the process transforms. The transformation of the
object(s) is the necessary and inevitable result of the process execution. This is the first instance in which
the symmetry between objects and processes breaks. While we defined and could refer to an object
without necessarily using the term “process,” the ability to define and think of a process, including its
transformation, depends on the existence of at least one object being transformed by that process.

Referring to the syntactic meaning of object, Dictionary.com provides the following definition:

Grammar. (in many languages, as English) a noun, noun phrase, or noun substitute representing by
its syntactical position either the goal of the action of a verb or the goal of a preposition in a
prepositional phrase, as ball in John hit the ball...

Here, like in our definition, a linkage is made between the object and the verb, which is the process. In
John hit the ball, hitting is the process and ball is the object. This example shows that it is often the case
that the syntactic term object—that to which action is directed—coincides with the semantic term object.
However, semantically, John is also an object (an instance of the object person), while syntactically it is a
subject. The syntactic term verb is often analogous to the semantic term process. We elaborate on this in
Sect. 10.6 when we discuss the process test.

10.3.4 Transformee Defined

When we say that the process brought about the generation of an object, we mean that the object, which
had not existed prior to the occurrence of the process, now exists—it is identifiable against its
background. Analogously, when we say that the process brought about the elimination of an object, we
mean that the object, which once stood out, cannot be identified so it no longer exists. These radical
changes of generation and elimination are extreme versions of transformation. A less radical
transformation is change of the objects’ states. The object which a process transforms is called
transformee.

Transformee of process P is an object that P transforms.

http://dictionary.reference.com/browse/object

102 Things: Objects and Processes

We use the suffix “ee”, as in employee, here and in several other cases defined soon, to create a new
word that denotes an object which a process (verb) X acts on. Here, X = Transform. We will soon
encounter also Consumee, Resultee, and Affectee.

In a theoretic, frozen, static universe at absolute zero, no processes exist and no transformation occurs.
Without processes, all we can describe are static, persistent structural relations among objects. In realistic
earthly settings, processes and objects are of comparable importance as building blocks in the description
and understanding of natural systems and the universe as a whole (which is the mission of science), and
of designing artificial systems (which is the mission of engineering).

10.3.5 Cause and Effect

One insight from investigating the time relationship is cause and effect. Certain objects, when brought
into the right spatial and temporal relationship (e.g., being at the “same” place at the “same” time), enable
a process to take place, causing at least one object to be transformed: When the process is over, at least
one of the objects involved (as input, output, or both) is transformed (consumed, generated, or changed).
The “cause” in the “cause and effect” idiom is a triggering event that takes place in the concurrent or
otherwise time-orchestrated presence of the collection of objects, some of which might need to be in a
certain state. The “effect” in this “cause and effect” idiom is the transformation that one or more of these
objects undergo.

For example, running of an internal combustion engine is contingent upon the presence of the objects
air and gasoline vapor mixture inside the object cylinder at the right pressure and temperature (attributes
of mixture). The triggering event is the point in time when a spark (created by a previous timed process)
ignites the mixture. As a result of this process, the gasoline mixture is consumed and the piston’s kinetic
energy value increases. In feedback, cause and effect are circular: The effect at a given time is the cause
for a change later.

10.4 Syntax Versus Semantics

To make it possible to refer to things (objects and processes) and distinguish among them, natural
languages developed by humans to enable communication, assign names to the things. The name of a
thing constitutes a primary identifying symbol of that thing, making it amenable to reference and human
communication. These thing names are known as nouns. However, being part of speech, noun is a
syntactic term, while objects and processes are semantic terms. We elaborate on this issue next.

10.4.1 Are Objects and Processes the Semantic Analogues of Nouns and Verbs?

In natural languages, almost invariably, objects are syntactically represented as nouns. Processes are
syntactically often represented as verbs, but they can be nouns too. For example, brick is syntactically a
noun and semantically an object, while constructing is a verb and a process. However, construction in the
context of “the construction process” is also a noun, although semantically it is the same as “the
constructing process.” To make the point, we note that the phrase the construction process is plausible,
while the brick process is not. Likewise, the phrase the brick object is plausible, while the construction
object (where object is not referred to as a synonym for goal) is much less plausible. Even more

Dori — Model-Based Systems Engineering with OPM and SysML 103

confusing is the object building (noun), which is the outcome of the building (constructing) process. It is
spelled and uttered the same as the process of building (verb). It is only from their context inside a
sentence that these two semantically different words are distinguishable.

A common software design strategy is the noun/adjective/verb object oriented design strategy
(MaclIntyre 2010). In his blog, MacIntyre wrote:

... Then I learned C++, object oriented programming, and was introduced to the holy grail of object
oriented design advice, which went something like this: Take your requirements and circle all the nouns,
those are your classes. Then underline all the adjectives, those are your properties. Then highlight all your
verbs, those are your methods.

This Noun/Adjective/Verb design strategy seemed like the most ingenious piece of programming wisdom
ever spoken ... but it’s led us down a misguided path. It’s the verb that’s misunderstood. The verb
should be another class, not a method. It should be a process class. As a programming concept, a
process is just as much a ‘thing’ as any real world object. The verb should be a class, which accepts the
noun as an input to be processed.

Interestingly, Maclntyre intuitively arrived at the conclusion that the verb is “amother class”
(emphasis in source). He realized that a process is not less important than an object, and therefore should
not be a method owned by an object but a “process class” in its own right.

The examples discussed above demonstrate that the tempting assertion that object and process are the
semantic analogues of the syntactic concepts noun and verb is at best crude and inaccurate. Hence, rather
than relying on the syntactic notions of parts of speech, we need to establish a semantic, content-based
way to analyze words in a sentence that would enable us to tell objects from processes. This will enable
us to overcome the pitfalls and idiosyncrasies of natural languages.

10.4.2 Syntactic Versus Semantic Sentence Analysis

The difficulty we often experience in making the necessary and sufficient distinction between objects and
processes is rooted in our education: As students in high school, we have been trained to think and
analyze sentences in syntactic, parts of speech terms—nouns, verbs, adjectives and adverbs—rather than
in semantic, deeper sense-making terms—objects, processes, attributes, and operations. This is probably
true for any natural language we study and use, be it our mother tongue or a foreign language.

The same idea can very often be expressed by more than one sentence, giving rise to different
assignments of parts of speech. Semantic sentence analysis is the dissection of a sentence by its semantics
rather than its syntax. Only through semantic sentence analysis can we overcome superficial differences
in expression and get down to the intent of the writer or speaker of some text. Nevertheless, the idea of
semantic sentence analysis, in which we seek the deep meaning of a sentence beneath its appearance, is
probably a relatively less accepted idea.

To apply OPM in a useful manner, one should be able to analyze sentences semantically. This
primarily entails telling the difference between an object and a process. How to do this systematically is
the topic of the next sections. First we define three sets of objects with respect to their participation and
role in a process.

104 Things: Objects and Processes

10.4.3 The Preprocess Object Set

For a process to start, it needs to be triggered. This triggering can be external, by an object becoming
existent or available or by an object entering a certain state, or internal, by an event marking the end of a
preceding process in the context of a higher-level, in-zoomed process. Once triggered, the process “tries”
to operate (occur, happen, or execute). To this end, it needs to check for the existence of a set of objects—
the preprocess object set—which would allow it to be performed.

The preprocess object set of a process P, Pre(P), is the set of objects required to exist,

possibly in certain states, in order for P to start executing once it was triggered.

The triggering object itself is not part of the preprocess object set. Existence of the preprocess object
set, is the process precondition—the condition for the occurrence of the process. Being a process, the
noun representing it does not exist, but rather occurs, happens, operates, executes, transforms, changes, or
alters at least one other noun, which would be an object.

Let us consider two process examples: Flight and Manufacturing, shown in Fig. 10.1. In the Flight
example (the OPD on the left), Airplane, Pilot, and Runway are objects in the preprocess object set, since
Flight cannot occur without them. In set notation: Pre(Flight) = {Airplane, Pilot, Runway}.

For Manufacturing (the OPD on the right), the preprocess object set consists of Raw Material,
Operator, Machine and Model: Pre(Manufacturing) = {Raw Material, Operator, Machine, Model}. Product
is not in this set since it does not exist yet and is not needed for the process to start happening.

Operator
Pilot
7
£
Runway O @ s Raw Material Product
2> @,
Airplane
Machine
Model
Operator handles Manufacturing.

Flight requires Runway. Manufacturing requires Machine and Model.
Flight affects Pilot and Airplane. Manufacturing consumes Raw Material.

Manufacturing yields Product.
Fig. 10.1 Preprocess and postprocess object set examples
There may be requirements on the states of some of the objects in the preprocess object set. For
example, as the OPD on the left in Fig. 10.2 shows, in order for Flight to take off, it is required that
Runway be (at the state) open. In set notation: Pre(Flight) = {Airplane, Pilot, open Runway}. In other
words, this is expressed in the corresponding OPL sentence:

Flight requires open Runway.

Dori — Model-Based Systems Engineering with OPM and SysML 105

Operator

Product

Manufacturing -—-— | tested
Runway Raw Material
o
Machine Model
Machine can be operational or broken.
Model can be updated or outdated.
Flight requires open Runway. Operator handles Manufacturing.
Flight affects Pilot and Airplane. Manufacturing requires operational Machine and updated Model.

Manufacturing consumes Raw Material.
Manufacturing yields pre-tested Product.

Fig. 10.2 Example of a state-specified object, open Runway, in the preprocess object set of Flight
Similarly, as the OPD on the right in Fig. 10.2 shows, in order for Manufacturing to take place, it is
required that Machine be operational and Model be updated. In this case, the result will be pre-tested
Product. In set notation: Pre(Manufacturing) = {Operator, Raw Material, operational Machine, updated
Model}. This is expressed in the three corresponding OPL sentences:

Operator handles Manufacturing.
Manufacturing requires operational Machine and updated Model.
Manufacturing consumes Raw Material.

10.4.4 The Postprocess Object Set

The postprocess object set is defined analogously to the preprocess object set as follows.

The postprocess object set of process P, Post(P), is the set of one or more objects that
exist, possibly in certain states, after P finished executing.

Existence of all the objects in the postprocess object set, some possibly in specified states, is the
postcondition of that process.

The preprocess object set and the postprocess object set are not necessarily disjoint; they may be at
least partially overlapping. In the Flight example in Fig. 10.1, all three objects in the preprocess object set,
Airplane, Pilot, and Runway, are also in the postprocess object set: Post (Flight) = {Airplane, Pilot,
Runway}. We should note, however, that only Airplane and Pilot are transformed: their Location attribute
change from origin to destination. In Fig. 10.2 this is not modeled explicitly, only implicitly, specifying
that Airplane and Pilot each undergoes some state change.

In the Manufacturing example in Fig. 10.1, Raw Material, Operator, Machine and Model are in the
preprocess object set, while Operator, Machine, Model, and Product are in the postprocess object set: Post

106 Things: Objects and Processes

(Manufacturing) = {Operator, Machine, Model, Product}. Raw Material is transformed by being
consumed, while Product is transformed by being created.

If a process affects and object then the input state—the state of the affected object prior to the process
occurrence—is different than the output state—the state of the affected object following the process
occurrence. In this case, while the same object is in both the preprocess object set and in the postprocess
object set, it is in different states. This is demonstrated in Fig. 10.3, where pre-tested Product is in the
preprocess object set, while tested Product is in the postprocess object set.

Product is physical.
Product can be pre-tested or tested.
Testing Product Product exhibits Quality.

Facility .% ?uathty_ c:ar;1 be_ Icilw, medium, or high.
ester is physical.

X 2l
Tester handles Testing.
Quality Testing Facility is physical.

Tester 5 < Y e
Testing — Testing requires Testing Facility.
Testing changes Product from pre-
tested to tested.
Testing yields Quality.

Fig. 10.3 pre-tested Product is in the preprocess object set, while tested Product is in the postprocess object set

10.4.5 The Involved Object Set

The involved object set is defined as follows.

The involved object set of process P, Inv(P), is the union of P’s preprocess object set

and postprocess object set.

In set notation: /nv(P) = Pre(P) U Post(P).

In the examples in Fig. 10.1, Inv (Flight) = {Runway, Pilot, Airplane}, and /nv (Manufacturing) =
{Operator, Machine, Model, Raw Material, Product}.

10.5 The Procedural Link Uniqueness OPM Principle

By the definition of process, a process transforms at least one object, so in a complete OPM model a
process must be linked to at least one object, or any one of its states, via a transforming link, either
directly or indirectly. A process and an object can be connected only via a procedural link, with the
exception of exhibition-characterization, which is a structural link. Any procedural link, with the
exception of invocation and exception links, connects a process with an object.

An object has some role with respect to a process. It can be an agent, an instrument, or a transformee.

Therefore, an object, or a state of an object, and a process cannot be connected by more than one
procedural link. This is the rationale behind the following procedural link uniqueness OPM principle.

Dori — Model-Based Systems Engineering with OPM and SysML 107

The Procedural Link Uniqueness OPM Principle

At any level of detail, an object and a process can be connected with at most one procedural link,
which uniquely determines the role of the object with respect to the process.

The reason for qualifying this principle to a given level of abstraction is that at different abstraction
levels an object might be modeled differently. The role of an object can change with the level of detail.
The procedural link uniqueness guides the modeler to retain the most semantically meaningful model fact
at any given detail level.

Person

Person
Al

Person can be hungry or satisfied.

Person handles Eating.

Eating affects Person.

Eating changes Person from hungry to satisfied.

Eating affects Person.

Fig. 10.4 The procedural link uniqueness OPM principle demonstrated Left: Expressing Person as both agent and
affectee of Eating is made possible via state expression. Right: When the states are suppressed, only the effect link
remians

For example, in the OPD on the left of Fig. 10.4, when a Person is engaged in Eating, Person is both
the agent, since Person handles Eating, and the affectee of this process, since Eating changes Person from
hungry to satisfied. This is possible because the states hungry and satisfied of Person are expressed.
When the states are suppressed (on the right), we cannot have both agent and effect links between Person
and Eating, so we must make a choice. As we define formally and explain in more detail in Sect. 21.13,
the choice of the link is based on the precedence of the procedural links. Since a transforming (in our case
effect) link is semantically stronger than an enabling link (in our case agent), the effect link prevails. We
can still use both links if we zoom into Eating, exposing its three subprocesses: Food Picking, Food
Swallowing, and Food Digesting. Only the latter subprocess affects the Person, so now Person can be
linked with an agent link to Food Picking and Food Swallowing, and with an effect link to Food
Digesting. When zooming out of Eating and suppressing the states of Person, Person and Eating will
again be linked by the effect link, since overall the state of Person changed, in line with the link
precedence.

As another example, Truck is obviously an instrument for Transporting. Transporting zooms into
Loading, Moving, and Unloading. Loading changes Truck from unloaded to loaded, so Truck it is
obviously affected. However, after Moving is over, Unloading changes Truck back from loaded to
unloaded, so as a whole, inspecting Truck from the Transporting level, Truck is unaffected and hence can
be modeled as an instrument of Transporting rather than its affectee.

108 Things: Objects and Processes

SD1: Dish Washing in-zoomed

> Dish
Loading

Dishwasher

SD: Dish Washing System Household
User

Dishwasher Household
User

?ﬁ&i&gneg“‘
I
Cemita)?r}tgnenl Dish Set
A Dlshg\eamng Cleanliness
Dish Set s "
=
Unloading

Dish Washer consists of Soap Compartment and other parts.

Dishwasher can be empty or loaded.

Dishwasher is initially empty and finally empty.

Soap Compartment can be empty or loaded.

Soap Compartment is initially empty and finally empty.

Dish Set exhibits Cleanliness.

Cleanliness of Dish Set can be dirty or clean.

Cleanliness of Dish Set is initially dirty and finally clean.

Household User handles Dish Washing.

Dish Washing zooms into Dish Loading, Detergent Inserting, Dish Cleaning
& Drying, and Dish Unloading, in that sequence.

Dish Loading changes Dishwasher from empty to loaded.

Detergent Inserting requires Soap.

Detergent Inserting changes Soap Compartment from empty to loaded.
Dish Cleaning & Drying requires Dishwasher.

Dish Cleaning & Drying consumes Soap.

Dish Cleaning & Drying changes Cleanliness of Dish Set from dirty to clean.
Dish Unloading changes Dishwasher from loaded to empty.

Household User handles Dish Washing.
Dish Washing requires Dishwasher.
Dish Washing consumes Soap.

Dish Washing affects Dish Set.

Fig. 10.5 Role of abstraction with split state transforming links

An object may have the role of an instrument in an abstract OPD and a transformee in another
descendent, more detailed and concrete OPD. At the abstract OPD, the process does not appear to affect
the object, because the object’s initial state is the same as its final state. Therefore, at the abstract OPD the
object is an instrument, as indicated by an instrument link. However, at a descendent, more concrete

OPD, that same process does appear to change the state of that object from the initial state and then back
to the initial state.

As a final example, in Fig. 10.5, the left OPD (SD: Dish Washing System), a Dishwasher object is an
instrument for the Dish Washing process, since no change in state of the Dishwasher is visible at that
extent of abstraction. In the descendent OPD (SD1: Dish Washing in-zoomed), Dish Washing zooms into
Loading (of a dirty Dish Set), Cleaning (which changes Dish Set from dirty to clean), and Unloading (of a
clean Dish Set). Loading changes the state of Dishwasher from empty to loaded, while Unloading
changes it back from loaded to empty, so empty is both the initial and final state. While the Dishwasher
is an instrument in SD, the System Diagram, at the descendent, more detailed OPD, the Dishwasher is an

Dori — Model-Based Systems Engineering with OPM and SysML 109

affectee—it becomes loaded and then empty again. The only effect visible in the System Diagram is the
effect on Dish Set.

10.6 The Process Test

As argued, while a basic tenet of OPM is the distinction between objects and processes, it is sometimes
difficult to tell an object from a process, especially if both are nouns. The object-process distinction
problem is stated simply as follows:

Given a noun, how can we tell if it is an object or a process?

The process test, specified in this section, is a formal procedure for solving the object-process
distinction problem. It enables identifying nouns that are processes rather than objects, a prerequisite for
successful system analysis and design.

By default, a noun is an object. To be a process, the noun must meet each one of the following three
process test criteria: (1) Object transformation, (2) time association, and (3) verb association.

Finally, if the outcome is still not clear, using common sense is of course the best option.

10.6.1 The Object Transformation Criterion

The object transformation process test criterion stipulates that a process must transform (consume, create,
or change the state of) at least one of the objects in the involved object set.

The object transformation criterion is satisfied if the noun in question transforms at

least one of the objects in the involved object set.

The membership of the transformee B of P is determined as follows.
o If P consumes B then B € Pre(P): Bis only in the preprocess object set of P.
e If Pyields (creates) B, then B € Post(P): B is only in the postprocess object set of P.

o If P affects (changes the state of) B, then B € Inv(P): B is in the involved object set, i.e., in both
the preprocess object set and the postprocess object set.

Enablers (agents or instruments) are also members of /nv (P) as their presence is required throughout
the entire duration of the process occurrence.

Continuing the previous examples, the Flight process transforms Airplane (by changing its Location
attribute from origin to destination). Hence, Airplane € Inv (Flight). Manufacturing transforms two
objects: it consumes Raw Material and creates Product, hence Raw Material € Pre (Manufacturing) while
Product € Post (Manufacturing). Finally, Machine € /nv (Manufacturing) since Machine is an instrument
for Manufacturing.

110 Things: Objects and Processes

10.6.2 The Time Association Criterion

The association with time process test criterion requires that the noun in question represent some
happening, occurrence, action, procedure, routine, execution, operation, or activity that takes a positive
amount of time along the timeline.

The time association criterion is satisfied if the noun in question can be thought of as

happening through time.

Continuing our example, both Flight and Manufacturing start at a certain point in time and take a
certain amount of time. Both time and duration are very relevant features of these two nouns in question.

10.6.3 The Verb Association Criterion

The association with verb process criterion requires that a process be associated with a verb.

The verb association criterion is satisfied if the noun in question can be derived from,

or has a common root with a verb or has a synonym which is a verb.

Flying is the verb associated with Flight. The sentence “The airplane flies” is a short way of
expressing the fact that the Airplane is engaged in the process of Flight. Similarly, to manufacture
(produce, yield, make, create, generate) is the verb associated with Manufacturing. The sentence “The
operator manufactures the product from raw material using a machine and a model.” is the natural
language short way of the OPL paragraph on the right in Fig. 10.1.

Noun can be process or object.
i_ Process Test Noun Noun exhibits Object Transformation Criterion, Time

- Association Criterion, and Verb Association Criterion.
A_J; The state object is initial.
Process Test consists of Object Transformation Criterion,

Time Association Criterion, and Verb Association
Criterion.
Object Transformation Criterion of Noun can be rejected
or accepted.
Time Association Criterion of Noun can be rejected or

Object Transformation
Criterion

==t
n

Noun As Process

TimecAisqciation Defining accepted
riterion .
1 1 Verb Association Criterion of Noun can be rejected or

Noun As Process Defining requires accepted Verb
= Association Criterion of Noun, accepted Time
Verb Assaciation Association Criterion of Noun, and accepted Object
Criterion i e
Transformation Criterion of Noun.

/ Noun As Process Defining changes Noun from object to

process.

Fig. 10.6 An OPM model of the Process Test system

Here we rely on verb—a syntactic construct, but is not mandatory that the verb be syntactically from
the same root as the process name; it can be a synonym as long as the semantics is the same. For example,
Marrying is a process, which is associated with the verb to marry. To wed is also a legal verb, albeit less
frequently used. Alternatively, we could use Wedding to fit it to the verb wed. Many objects, such as

Dori — Model-Based Systems Engineering with OPM and SysML 111

Apple and Airplane, are not associated with any verb, so they do not fulfill this process criterion. It is easy
to verify that both Apple and Airplane do not meet the other process test criteria either. Boundary cases of
things exist, as discussed in Sect. 10.10 with examples.

10.6.4 An OPM Model of the Process Test System

Figure 10.6 is an OPM model of the process test system.

The Noun in question is initially defined as object. Process Test is shown to be comprised of its three
criteria, Object Transformation Criterion, Time Association Criterion, and Verb Association Criterion,
each of which can be at a state accepted or rejected. The three instrument links from the three accepted
states of these three criteria indicate that only when all the three criteria are accepted, the Noun As
Process Defining process is enabled, changing Noun from object to process. The self-explanatory OPL
paragraph of this system is also recorded in Fig. 10.6.

10.7 Naming OPM Elements

Selecting appropriate names for OPM objects, processes, and states is very important, because names
affect how easily and how well our model is communicated to, and understood by, the target audience.
Naming conventions for processes and objects help humans to tell them apart. Moreover, since these
modeler-defined names are also embedded in the automatically-generated OPL sentences, these sentences
will make sense only to the extent that the entities names in them are meaningful and result in correctly
phrased OPL sentences. For example, in the OPL paragraph above, suppose we called this process simply
Process Testing. This would result in the following OPL sentences:
Process Testing requires accepted Verb Association Criterion of Noun, accepted Time Association Criterion

of Noun, and accepted Object Transformation Criterion of Noun.
Process Testing changes Noun from object to process.

After changing the process name, the following, more accurate OPL sentences are produced.

Noun As Process Defining requires accepted Verb Association Criterion of Noun, accepted Time Association
Criterion of Noun, and accepted Object Transformation Criterion of Noun.
Noun As Process Defining changes Noun from object to process.

10.7.1 Capitalization, Bolding, Phrase, and Thing Naming

The capitalization OPM convention is that the first letter in each word in the name of a thing (object or
process) is capitalized, while states are lower-case (non-capitalized). Thus, possibly injured Vehicle
Occupants Group denotes the object Vehicle Occupants Group at its possibly injured state.

contains contains 6
Box Pencil Box Pencil

Box contains Pencil. Box contains 6 Pencils.

Fig. 10.7 An OPM model of a box with one (left) and six (right) pencils

112 Things: Objects and Processes

Tags of tagged structural relations are also non-capitalized either, as in the OPL sentence “Box
contains Pencil.” which is the textual modality of the OPD on the left of Fig. 10.7. The tag contains along
the arrow from Box to Pencil is lower-case.

A phrase is a collection of one or more words that do not constitute a sentence.

Object naming is simple—it is a capitalized noun. Object names can be phrases with more than one
word, as in Apple Cake or Insurance Claim.

10.7.2 The Singular Name OPM Principle

An important OPM principle that must be adhered to while naming an object or a process is the singular
name OPM principle:

The Singular Name OPM Principle

A name of an OPM thing must be singular. Plural has to be converted to singular by adding the
word “Set” for inanimate things or “Group” for humans.

There are two reasons for defining this principle. First, an automated tool takes care of converting
singular to plural as needed. For example, in the OPD in the right of Fig. 10.7, when the participation
constraint (defined later) “6” is added, the OPL sentence now reads Box contains 6 Pencils. Second, we
want to be able to specify parts or attributes or specializations of a thing in its singular form.

So what should we do if we wish to model more than one instance? We convert the plural object in the
OPM model to singular by adding the word “Set” for inanimate things or “Group” for humans. Thus, the
object “Ingredients” (say, of a cake) becomes “Ingredient Set”, the process :“Modifications” becomes
“Modification Set”, and “Customers” becomes “Customer Group”.

10.7.3 Process Naming

Unless it makes no sense in English, the OPM process naming convention is to name a process by making
its last word a gerund, i.e., the root of the verb followed by the “ing” suffix, as in Igniting. We call this the
gerund process naming mode. If there are several choices, such as in Construction vs. Constructing, the
latter is preferable, unless domain experts indicate that the non-gerund form is the one that is commonly
used and understood in the domain.

This naming convention clarifies the dynamic nature of the process as a dynamic thing, a thing that
happens along the time dimension rather than a static thing that exis¢s without change. To enhance clarity
and make the function of the process explicit, the gerund may be preceded by the primary object that the
process transforms, as in Engine Igniting. The object name that can precede the gerund qualifies the
process, making it a specialization of the original process. For example, Wall Painting and Car Painting
are two different (yet similar) processes that specialize Painting. Both transform the object being painted
by changing the color attribute value of the affectee (operand)—the object being painted. However, since
the objects being painted are different, the instruments and techniques of each kind of painting differ.

Dori — Model-Based Systems Engineering with OPM and SysML 113

The process name in the running example in Part I of this book, Automatic Crash Responding, could
be simply Responding, but that might seem too general, since it does not specify what the response is for.
Even Crash Responding alone is not quite sufficient, as it could be done without an automated system.
We also avoid calling this process Response, as this name does not follow the gerund process naming
mode and can be justifiably conceived as an object—the outcome of the responding process.

The recommended gerund process naming mode comes in several versions of increasing length and
information content:

1. The transforming (verb) version: the process name (syntactically the gerund form of the verb, namely
verb + ing), as in Making or Responding.

2. The object transforming version: a concatenation of an OPM object (syntactically a noun) with the
process name (syntactically the verb’s gerund), as in Cake Making or Crash Responding. This is the
recommended naming mode in most cases.

3. The qualified transforming version: a concatenation of an attribute value (syntactically an adjective)
with the process name, as in Quick Making or Automated Responding.

4. The qualified object transforming version: a concatenation of an attribute value with an object and
the gerund. The attribute value can qualify the process, as in Quick Cake Making or Automatic Crash
Responding, or it can qualify the object, as in Sweet Cake Making or Fatal Crash Responding.

A second process naming option, often used by modelers, is the imperative process naming mode, as
in “respond” or more specifically, “respond to crash”, or “automatically respond to crash”. OPM
discourages this mode, because it is less compact and less elegant, and the OPL sentences created using
this mode in the current OPM 19450 are awkward. Modeling languages usually do not prescribe such
naming conventions. Modelers are therefore unaware of nuances such as the difference between the
gerund and imperative process name modes. The Functional Analysis approach advocates naming
functions imperatively: “Start Engine”. “Launch Missile”, “Turn Left”, but this does not seem to be a
premeditated and mandatory way, just a short and sometimes convenient way of expression.
Consequently, many modelers use both the gerund and the imperative process name modes
interchangeably or in a mixed way, making the model less coherent and unnecessarily more cognitively
demanding.

10.8 Thing Defined

We have seen that objects and processes are two types of tightly coupled and complementary tiings. Objects
cannot be transformed (generated, affected or eliminated) without processes, while processes have no
meaning without the objects they transform, and often also the objects that enable their occurrence. The
extent of this coupling is so intense that if we wish to be able to analyze and design systems in any
domain as intuitively and naturally as possible, we must consider objects and processes concurrently.
Objects exist as relatively persistent, static things, while processes occur as transient, dynamic things.

The extent to which objects and processes are interwoven is even lager; we must be able to specify
what state an object was at before the process affected it, which objects were consumed, and which were
generated. At the same time, we need to be able to show how parts, features and specializations
(discussed later) of these objects play role in subprocesses of the higher-level process.

114 Things: Objects and Processes

As we shall see, objects and processes have much in common in terms of being specified through
structural relations such as aggregation, generalization, and characterization. The need to talk about these
two concepts in a generalized way, without repeating “object or process” over and over again,
necessitates the advent of a yet more abstract term. We call this simply a “thing.”

Thing is a generalization of object and process.

The concept of “thing” enables us to think and express ourselves in terms of this abstraction and refer
to it without the need to reiterate the words “object or process”. Based on the ontology of Bunge (1987,
1989), Wand and Weber (1989, 1993) have used the term thing as a synonym to what we refer to as
object. Their first premise is that the world is made of things that have properties. According to this
definition, thing seems to be synonymous with object. However, during the last two decades, the term
object has become deeply rooted, at least in the software engineering community. In SysML and UML,
object has been replaced by the terms block and class, respectively. Interestingly, the emergence of the
term “Internet of Things” (IoT; Weber and Weber 2010) is in line with the notion of thing as a
generalization of object and process since IoT is about processes taking place among physical
interconnected objects.

10.9 Properties of OPM Things

A property is an attribute at the metamodel level. Property can be thought of as a meta-attribute—an
attribute of an element in a metamodel of OPM.

lProperty is an attribute of an OPM model element.

Unlike “regular” attribute, whose values can change during the execution of an OPM model, a property
value of any element in an OPM model is fixed. We will see an example at the end of this section. All
OPM things have the following three properties:

e Perseverance, which pertains to the thing’s persistence and denotes whether the thing is static
(persistent), i.e. an Object, or dynamic (transient), i.e. a Process. Boundary examples of static,
persistent processes and dynamic, transient objects exist, as discussed later in this chapter. Based on
the value of Perseverance, this property of Thing discriminates between an Object and a Process. At
the model level we call such attributes discriminating attributes, as discussed in a later chapter.

e Essence, which pertains to the thing’s nature and denotes whether the thing is physical or informatical.

e Affiliation, which pertains to the thing’s scope and denotes whether the thing is systemic, i.e., part of
the system, or environmental, i.c., part of the system’s environment.

Graphically, as shown in Fig. 10.8, shading effects denote physical OPM things and dashed lines
denote environmental OPM things. All eight Perseverance-Essence-Affiliation property combinations of
an OPM thing shown in Fig. 10.8 may occur. The lower portion of Fig. 10.8 expresses, from left to right
and top to bottom, the OPL sentences corresponding to the graphical elements.

We noted that a property value of any element in an OPM model is fixed. Indeed looking at the
example of Perseverance, a property of an OPM Thing, if the value of a certain Thing in an OPM model
is set as static (i.c., the Thing is an Object), then this value is fixed and the Object cannot become a Process.

Dori — Model-Based Systems Engineering with OPM and SysML 115

Salary Hole Sala Hole
Calculating Drilling y

Tax

Tax ‘, ' Bridge
Assessment

. 1 -
. Assessing P \ Rusting 4
- L4 £ -, - . 0 il el ot P

CSermmae® aya oo

Salary Calculating is an informatical and systemic process.
Hole Drilling is a physical and systemic process.

Salary is an informatical and systemic object.

Hole is a physical and systemic object.

Tax Assessing is an informatical and environmental process.
Bridge Rusting is a physical and environmental process.
Tax Assessment is an informatical and environmental object.
Air Oxygen is a physical and environmental object.

Fig. 10.8 OPM thing generic attribute combinations exemplified

10.9.1 Default Values of Thing Generic Properties

The Affiliation property of thing is by default systemic. With respect to Essence, we note that the
majority of things in non-trivial systems tends to have the same property value: either most of the things
in the system are physical or most of them are informatical. For example, Data processing systems are
informatical, although they have physical components. Transportation systems, such as a railway system
or an aviation system, are physical, although they have informatical components.

A system’s primary essence is the Essence value of the majority of the things in the

system.

The default essence value of a thing is the primary essence of the system. The motivation, based on
experience, for defining the primary essence is to save the modeler the need to mark the vast majority of
the things in the system as either informatical or physical. A supporting tool should therefore provide an
option for the modeler to specify a system’s primary essence as a means to reduce the amount of things
for which the modeler has to specify their essence.

The OPL paragraph corresponding to an OPD should not include an OPL sentence to indicate the
Essence or Affiliation value of a thing if it is the default, unless the thing is isolated—it has not yet been
connected to any other thing during the course of the modeling process. The reason for this is the need to
avoid violating the graphics-text OPM principle. Suppose the default essence of the OPDs in Fig. 10.9 is
physical. Upon drawing the physical object Car and prior to linking it to anything, the OPL sentence “Car
is physical” shall appear, as shown in the OPD on the left, otherwise there would be a thing (Car)
depicted in the OPD that has no mention in the OPL, violating the graphics-text OPM principle. However,

116 Things: Objects and Processes

as soon as the isolated thing becomes linked to another thing, as shown in the OPD on the right, the OPL
sentence dedicated to specifying the thing’s default Essence or Affiliation shall be removed.

Car Car
ABS ABS
@,
ABS Braking
Car is physical. Car consists of ABS.
ABS Braking requires ABS. ABS Braking requires ABS.

Fig. 10.9 The primary essence of the Car Anti-lock Breaking System (ABS) is physical, therefore, once Car is linked to
ABS, the first sentence is removed from the OPL sentence

10.10 Boundary Cases of Things

While objects are persistent and processes are transient, boundary case of state-preserving (persistent)
processes and transient objects, exist. These are discussed in this section.

10.10.1 State-Preserving Processes

We have defined a process as a thing that transforms an object. There are cases in which the absence of a
process, rather than its occurrence, causes a change in the state of the object. One example is supporting:
Any object on Planet Earth (or on any other planet for that matter) is maintained in its vertical position by
a Supporting process that prevents it from freely falling. There is a whole family of such state-preserving
processes that have a static connotation as they act to maintain the state of an object rather than change it.

A state-preserving process is a process that acts to maintain a steady state or status

quo of an object rather than to change it.

The process of existing is the most prominent example, describing a situation of an object being “out
there” without specifying any change in that object. For biological objects, existing entails maintenance
of the necessary life processes, so they are definitely not static. Non-biological systems such as the solar
system or the global air traffic control system also exist while constantly changing.

Members of this state-preserving process family include such processes as Supporting, Holding,
Maintaining, Keeping, Staying, Waiting, Prolonging, Delaying, Occupying, Persisting, Including,
Containing, Continuing, Enclosing, Fastening, Connecting, Postponing, Dragging, Storing, Owning,
Restraining, Drawing, Attracting, and Remaining. Rather than induce any real change, the semantics of
these verbs is leaving the current state of the object as is, in its status quo, for some more time.

Dori — Model-Based Systems Engineering with OPM and SysML 117

Each one of these processes can be considered as a change-preventing process—a process that works
against some “force” which would otherwise change the operand—the object being operated on. For
example, Supporting of a Laptop can be rephrased as Fall Preventing, Keeping of a Coin can be rephrased
as its Loss Preventing, and Holding of a Hostage can be rephrased as Escape Preventing of that Hostage.
Due to their nature as state-preserving, these “pseudo-processes” might rather be modeled using tagged
structural relations between two objects. We discuss this in the context of structural relations.

10.10.2 How to Model State-Preserving Processes with Tagged Structural
Links

Many of the state-preserving verbs can be considered as working against some “force,” which would
otherwise change some object. For example, a Pedestal supporting a Statue works against gravity, so we
can think of Supporting as a “fall preventing” process, without which the state of the Statue would
change from stabilized to fallen. The Supporting process starts as soon as the Statue is positioned and
keeps going until something in the system changes, e.g., the Pedestal undergoes a process of Breaking,
changing its state from intact to broken. As a more modern example, an Autopilot is a system that is
designed to maintain and stabilize an Aircraft in its course, working against lift, drag, gravity, and the
centrifugal force. Once the state-maintaining process ends, the state will change, so you need to capture
this process as a recurring one—whether through self-invocation, presented in Sect. 22.4.6 or controlled
response to an external trigger.

The static nature of state-preserving processes is contradictory to the definition of process, which
requires that it transforms some object. In such cases, it is often possible, and even desirable, to model the
relation between the two pertinent objects using a tagged structural link instead of a process. This
approach to modeling persistent processes is exemplified in Fig. 10.10, which shows Supporting as a
state-preserving process. On the left hand side is the dynamic version of the model, in which Supporting
is an explicit process, presented with its corresponding OPL paragraph. On the right is the static model
version, in which the tagged structural relation supports expresses the time-invariant relation between
Foundation and House, giving rise to a corresponding more compact and more expressive one-sentence
OPL paragraph: Foundation supports House.

10.10.3 Transient Objects and Their Invocation Link Substitute

Transient objects are the analogous counterparts of persistent processes. A transient object is a short-lived
physical or informatical object. Examples of transient objects are unstable materials, such as an interim
short-lived compound in a chemical reaction or an atom in an excited state that spontaneously decays to
the ground state by emission of X-rays and fluorescent radiation. Another example of a transient object is
a packet in a telecommunication network. Such a packet can reside for a short while at some router on its
way and leave no trace once the target node has received it.

118 Things: Objects and Processes

House

&
Supporting &
3
Foundation Foundation
Supporting requires Foundation. Foundation supports House.

Supporting affects House.

Fig. 10.10 Supporting as a state-preserving process

In an OPM model, a transient object that is created by a process and immediately consumed by the
next process can be skipped by using the invocation link, a lightning-shaped procedural link that directly
connects the two processes. Figure 10.11 demonstrates the notions of transient object and invocation link.
On the left hand side is a model in which Spark is an explicit object created by Igniting. The presence of
Spark is an event that initiates (triggers) Exploding, as denoted by the letter e next to the arrowhead
pointing to Exploding. Exploding immediately consumes Spark, so Spark is transient and short-lived. On
the right hand side is an alternative, more compact model, in which the transient Spark is suppressed by
the invocation link. The semantics of the invocation link is that the end of Igniting is the event that
triggers Exploding. The OPL paragraph in this case is also more compact.

Exploding J,

Igniting invokes Exploding.

Exploding })

Igniting yields Spark.
Spark initiates Exploding, which consumes Spark.

Fig. 10.11 Spark as a transient object (left) and modeling without it using the invocation link (right)
Looking back at Fig. 10.10 and comparing it to Fig. 10.11, we can see the pattern: The use of the
invocation link as a shorter version of modeling generation and immediate consumption of a transient

object is analogous to the use of the tagged structural link as a shorter version of modeling a persistent
process. Another example is Signaling and the transient object Signal.

Dori — Model-Based Systems Engineering with OPM and SysML 119

10.11 Operator, Operand, and Transform

Before concluding this chapter on the dynamics of systems, it may be interesting to compare the OPM
ontology to the definitions of Ashby (2001) regarding operand, operator and transform:

Consider the simple example in which, under the influence of sunshine, pale skin changes to dark
skin. Something, “the pale skin”, is acted on by a factor, “the sunshine”, and is changed to dark
skin. That which is acted on, the pale skin, will be called the OPERAND, the [causing] factor will
be called the OPERATOR, and that what the operand has changed to, will be called the
TRANSFORM.

o Tanning
Radiating
Person . > = Person
untanned
Absorbing & A
f Pigmenting
Sun : .I ‘
Tanning } ' é
: 4 Skin
Complexion | §
Person consists of Skin and at least one other part.
Skin exhibits Complexion.
Person can be untanned or tanned. Complexion of Skin can be pale or dark.
Person is initially untanned and finally tanned. = Complexion of Skin is initially pale and finally dark.
Radiating requires Sun. Tanning zooms into Radiating and Absorbing &
Tanning changes Person from untanned to Pigmenting, in that sequence.
tanned. Radiating requires Sun.

Absorbing & Pigmenting changes Person from untanned to
tanned and Complexion of Skin from pale to dark.

Fig. 10.12 Tanning top level (left) and an in-zoomed view (right)

In the OPM ontology, Skin is an object, while dark and pale are states of an attribute of the object
Skin called Complexion. Skin is one of the parts of Person. Tanning is a process, and Sun is an instrument
that enables the Tanning process, the effect of which is to change the Complexion of the Skin from pale to
dark. This terminology and the OPM model in Fig. 10.12 seem more intuitive and appropriate for non-
mathematical systems than the operand, operator and transform ontology. The “sunshine factor” is a bit
problematic to describe. It is not clear whether it refers to the shining process of the sun or to the object
that aggregates the photons of energy radiated by the sun, which the skin absorbs.

120 Things: Objects and Processes

In OPM, we would model Radiating as a first subprocess of Tanning. Radiating requires (i.e., is
enabled by the instrument) Sun. Radiating, in turn, produces the object Solar Energy, which is absorbed
by the Skin via the second subprocess, Absorbing & Pigmenting, the one that changes the Complexion of
Skin from pale to dark. In summary, the operator is the process (Tanning). The operand is the affectee in
its state before the process occurred (Skin in its pale Complexion state), while the transform is its state
after the process occurred (Skin in its dark Complexion state).

10.12 Summary

e A property is a metamodel attribute of an OPM element. A property value of each element in an
OPM model remains fixed.

e The OPM approach considers processes as “first class citizens” alongside objects rather than
below object.

e An object is a thing that exists or has the potential of physical or informatical existence.

e Two instances of a physical object are identical if and only if they occupy the same space at the
same time.

e From an informatical viewpoint, all the physical copies of some informatical object are the same.

e Transformation is generation (construction, creation) or consumption (destruction, elimination)
or change (effect, state transition), of an object.

e A process is a mental construct representing a pattern of object transformation.

e In “cause and effect” analysis, cause is a triggering event that attempts to cause a process to start
executing.

e The effect in “cause and effect” analysis is the transformation that one or more of the objects
linked to the executing process undergo.

e Parts of speech (noun, verb, adjective, adverb ...) are syntactic constructs, while OPM things
(object and process) are semantic constructs.

e The preprocess object set of a process P, Pre(P), is the set of objects required to exist, possibly
in certain states, in order for P to start executing once it was triggered.

o The postprocess object set of process P, Post(P), is the set of one or more objects that exist,
possibly in certain states, after P finished executing.

o The involved object set of process P, Inv(P), is the union of P’s preprocess object set and
postprocess object set: Inv(P) = Pre(P) U Post(P).

o The object-process distinction problem is the problem of telling whether a given a noun is an
object or a process.

o The process test is a formal procedure for solving the object-process distinction problem.

o The process test assumes that by default, a noun is an object, so to be a process it must meet
three criteria: (1) object transformation, (2) time association, and (3) verb association.

Dori — Model-Based Systems Engineering with OPM and SysML 121

o The object transformation criterion is satistied if the noun in question transforms at least one of
the objects in the involved object set.

o The time association criterion is satisfied if the noun in question can be thought of as happening
through time.

o The verb association criterion is satisfied if the noun in question can be derived from, or has a
common root with a verb or has a synonym which is a verb.

The capitalization OPM convention is that the first letter in each word of the name of a thing is
capitalized, while states are lower-case.

The singular name OPM principle specifies that a name of an OPM thing must be singular.

The OPM process naming convention is to name a process by making its last word a gerund
whenever this is possible and is acceptable and makes sense in the domain nomenclature.

Thing is a generalization of object and process.

A state-preserving process is a process that maintains a steady state of status quo, and can be
suppressed by replacing it with a tagged structural relation.

A transient object is a short-lived object, and can be suppressed by replacing it with an
invocation link.

10.13 Problems

© N o ok D

10.
1.
12.

Give an example of a scientific discovery and explain how it can be thought of as reverse
engineering of nature.

Why is it impossible to touch a process even if it is physical?

Why is a process in an OPD that has no transforming link attached to it meaningless?

Who are the “players” in cause and effect analysis? What is the role of each one of them?

Give an example of two sentences that express the same fact but have different parts of speech.
What are the objects and processes in the first sentence above? And in the second?

Construct an OPM model of the system described in the previous question.

In the OPM model of the process test system in Fig. 10.6, what are the members in the
preprocess object set, in the postprocess object set, and in the involved object set?

Select two things from the OPD in Fig. 10.3 and apply the process test on each one of them.
What is the preferred way of modeling persistent processes?

What is a possible shortcut for modeling transient objects?

Model the following specification: Running of an internal combustion engine is contingent upon
the presence of the objects air and gasoline vapor mixture inside the object cylinder at the right
pressure and temperature (attributes of mixture). The triggering event is the point in time when a
spark (created by a previous timed process) ignites the mixture. As a result of this process, the
gasoline mixture is consumed and the piston’s kinetic energy value increases.

Chapter 11
Object-Process Language: The Text

Among general-purpose modeling languages dominate the graphical ones such as
UML; textual modeling languages are not as popular though they have a big
potential.

Mazanec and Macek (2012)

OPM is bimodal: it employs both the visual (graphical) modality—OPD, and the verbal (textual)
modality—OPL. The textual OPL representation of the OPM model has both human-oriented and
machine-oriented goals. This chapter is devoted to presenting OPL and discussing its merits.

11.1 OPL: The Textual Modality

To enhance OPM’s expressive power, we associate with each OPD a collection of sentences in Object-
Process Language (OPL) as a textual, natural interpretation of the OPD’s graphic representation.

Object-Process Language (OPL) is a subset of English that expresses textually the
OPM model that the OPD set expresses graphically.

OPL is the textual counterpart of the graphic OPM system specification. It is extracted from the
diagrammatic description in the OPD set. Using a tool such as OPCAT, OPL is an automatically
generated textual description of the system in a subset of natural English. Devoid of the idiosyncrasies
and excessive cryptic details that characterize programming languages, OPL sentences are understandable
to people without technical or programming experience.

A model fact is a relation between two or more things in an OPM model.

Each model fact is expressed in the OPM model in two modalities: in the graphic modality in one or
more OPDs, and in the textual modality in an OPM sentence for each graphical expression of that model
fact.

Each OPD element (thing or link) has a graphic symbol. An OPD construct is a syntactically valid
combination of OPM graphic symbols, which expresses a model fact. That model fact is equivalently
expressed by a sentence or part of a sentence in Object-Process Language (OPL) text. This is summarized
in the following set of definitions.

An OPD element is the graphical expression of a thing or a link.

An OPD construct is a collection of connected OPD elements.

A model fact is expressed graphically by an OPD construct and textually by an equivalent OPL
sentence or sentence part.

© Springer Science+Business Media New York 2016 123
D. Dori, Model-Based Systems Engineering with OPM and SysML, DOI 10.1007/978-1-4939-3295-5 11

124 Object-Process Language: The Text

11.2 The Dual Purpose of OPL

OPL serves two goals, oriented to two directions: humans and machines.

11.2.1 The Human-Oriented OPL Goal

The human-oriented OPL goal is to convert the set of OPDs comprising the OPM model into a natural
language text that can be used to express and communicate analysis and design results among the various
stakeholders involved in the system under construction. Users include domain experts and their
executives on the customer side of the system under development, as well as architects and modelers on
the supplier side of the same system.

OPL enables involving the customer-side stakeholders, who are often non-technical, in the
requirements elicitation and initial conceptual modeling of the system under development. Engaging these
stakeholders as active participants helps streamline requirements, obtain stakeholders buy-in, and detect
errors soon after their inadvertent introduction.

Usually, these stakeholders do not have a command of programming languages, and it is not realistic
to expect them to read diagrams in a conceptual modeling language, let alone program code. Being used
to reading text (or viewing high-level slide presentations) rather than relating to diagrams, they (or their
engineers or lawyers) are likely to prefer reading text over examining and interpreting OPDs. For them,
OPL serves the purpose of verification and validation of the requirements, which are usually provided
initially in text and then modeled in OPM. This requirement model helps identify gaps and
inconsistencies so requirements can be improved and be acceptable to both sides—the customer and the
contractor or developer.

For the system architects and modelers on the supplier side, the bimodal representation of the OPM
model is instrumental in getting immediate feedback on each graphic editing operation, enabling them to
spot modeling errors as soon as they are made, before they propagate and start to cause damage whose
magnitude increases exponentially with the error detection latency. Moreover, novice OPM users can
experience steep learning curve by quickly gaining familiarity with the semantics of the OPM graphic
modality by inspecting the text and corresponding graphic in tandem.

Since textual documents are still the prominent way for communicating requirements and
specifications of systems among parties, a formal textual modality that is generated “for free” and always
matches the graphical specification is of great value. There are various other ways beside text to define
and specify requirements including storyboards and mockups, which are gaining popularity in the
software industry where people have decreasing patience neither for tiring text documents nor for
complex conceptual models. The formal OPM model can serve as a basis for generating such popular
means. Indeed, work in this direction has started by creating an animated cartoon from the simulated
animation of OPM models in OPCAT (Bolshchikov et al. 2015).

11.2.2 The Machine-Oriented OPL Goal

The machine-oriented OPL goal has to do with its formality. OPL provides a firm basis for automatically
generating the designed application—the infrastructure needed to continue the application development.

Dori — Model-Based Systems Engineering with OPM and SysML 125

OPL is defined formally using a context-free grammar, so the OPL text file can serve as a basis for
generating application artifacts that include executable code and database schema. This approach enables
round-trip engineering, in which changes in the analysis, design and specification are almost
automatically reflected in the final application. These traits make the combination of the graphic-oriented
OPD and its equivalent text-based OPL counterpart an ideal infrastructure for systems specification.

11.3 The Graphics-Text Equivalence OPM Principle

The default OPL is English, but any natural language can serve as a basis for OPL. Since the OPD is
based on graphics and iconic symbols, it can serve as a common platform for translation among OPLs in
various natural languages.

An OPL paragraph of an OPD is a collection of OPL sentences that express textually

the same model facts that this OPD expresses graphically.

At each point in time during the modeling (when there are no unlinked things in the model), one can
precisely reconstruct the OPD from its OPL paragraph and vice versa. This is expressed in the following
graphics-text equivalence OPM principle.

The Graphics-Text Equivalence OPM Principle

Any model fact expressed graphically in an OPD is also expressed textually in the corresponding
OPL paragraph.

The OPD set is complete graphical representation of the OPM model. It is the set of (hierarchically
organized) OPDs that together specify all the model facts in the OPM model.

An OPL specification (OPL Spec) of an OPM model is the collection of all the unique
OPL sentences that express textually all the model facts that the OPD set expresses
graphically.

11.4 Metamodel of OPM Model Structure

While a comprehensive metamodel of OPM appears in an annex of ISO 19450 (see Chap. 24), in Fig.
11.1 we provide a high-level model of the structure of an OPM model that puts the above definitions in
context. A model of a model is a metamodel. Therefore, this OPM model is a metamodel. Using OPM to
specify the structure of an OPM model of a system, it depicts the conceptual aspects of OPM as parallel
hierarchies of the graphic and textual OPM modalities and their correspondence to produce equivalent
model expressions. This OPD is the system diagram (SD, or SD0)—the top-level diagram (level zero) of
the entire OPM metamodel.

126 Object-Process Language: The Text

specifies
OPM
Model 1 System

[1
OPD graphically specifies OPL

textually specifies | Paragraph

~

Set textually specifies Spec ‘
I) "

oPD graphically specifies oPL +
OPD graphically specifies OPL + ‘

¥
r Construct| ™ i1 ally specifies | Sentence

. Punctuation | 4
Link Set Mark

Reserved
Phrase

textually specifies

can be in-zoomed to create

Thing Set

2" | Thing
Name

OPM Model specifies System.

OPM Model consists of OPD Set and OPL Spec.

OPL Spec consists of at least one OPL Paragraph.
OPD Set consists of at least one OPD.

OPD Set graphically specifies OPL Spec.

OPL Spec textually specifies OPD Set.

OPD consists of at least one OPD Construct.

OPL Paragraph consists of at least one OPL Sentence.
OPD graphically specifies OPL Paragraph.

OPL Paragraph textually specifies OPD.

OPD Construct graphically specifies OPL Sentence.
OPL Sentence textually specifies OPD Construct.
OPD Construct consists of Thing Set and Link Set.
Thing Set consists of 2 to many Things.

Link Set consists of at least one Link.

Thing exhibits Name.

OPL Sentence consists of 3 to many Phrases and at least one Punctuation
Mark.

Phrase consists of at least one Word.

OPL Reserved Phrase and Name of Thing are Phrases.
Link graphically specifies Reserved Phrase.
Reserved Phrase textually specifies Link.

Thing can be in-zoomed to create OPD

Fig. 11.1 Metamodel (OPM model) of an OPM model structure

Dori — Model-Based Systems Engineering with OPM and SysML 127

The two objects at the top of the OPD in Fig. 11.1 are OPM Model and System, connected with a
unidirectional tagged structural link from the former to the latter, yielding the OPL sentence OPM Model
specifies System. Further, OPM Model consists of OPD Set and OPL Spec. These are the two
complementary modalities—the graphical and the textual. From this point on, the OPD shows two
parallel hierarchies—the graphical and the textual—where going down entails increased level of detail.

The graphical hierarchy is OPD Set, OPD, OPD Construct, and (at the same level) Link Set and Thing
Set. The textual hierarchy that is parallel to the graphical OPD Set and OPD is OPL Paragraph and OPL
Sentence. An OPD and its corresponding OPL Paragraph are collections of model facts that a modeler
places into the same diagram—the same model context. At the next refinement level in this hierarchy, an
OPD Construct is the graphical counterpart of its corresponding textual OPL Sentence, and again, both
express the same model fact. Then, Link, which is a graphic element, is paralleled by Reserved OPL
Phrase, since the latter textually specifies the former, as in the reserved OPL phrase consists of, which is
the textual counterpart of the aggregation-participation symbol, 4, and in affects, which is the textual
counterpart of the effect link, ¢ .

11.5 Reserved and Non-Reserved OPL Phrases

While OPL is a subset of English, it is formal. The formal syntax for OPL is expressed by a context-free
grammar in Extended Backus-Naur Form (EBNF) in Annex A of ISO 19450 Publically Available
Specification (see section 24.4.1). The EBNF OPL specification comprises about 400 production rules
occupying 12 pages. Using EBNF, a set of production rules unambiguously defines how OPL sentences
are to be constructed and parsed. Figure 11.2 presents three production rules as examples of expressing
the OPL syntax in EBNF. Each production rule has a right hand side and a left hand side, separated by the
= sign. The first production rule specifies that an OPL paragraph comprises one or more OPL sentences,
separated by a “new line” symbol. The second production rule specifies that an OPL sentences comprises
an OPL formal sentence followed by a full stop (“.””) symbol. The third production rule specifies that an
OPL formal sentence can be of one of four types: a thing description sentence, a procedural sentence, a
structural sentence, or a context management sentence.

In programming languages, the analogues of words are tokens—the atomic units resulting from lexical
analysis. In most programming languages, spaces separates tokens apart. Tokens are input to the next
process, parsing. OPL sentences are obviously far more readable than a script of any computer programming
language. These sentences are carefully designed using a subset of English to convey a clear and
straightforward meaning through well-phrased and humanly understandable constructs. Yet, using the
OPL EBNF-based formal syntax definition, OPL sentences can undergo parsing just like commands or
lines in a programming language. As in programming languages, parsing an OPL sentence yields phrases.

A phrase is a combination of one or more words, separated by spaces, which constitutes a logical
entity, but not a complete sentence. OPL phrases can be reserved and non-reserved. Any OPL sentence
consists of non-reserved OPL phrases—domain- or system-specific words or word combinations—which
the system architect or modeler uses, and reserved OPL phrases, which link the non-reserved phrases and
provide for creating a sentence in a natural language.

128 Object-Process Language: The Text

A.4 OPL Syntax
A.4.1 OPL document structure

(* Region QOPL document *)

OPL paragraph = OPL sentence, { new line, OPL sentence};
OPL sentence = OPL formal sentence, ".";
OPL formal sentence = thing description sentence

| procedural sentence

| structural sentence

| context management sentence;

Fig. 11.2 Three exemplary production rules expressing the OPL syntax in EBNF

An OPL phrase is a sequence of one or more words in an OPL sentence.

A non-reserved OPL phrase is a modeler-defined OPL phrase that expresses a

system- or domain-specific OPM model entity or relation name.

Non-reserved OPL phrases are names of OPM objects, processes, and states that the modeler assigns
while creating the OPDs that comprise the OPM model. Non-reserved OPL phrases also include less
frequently used ones, such as (user defined) tagged structural relations and participation constraints.

A reserved OPL phrase is an OPL phrase built into the OPL EBNF syntax definition
that connects two or more non-reserved OPL phrases.

Reserved OPL phrases are parts of the sentence syntax that express relations or connections between
non-reserved OPL phrases, or constrains on them. Examples of reserved OPL phrases are “requires”,
“yields”, “consumes” “and”, “or”, “affects”, “exactly one of”, “at least one”, and “consists of’. These
definitions of reserved and non-reserved phrases stipulate that the former are the mortar that “glues” and
holds together in a meaningful way the model building blocks—the non-reserved phrases that express
system-specific terms.

2

The following bolding OPL convention helps distinguish between the two kinds of OPL phrases.

The Bolding OPL Convention

Non-reserved OPL phrases appear in Arial bold font, while reserved OPL phrases appear in Arial
non-bold font. Punctuation marks are bolded.

For example, the OPL phrase “Automatic Crash Responding” in the OPL sentence “Automatic Crash
Responding affects Vehicle Occupants Group.” is non-reserved and therefore appears in Arial bold font.
The non-bold phrases, such as “and”, “or”, “affects”, “exactly one of”, and “consists of”, are reserved OPL

phrases.

A CASE tool implementation needs to automatically translate the model facts expressed by the OPD
constructs into OPL sentences. To further help distinguish between things, such tools should use colors in
fonts of phrases that match their colors in the OPD. For objects, the default color in OPCAT is green, for
processes—blue, for states—brown, and non-reserved OPL phrase are in black font. If your book version

Dori — Model-Based Systems Engineering with OPM and SysML 129

enables seeing colors, Fig. 10.6, which is an OPCAT-generated OPM model of the process test system,
exemplifies this coloring convention.

11.6 Motivation for OPM’s Bimodal Expression

A legitimate question that can be raised with respect to OPL is why is text needed in addition to the
diagram if we have a good graphic representation of our model? One may indeed wonder why two
modalities are needed. According to the graphics-text equivalence OPM principle, the text and the
graphics express the same contents, so there is a 100% redundancy in terms of information content! Isn’t
this a waste of resources? Wouldn’t it make more sense to stick to just one modality—either graphics or
text—and leave the other out?

11.6.1 The Dual-Channel Assumption

The graphics-text equivalence is a major source of OPM’s expressive power. OPL text complements the
OPD graphics. This duality implements the dual-channel assumption (Clark and Paivio 1991; Baddeley
1992). This is one of three major research-supported cognitive assumptions (Mayer 2003; Mayer and
Moreno 2003), which stipulates that humans possess separate channels and mechanisms for processing
visual and verbal representations. The combination of OPD and OPL caters directly to this dual-channel
assumption (Dori 2008). Some humans are more visually inclined, while others are more text-oriented.
The text and the graphics reinforce each other while the model creator or the model readers try to make
sense of the semantics that model elements convey in various combinations.

The cognitive-physiological basis for this principle is that the human mind is geared to accept both
visual-pictorial-graphic signals and audio-verbal-written signals. Graphics and text trigger different areas
in the brain. Popularly, this is often referred to as the left brain/right brain functions. Indeed, the left
hemisphere is dominant in language, processing what one hears and handling most of the duties of
speaking. The right hemisphere is mainly in charge of spatial abilities, face recognition, comprehending
visual imagery and making sense of what we see. Thus, catering to “both sides of the brain” through
language and pictures is more likely to get the message—the conceptual model—across. Accordingly, a
model that can be presented bimodally in both graphic and text is preferred over a model that can be
presented in only one of the modalities. Almost all conceptual modeling languages are either textual or
graphical, but not both. OPM is the first to combine the two modalities (USPTO 7,099,809, 2006).

11.6.2 Benefits of the Bimodal Representation

Individuals have different preferences regarding the way they read and write specifications. Usually,
engineering-oriented people (sometimes considered to be “left-brainers”) prefer diagrams, while business-
oriented people (“right-brainers”) favor text. Moreover, even for the same individual, the content may
sometimes become clearer by looking at one modality while at other times the complementary modality is
more helpful. The fact that OPL is a subset of English, the /lingua franca natural language, makes it
readable and understandable to people without the need to learn any programming or pseudo-code-like

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=1&f=G&l=50&co1=AND&d=PTXT&s1=7

130 Object-Process Language: The Text

language. The syntax and semantics of OPL are well defined, eliminating the ambiguity that is often
inherent in natural languages.

The syntax of OPL is designed such that the resulting text constitutes plain natural, albeit syntactically
restricted, English sentences. Therefore, the bimodal graphics-text representation of the OPM model helps
involve non-technical stakeholders in the requirements elicitation and initial conceptual modeling of the
system under development. This involvement of such stakeholders engages them as active participants
and helps detect errors soon after their inadvertent introduction.

For example, suppose that instead of using the bidirectional arrow <—> which is the effect link, the
modeler of Fig. 1.3, would use by mistake the unidirectional arrow —», which is the result link, from the
process Automatic Crash Responding to the object Vehicle Occupants Group to express the fact that
Automatic Crash Responding affects Vehicle Occupants Group. In this case, the following OPL sentence
would have been created:

Automatic Crash Responding yields Vehicle Occupants Group.

Obviously, this sentence, while syntactically correct, makes no sense. The modeler or the customer’s
representative participating in the modeling session would likely detect it on the spot. The detected error
can then immediately be rectified and the correction can be verified by simply reading the newly created
OPL sentence.

Any natural (and artificial) language can be selected as the target language to which the OPD
constructs are converted. Moreover, the graphic representation is language-neutral and can therefore serve
as a means for translating from one language to another.

11.6.3 Engaging the Customer: The Social Aspect

Using an OPM-supporting software product, OPL sentences are constructed automatically in real time in
response to inputting OPD graphic symbols on the screen. This capability of any team member to provide
immediate feedback about facts being modeled during the modeling process is of utmost importance, as it
provides for immediate system interpretation of the human developer’s intents.

The simplicity and straightforwardness of this real-time response to the modeler’s graphic input in the
form of a subset of English is highly valuable; not only does it provide for the ability to catch errors as
soon as they are made, it also enables the active participation of the system’s customer in the modeling
session, where she or he can provide immediate feedback as the modeling progresses. Hence, the value of
such participation is beyond just spotting errors upon their creation; it is a social process that involves the
customer-side stakeholders early-on in the design, justifiably making them feel that they are part of the
decision-making process and mitigating resistance to change, a common known human characteristic.
The system’s OPL specification resulting from an OPD set is thus amenable to being scrutinized,
modified, and ultimately confirmed by the customer or domain experts acting on his behalf, who need not
be software experts.

The provision of having representatives of the customer working should-to-shoulder with the
developers increases the likelihood of pinpointing and catching design errors as soon as they are created,
resulting in significant saving of time, money, and troubles down the road. This real-time feedback is
indispensable not just in spotting errors but also in correcting them at an early stage of the system

Dori — Model-Based Systems Engineering with OPM and SysML 131

lifecycle, before they had a chance to propagate and cause costly damage. Any graphics edit (addition or
removal of an element) changes the OPL script. Changes can be implemented until a satisfactory result is
obtained and the customer can “sign” on the model as the blueprint of the system to be developed.

11.6.4 Closing the Requirements-Design Gap

The capability to directly and precisely translate analysis and design results to a subset of natural
language has a tremendous advantage. As noted, prospective users and customers may be more
comfortable with reading text than with interpreting OPDs, let alone deciphering program code. This way,
the OPL text and its OPD graphic equivalent help close the gap between the original requirement
specification, which is currently still expressed as free prose, and the actual system specification as
expressed by the resulting OPM model. While OPL sentences are easily comprehensible to humans and
thus document the system “for free,” the ability to parse them provides a firm basis for automated tasks
such as executable code generation, simulation, initial user interface generation, and database schema
definition.

11.7 Tesperanto: A Human Readable Auto-generated Text

OPL consists of short, often disconnected sentences. While each OPL sentence is a syntactically and
semantically correct English sentence, lack of fluency from one OPL sentence to the next prevents OPL
from becoming a descent substitute for the free text that dominates real-life requirements and other
technical specifications, such as international standards. Indeed, being mechanical and repetitive, with no
text fluency, long OPL text is not natural for human reading. This has motivated the development of
Tesperanto (Blekhman and Dori 2013) as the next level of automatic model-based text-from-graphics
generation on top of, or instead of OPL.

Welder Gas Metal Arc
Steel Part B d
i@ Steel Part AB

Steel Part A
Welder handles Welding. Welding is the process of creating a Steel Part AB,
Welding requires Gas Metal Arc. with the aid of a Gas Metal Arc. This process is
Welding consumes Steel Part A and Steel Part B. performed by a Welder, consuming a Steel Part A and
Welding yields Steel Part AB. a Steel Part B.

Fig. 11.3 OPM model of Gas Metal Arc based Welding. Top: OPD. Bottom left: OPL. Bottom right: Tesperanto

Tesperanto is an enhancement of OPL that follows OPM’s gradual presentation principles, which
cater to humans’ cognitive limited capacity. It includes heuristics for sentence length adjustments,
synonyms, word ordering, phrase recurrence control, and other algorithms aimed at making the

132

Object-Process Language: The Text

Tesperanto text look less mechanistic and more human readable. Figure 11.3 is an OPM model of Gas
Metal Arc based Welding. The OPD at the top is automatically translated to both OPL and Tesperanto in
the bottom left and right, respectively. This simple example demonstrates the differences in fluency of
reading OPL vs. Tesperanto. While both text-from-graphics translations faithfully reflect the formal and
verified OPM graphic model, Tesperanto is more humanly readable and less boring, repetitive, and
mechanical. For example, while in the OPL the process Welding is repeated four times, once for each kind
of procedural relation, in the Tesperanto translation it only appears once. Since Tesperanto is still
evolving as a subject of research, it is not further used in this book.

11.8

Summary

Object-Process Language (OPL) is a subset of English that expresses textually the OPM model
that the OPD set expresses graphically.

The formal syntax for OPL is expressed by a context-free grammar in Extended Backus-Naur
Form (EBNF) in Annex A of ISO 19450 Publically Available Specification (PAS).

A model fact is a relation between two or more things in an OPM model.
An OPD element is the graphical expression of a thing or a link.

An OPD construct is a collection of connected OPD elements.

OPL serves two goals, oriented to two directions: humans and machines.

The human-oriented OPL goal is to convert the set of OPDs comprising the OPM model into a
natural language text.

The machine-oriented OPL goal is to provide a firm basis for automatically generating the
infrastructure for the application development.

An OPL paragraph of an OPD is a collection of OPL sentences that express textually the same
model facts that this OPD expresses graphically.

The graphics-text equivalence OPM principle: Any model fact expressed graphically in an OPD
is also expressed textually in the corresponding OPL paragraph.

A metamodel is a model of a model.

The metamodel of the structure of an OPM system model shows two parallel hierarchies—the
hierarchy of graphic objects and the corresponding hierarchy of text objects.

An OPL specification of an OPM model is the collection of OPL sentences that express textually
all the model facts that the OPD set expresses graphically.

An OPL phrase is a sequence of one or more words.

A non-reserved OPL phrase is a modeler-defined OPL phrase that expresses a system- or
domain-specific OPM model entity or relation name.

A reserved OPL phrase is an OPL phrase built into the OPL EBNF syntax definition that
connects two or more non-reserved OPL phrases.

Dori — Model-Based Systems Engineering with OPM and SysML 133

The dual-channel assumption is that humans possess separate systems for processing visual and
verbal representations.

The syntax and semantics of OPL are defined as a subset of English, eliminating the ambiguity
that is often inherent in natural languages.

Tesperanto is the next generation of OPL.

Problems

What are the pros and cons of having a textual system model specification modality alongside
the graphical modality?

If you were to design a new modeling language with the constraint that it can use only one
modality, which one would you choose? Why?

Which of the following three definitions of “meta”, taken from dictionary.com, fits metamodel?

99 ¢

A prefix appearing in loanwords from Greek, with the meanings “after,” “along with,” “beyond,”
“among,” “behind,” and productive in English on the Greek model: metacarpus; metagenesis.

A prefix added to the name of a subject and designating another subject that analyzes the
original one but at a more abstract, higher level: metaphilosophy; metalinguistics.

A prefix added to the name of something that consciously references or comments upon its own
subject or features: a meta-painting of an artist painting a canvas, metacognition; meta-analysis.
Copy three OPL sentences from this chapter and reverse their bolding, that is, make each bold

word not bold and vice versa. What version do you prefer—the original or the reversed? Why?

Chapter 12
SysML: Foundations and Diagrams

Whether it is an advanced military aircraft, a hybrid vehicle, a cell phone, or a
distributed information system, these systems are expected to perform at levels
undreamed of a generation ago.

Friedenthal, Moore, and Steiner (2012)

Systems Modeling Language (SysML) is a profile of the Unified Modeling Language (UML), i.e., a
customized version intended for systems engineering applications. We begin the presentation of SysML
with a brief description of UML, followed by an overview of SysML and its various diagram types, with
reference to OPM. Recall that while OPM uses a single model that combines the various system aspects
and presents them in graphics and text, SysML uses nine diagram kinds, each focusing on some particular
aspect of the system. We focus on the SysML diagram kinds that have not been discussed so far:
sequence diagram, activity diagram, requirements diagram, and parametrics diagram. The sequence
diagram shows the time flow and exchange of messages among blocks. The activity diagram presents the
activities performed by the system, their order and their control. The requirements diagram presents user
and derived requirements that the system shall satisfy. Finally, the parametrics diagram models the
computations that take place in the system.

12.1 UML: Unified Modeling Language

Unified Modeling Language (UML) is a standardized visual specification language for modeling of
software systems. The UML specification (OMG UML 20111, 2011S) is defined and maintained by the
Object Management Group, OMG, a not-for-profit computer industry specifications consortium, which
first adapted the UML specification in November 1997.

UML is a visual modeling language. As such, it specifies a graphical notation along with
corresponding semantics, which are jointly used to create an abstract model of the system. UML has been
designed as a language for developing software systems that are implemented using an object-oriented
programming language. UML specifies multiple graphical aspect-separated views, 13 in total, to represent
the system’s model. Of the 13 UML types of diagrams, six types are structural diagrams and seven are
behavior diagrams.

Since its introduction, UML has emerged as the dominant modeling language in the software industry.
Used by large parts of the software engineering community and supported by many commercial and
open-source software modeling tools, UML has evolved through several minor versions (1.x) and one
major revision (UML 2).

Although UML is rooted in the software engineering domain, some efforts, e.g., (Holt 2004), have
been made to apply it to the more general field of systems engineering. However, such attempts have

© Springer Science+Business Media New York 2016 135
D. Dori, Model-Based Systems Engineering with OPM and SysML, DOI 10.1007/978-1-4939-3295-5 12

136 SysML: Foundations and Diagrams

been recognized as problematic, primarily since UML is software-centric, so its ontology and taxonomy
is limited to software artifacts. For example, physical characteristics and components of a system are
hardly expressed in UML diagrams. In addition, UML does not adequately support modeling of
hierarchies within a system model, an essential issue in systems engineering.

The drive to adapt UML to systems engineering applications brought about the establishment of the
OMG Systems Engineering Domain Special Interest Group (SE DSIG). This OMG group, supported by
the International Council on Systems Engineering (INCOSE) and ISO AP 233 workgroup, worked
together on the requirements of the modeling language. The result was the UML for Systems Engineering
Request for Proposal, or UML for SE RFP in short (OMG UML 2003), issued by the OMG in March
2003. SysML was the only response to the RFP. The SysML team consisted of industry users, tool
vendors, government agencies, professional organizations and academia. Four and a half years after the
RFP was published, version 1.0 of the SysML specification was formally released by OMG as an OMG
specification in September 2007.

12.2 SysML Pillars

A general-purpose modeling language for systems engineering, SysML is intended to support
specification, analysis, design, verification, and validation of complex systems. The systems may be of
broad range, and can include hardware, software, data, personnel, procedures, facilities, and more. SysML
reuses a subset of UML 2 and provides additional extensions in order to satisfy the RFP requirements. As
a visual modeling language, SysML offers several kinds of diagrams which can reflect various aspects of
a system.

SysML diagrams are commonly categorized into four “pillars”—structure, behavior, requirements,
and parametric relationships. In addition, SysML provides means to cross-connect the different model
elements. Figure 12.1, adapted from Friedenthal et al. (2012), shows examples of key SysML diagram
types. Overall, SysML includes nine types of diagrams: four types of structure diagrams, four types of
behavior diagrams, and a requirements diagram.

SysML diagram taxonomy is presented in Fig. 12.2. Using OPM notation, Fig. 12.2 shows what
diagrams were adopted from UML without change, what diagrams were adopted from UML with change
and what diagrams are new. Four SysML diagrams are the same as their UML counterpart: Use Case
diagram, Package diagram, Sequence diagram, and State Machine diagram. Three are modified from
UML 2: Block Definition diagram, Internal Block diagram, and Activity diagram. Finally, two new
diagrams are added: Requirements diagram and Parametrics diagram. Each of the four SysML pillars is
described next.

12.3 Requirements Diagram

Requirements are the primary input of any system or product. SysML supplies means to represent text-
based requirements and to connect them to other model elements. A basic requirement, represented using
the «requirement» stereotype, is composed of a unique identifier and text properties. It is also possible to
extend it with additional properties (e.g., verification status property). The requirements diagram can be
shown in different formats: graphical, tabular, or tree structure. Requirements can also be part of other

Dori — Model-Based Systems Engineering with OPM and SysML 137

diagrams, reflecting relationship to other model constructs. Generally, the SysML requirements constructs
are not meant to replace the external requirements management tools, but rather to better integrate the
system requirements with other parts of the model.

1. Structure

sd ABS_AclivalionSequence [Sequence ﬂmgmmy

| 2. Behavior

bdd [package] VehicleStructure [ABS-Block Definition Diagram] . :
: stm TireTraction [State Diagra_my interaction
«blocks abiibcite shiacks act PreventLockup [Actvity Diagram]
Library:: Aok Library::Elec g state
Electronic kmame, tro-Hydraulic T T i
Processor il Valve [] machine
ibd [block] Anti-LockController b
di / \\ [internal Block Diagram] @ activityf
«blockn — /Dmcu.ossn;f\\ Twwm_m Modu!:m-\ function
Traction [%1 Tration Traction BnklnaFcna
Detector N c1mogulator Detactor \\ /
interface
T m1:Brake S—
definition use L Moduiator A
@

req [package] VehicleSpecifications

[Requirements Diagram - Braking Requirements]

=)

o

|par [constraintBlock] StraightLineVehicleDynamics [Parametric Dlagm)
Vehicle System Braking Subsystem
Specification Specification
Brlkmchmx Anul\mﬂon
arequirements arequirements Equation Equation
StoppingDistance Anti-LockPerformance [l (run (1-1)) [F ma)
id="102" id="337"
text="The vehicle shall stop text="Braking subsystem shall
from 60 mph within 150 ft prevent wheel lockup under all - — = -
on a clean dry suface.” braking conditions.” / \. R
L) T I - v - .
| | v = axiat] o v T [= avid]
1 «deriveReqts { _ O / L J
%

3. Requirements 4. Parametrics

Fig. 12.1 The four pillars of SysML (Friedenthal et al. 2012)

The SysML specification provides several relationships among requirements. Requirements
hierarchies, which consist of composite requirements and sub-requirements, can be described using the
UML namespace containment mechanism. The «deriveReqt» dependency describes a relation between a
derived requirement and its source requirement. Typically, a system-level requirement is derived into
multiple subsystem requirements. The «satisfy» relationship is used to show how one or more
requirements are satisfied by the model design. Other relationships are the «verify» dependency, which
links between requirements and test-cases, and the «refine» dependency, which specifies that a SysML
model element is a refinement of a textual requirement.

12.4 Blocks and Structure

The basic structural element in SysML is the block. It can be used to describe physical or logical elements
of the system, such as hardware, software, data, or persons. Blocks can describe any level of the system
hierarchy, from single components up to the top-level system. Block in SysML is analogous to class in
UML, but rather than being a software-specific construct, it is a general-purpose structural element.

138 SysML: Foundations and Diagrams

SysML Diagram
[UML-based] [UML-modified] [new]
[]
Behavior Diagram Requirements Diagram Structure Diagram
A)\
Sequence Diagram Package Diagram

UML-based

UML-based

Internal Block Diagram

UML-modified

State Machine Diagram
UML-based

Block Definition Diagram
UML-modified

Use Case Diagram Parametirc Diagram
UML-based new

Activity Diagram
UML-modified

Fig. 12.2 SysML diagram taxonomy expressed as an OPM model
There are two types of structural diagrams for blocks depiction: Block Definition Diagram and
Internal Block Diagram. The Block Definition Diagram (BDD) describes the relationships among blocks,
such as associations, dependencies, and generalizations. It specifies system hierarchy, interconnection of
parts, and classifications. The Internal Block Diagram (IBD) represents the internal structure of a block
using block properties and connectors between properties. Another SysML structural diagram, the UML
Package Diagram, is used to organize the model by grouping model elements.

12.5 Activity Diagram

As expressed in Fig. 12.2, SysML specifies four types of behavioral diagrams: activity diagram, sequence
diagram, state machine diagram, and use case diagram.

Dori — Model-Based Systems Engineering with OPM and SysML 139

Control

Fill Flow Ship
Order I Order
Create .| Invoice .| Send
Invoice = | Invoice
Object Object

Flow Flow

Fig. 12.3 A simple SysML activity diagram with block and action nodes and control and object flows

Activity is the fundamental behavioral element in the various SysML behavioral diagrams (excluding
the use case diagram). The role of the activity diagram (see Fig. 12.3) is to represent the flow of inputs
and outputs and the flow of control between actions. To this end, the activity diagram incorporates
sequences and conditions for coordinating activities. Activities and activity diagrams exist also in UML,
but SysML provides several extensions (Bock 2006), including means to support “continuous” flow
modeling, such as rate restrictions. Support for probabilities and extensions to control (known as “control
as data”) were added to SysML activity diagrams. In addition, to smoothly align SysML with the widely-
used classical systems engineering behavior diagram (known as EFFBD—Enhanced Functional Flow
Block Diagrams; Bock, 2005), the «effbd» stereotype is specified. When this stereotype is applied to an
activity, it means that the activity must conform to the constraints necessary for EFFBD.

The use case diagram is intended to describe basic high-level functionally by specifying the usage of
the system by its actors to achieve a goal. It is often the first kind of diagram used to specify semi-
formally with the customer to define the function and scope of the system to be developed.

Activity diagram is the only behavioral diagram kind that is extended in SysML with respect to UML
2, while the other three SysML behavioral diagram kinds remain unchanged or were eliminated.
Sequence diagram is used to represent message-based flow of control between interacting entities, which
may be actors, systems, or parts of a system. The state machine diagram models state-based behavior
using object states and transitions.

An action (denoted by a rountangle) is a basic (usually atomic) unit of process in an activity diagram.
As Fig. 12.3 shows, an activity diagram is composed of nodes and edges, where a node can be an action
or a block (denoted by a rectangle), and an edge can be a control flow if it is between actions, or an object
flow (or block flow) if it is between a block and an action.

12.5.1 Refining an Action into an Activity

If an action, such as Order Processing at the left of Fig. 12.4, has a little rake (or trident) symbol at its
bottom right, this denotes a call action that it is elaborated into an activity with its own diagram (Fig.
12.4, right). This is a similar idea to OPM’s process in-zooming. The blocks Order, Invoice, and
Product are denoted as pins—they serve as input and output parameters.

140 SysML: Foundations and Diagrams

Output Parameters

_'/Order Processing

Activity Name /

order initOrder

Processing

Input
Parameters

Ship Product

.. Internal Nodes

Fig. 12.4 The action Order Processing (left) has a little trident symbol, denoting it is elaborated into an activity (right).
The blocks Order, Invoice, and Product are denoted as pins—input and output parameters

Actor name Stakeholder Requirements Analyst | Enterprise Architect
Prioritize Er:\f;dfilse
Enterprise Busir?ess
Requirements Architecture

) = Model
A_ctlons_ordered Enterprise Support
time-wise from —| Requirements Project Teams

top to bottom

. Model
Describe -
N Enterprise
Enterprise .
Requirements Technical
Architecture

Fig. 12.5 An example of a swimlane activity diagram

Received Admin

c
Email Notify > X

Every 45 seconds

Fig. 12.6 The three special action notations: (a) accept event (b) send signal (c) time event

The Order Processing activity diagram has initial and final pseudo nodes—the black and black-on-
white circles—to denote the activity start and end, respectively. It also has two synchronization nodes: a
fork node—the thick vertical line from the initOrder action to the Create Invoice and Ship Order
actions, and a join node—the thick vertical line from these two actions to the final pseudo node. The fork
node indicates concurrent beginning of actions exiting from it, while the join node—the termination of all
the actions incoming into it.

Dori — Model-Based Systems Engineering with OPM and SysML 141

A swimlane is a kind of activity diagram that provides a way to group activities performed by the
same actor or to group activities in a single thread. Figure 12.5, adapted from Agile Modeling (2015), is
an example of a swimlane activity diagram. The actors are indicated in the vertical swimlanes and the
diagram timeline runs from top to bottom with horizontal links crossing the swimlane borders where
necessary.

12.5.2 Accept, Send, and Time Event Action Nodes

Three special actions have specific notations (see Fig. 12.6): (a) accept event, which waits for the
occurrence of an event (signal), (b) send signal, which creates and sends a signal when activated, and (c)
time event, which waits for a moment in time or a specific (possibly periodic) duration.

Figure 12.7 shows an activity diagram with an accept event, a send signal, a time event, a pin (with a

“Virus alert” type), and a join node implying that scanned messages with no detected viruses are
forwarded to the user every 20 seconds.

Virus alert
Message Scan for] Notify
arrived viruses Admin

Forward to
User

Fig. 12.7 Activity diagram with accept event, send signal, time event, pin, and a join node

X

Every 20 seconds

12.6 Sequence Diagram

The sequence diagram describes the flow of control between actors and blocks. This diagram represents
the sending and receiving of messages between the interacting entities called lifelines.

142 SysML: Foundations and Diagrams

sd crash_severity)

Crash

Py

Shock Signal

Shock Signal

Acceleration Signal

S, A ——

Fmmm————

Crash Severity ({light, moderate, severe})

Fig. 12.8 SysML sequence diagram of crash severity

Time is represented along the vertical axis from top to bottom, like the swimlanes in an activity
diagram. As specified in SysML 1.3, sequence diagrams can represent highly complex interactions with
special constructs to represent various types of control logic, reference interactions on other sequence
diagrams, and decomposition of lifelines into their constituent parts. Here we show only the basic
symbols and construct a relatively simple sequence diagram.

Figure 12.8 is a sequence diagram of crash severity. At the top we see three blocks: Sensor Set,
Accelerometer, and Diagnostics Unit. A corresponding life line, designated by a dashed line, goes down
vertically from each block. Horizontal arrows designate messages between blocks. First, a Crash
message is received by Sensor Set, upon which it performs some operation, called execution occurrence
and designated as a wide line or elongated rectangle along the life line, such as the one just beneath
Sensor Set. Upon execution completion, Semsor Set sends a Shock Signal message to the
Accelerometer. The Accelerometer starts operating and sends Shock Signal further to the Diagnostic
Unit, which, in turn, performs its operation and sends back to Sensor Set a message with the value of
Crash Severity, which can be light, moderate, or severe.

As Fig. 12.9 shows, messages can be of various types. They can be synchronous or asynchronous, and
can provide return values. Messages can start from execution occurrences, external source (gates) or
unknown sources (found messages). They can end at execution occurrences, external targets (gates) or
unknown destination (lost messages). Blocks, such as Order in Fig. 12.9, can be created and/or
destroyed. A message arrow can be tilted downward rather than being horizontal to denote the fact that
the passing of the message itself takes a non-zero amount of time and quantify the latency. Interactions
(messages) can start or end on gates to other blocks or systems.

Dori — Model-Based Systems Engineering with OPM and SysML 143

Found

Mess age - : TradingSystem |:—StockExchange

Investor

need to bu‘

| validatePurchase
Synchronous]HTJ

Message

| sendOrder(Order)

buySecurity(name)

Other Trading System

acknowledge

I

l Creation
| Message
I
I
1

I
Return sendOrder(brder)
Message i

T
acknowlpdge

Lost
Message

Destroy
Message

Fig. 12.9 SysML sequence diagram message kinds and their symbols

12.7 Requirements Diagram

The requirement diagram and the parametric diagram are two totally new kinds of diagrams that
SysML has added to UML and are not part of UML. Requirement diagrams bridge typical requirements
management tools and the system model. As the official OMG SysML Site indicates, SysML
requirements diagram is a graphical construct for representing text-based requirements and relate them to
other model elements.

The requirements diagram captures requirement hierarchies and derivations. It can be used to verify
relationships between requirements and their implementation by allowing the modeler to relate a
requirement to a model element that satisfies or verifies the requirement.

The main symbols of a SysML requirements diagram are presented in Fig. 12.10. A requirement is
depicted as a block with the reserved word «requirement» at its top. In the SysML 1.3 document this is
referred to as a stereotype of UML class that is subject to a set of constraints.

The containment relationship, depicted as a crossed circle (like the one under the Parent in Fig. 12.10)
denotes that the requirement attached to the circle contains the ones linked to it. This provides for creating
requirement hierarchies. Three additional main dependency relations between blocks, denoted by dashed
arrows, are shown in Fig. 12.10. The stereotype «copy» denotes that the “Slave” is a copy of the “Master”
(to which the arrow points). The stereotype «deriveReqt» denotes that the “Client” requirement is derived
from the “Supplier” (to which the arrow points). The stereotype «satisfy» denotes that the block
“namedElement” is a system component that satisfies the requirement to which the arrow points.

144 SysML: Foundations and Diagrams

Path type Syntax

Requirement

containment
relationship «requirement»
Parent
©
«requirement» «requirement»
Child1 Child2

CopyDependency

«requirement» «requirement»

Slave [Lo L Master
Derive
Dependency
«requirement» | . __ =~ «requirement»
Client «deriveReqt» = Supplier
Satisfy
Dependency
NamedElement f-——-- «satisfyn-——-=>1 «reg:;;:?::t»

Fig. 12.10 Main symbols of the SysML requirements diagram

Three other dependencies of similar nature are «verify», «refine», and «trace». The «verify»
dependency is between a requirement and a block that provides a way of verifying it. This can be a block
having the stereotype «testCase». The «refine» dependency denotes that some elaborate requirement
refines a more general requirement, e.g., a client’s requirement. The «trace» dependency denotes that
some block provide a way to trace a requirement. The «trace» dependency provides a way to keep track
of where requirements are fulfilled in the system, as it is often the case that requirements are difficult to
trace or it is not clear why some component was included in the model.

A standard requirement includes properties to specify its unique identifier and text requirement.
Additional properties such as verification status, can be specified by the user. Indeed, requirements
diagrams are depicted in a large variety of forms and styles.

Figure 12.11 presents four examples found on the Web that demonstrate this variability in styles.

The diagram in the top left is titled req TV Remote Control. It contains four requirements, the main of
which is also called TV Remote Control. The three others, called Weight, Color, and Eco-Friendliness, are
“children”—lower-level requirements that are subordinates of the parent requirement TV Remote Control.

Dori — Model-Based Systems Engineering with OPM and SysML 145

This is designated by the lines with the crossed circles at their ends, in accord with the standard
specification in Fig. 12.10. In addition to the text and ID attributes, each requirement here has the
attributes source, kind, verifyMethod, risk, and status.

The diagram in the top right is titled Requirement Diagram Top-Level User Requirements. The
standard specifies that req be used to designate a Requirement Diagram. The use of the black diamond,
which is a symbol from block definition diagram (bdd) is another non-standard application. The
containment symbol should be used instead.

req TV Remote Contrd J
<<requirement>> <<requirement>>
TV Remote Control Weight ‘R oo OLOFE T05-Lev 41 41 B emart |
Text = "TV remole control® Text = "Below 2g° E
D=%" D=2
source = Marketing™ source =" R& D*
kind = "Interface” kind = "Perk - u [omz s e
verifyMethod = "Demonstration” verfyMethod = “Test") [Pt | emn—
risk = "High* risk = "Low" Panigis Pl P
status = "Proposed” status = "Proposed” i | [t iz oy
k= i it Pt nae
e hratres bt - Test”
5 = o i g = e
URt 11 R 13 |uﬂl)| um1 32 ‘l?t)! UR1 34 UR1 35
<<requirement>> weroprmmeress | | [[corepremrtss rerm— e e
- = | == = =
<<requirement>> sy
Eco-Friendliness Text = "Black in color” [s—
misz ot sonay s
Text = “The case must be made up ... D=5 S| [y o r—
D=".1" source = R& D* rumcomchy | 1ot = Toe co i mest r0nme | [Sn
.
source = "R& D* kind = "Performance e vt e e v
A o verfyMethod = Inspection® e .,.-.;'.'.‘_:'.:-““
verifyMethod = Tnspection” ek ="Low" e
risk = "Low" RS
slalus = *Proposed”
roq D Poi) CLD Disperser Requirements
«requiremants arecuirsments preesy— arequirements
By Sensor1 Datection {Priorty = 1} {Priority = 1)
Performance Performance (Requirement Type = Non-Functional) (Requirement Type = Functional)
A Fuel system Fuel requirement
. H - Thed subpsed o dil
i € diSpenser are Suppo: v er
| wdoriveRogts ThoFusl aystems are al types of fuel but only one iype can
,,,,,,,,,,,,,,,,, p, y,,,,,,,,,, «deriveRegls | b delivered in each ransaction
«requiremants -
stestCasen s Pricey = 1
Low SNR Target | «veritys ST b straco» «Misce (Pmulem[rlr‘l'\m.: = P]mmmmcol /
with eseannneaa 2 Sensor2 Detection |--------- Customer Y
t Performance Contract Fule type defvery
Interference] /
2 » Loty ane type of el can be ceivered |
Tarofings {esotistys erequrements B .
E [S {Priorky = 1)
: (Requirement Type = Non-Functional) Dispense
H «Blocks Dispenser fusi fypes LSS | Comtrolies
Scan Signal [st L2
nvrionme| Processor The Dispenser are designed to deliver fe — — — — — —

Fig. 12.11 Examples of the large variety of SysML requirement diagrams

The diagram in the bottom left, titled req Detection Performance, shows the use of all the six
dependency kinds discussed above. For example, «testCase» Low SNR Target Without Interference
«verify» «requirement» Sensor2 Detection Performance. Another example is «block» Signal Processor
«satisfy» «requirement» Sensor2 Detection Performance. None of the requirements in this diagram has

146 SysML: Foundations and Diagrams

the feature compartment with the minimal set of features—text and ID, but the standard (Sect. 16.3.1.2)
does allow to elide (leave out) this compartment.

Interestingly, Scan Environment, which is a use case, is at the origin of the «refine» dependency. This
does not seem to be allowed by the standard, since according to OMG SysML v1.3 Sect. 16.3.1.1 (p.144)
“The Requirement Diagram can only display requirements, packages, other classifiers, test cases, and
rationale.” However, this link between use cases and requirements can be useful. Trying to defend the
legality of mixing symbols from various diagrams, we find that the informative Annex A—Diagrams of
SysML v1.3 Standard (p. 168) states:

“Although the taxonomy provides a logical organization for the various major kinds of diagrams, it
does not preclude the careful mixing of different kinds of diagram types, as one might do when one
combines structural and behavioral elements (e.g., showing a state machine nested inside a compartment
of a block). However, it is critical that the types of diagram elements that can appear on a particular
diagram kind be constrained and well-specified. The diagram elements tables in each clause describe
what symbols can appear in the diagram, but do not specify the different combinations of symbols that
can be used.”

This paragraph essentially grants SysML modelers complete freedom to mix and match any symbol
from any SysML diagram kind with any other symbol. All one has to do is “careful mixing” and ensuring
that “the types of diagram elements that can appear on a particular diagram kind be constrained and
well-specified.” However, what “constrained and well-specified” means is itself not specified, leaving it
open to any interpretation of the modeler.

Finally, the diagram in the bottom right, titled CLD Dispenser Requirements, shows in the top
compartment of each requirement, in addition to the name (e.g., Fuel Type Delivery) also the requirement’s
priority (e.g., {Requirement Type=Non-Functional}) and type (e.g., {Type=1}). The feature compartment
contains relatively elaborate text (e.g., “Only one type of fuel can be delivered”), but it does not contain an
ID. Three blocks (Valve, Dispenser Controller, and FT) satisfy the Dispenser Fuel Type requirement, which is
derived from another, more comprehensive requirement.

12.8 Parametric Diagram and Constraint Property Blocks

The SysML parametric diagram provides for expressing constrains between properties, thereby enabling
integration of mathematical calculations or engineering analyses, such as performance and reliability
models, with SysML design models. Constraint property blocks can also specify a network of quantitative
constraints stemming from mathematical expressions of physical properties of a system. The constraints
are captured in constraint property blocks—ConstraintBlock constructs, expressed as equations that
include the underlying parameters. For example, a ConstraintBlock can have the parameters F, m, and a,
and the constraint {F=m*a}. Another example is the kinetic energy equation E=mv’*/2. Performance
parameters and their relationships to other parameters can be tracked throughout the system life cycle.

SysML constraint property blocks enable the integration of engineering analysis, such as performance
and reliability models, with other SysML models. A constraint block (see Fig. 12.12 left) includes the
constraint, normally in terms of a mathematical equation, and the parameters of the constraint, such as E,
m, and v for energy, mass, and velocity.

Dori — Model-Based Systems Engineering with OPM and SysML 147

For reuse purposes, constraint blocks are defined in a Block Definition Diagram. Parametric Diagrams
use constraint blocks to constrain the value properties of other blocks. Constraint blocks may thus be
reused on block definition diagrams and packaged into general-purpose or domain-specific model
libraries. This constraining is done by binding the constraint parameters (such as m in the example above)
to specific actual value properties of a block (such as the mass of a vehicle). A parametric diagram
example appears in Fig. 12.13. Figure 12.14 is an OPD representation of this parametric diagram.'

A parametric diagram (see Fig. 12.12 right) uses one or more constraint property blocks to constrain
the properties of one or more other blocks by binding the parameters through a mathematical relation. A
constraint property may be shown on a parametric diagram using a standard form of internal property
rectangle with the «constraint» keyword (short for constraintProperty) preceding its name (see Fig. 12.12
left). However, a constraint property may also be shown on a parametric diagram using a rountangle (see
Fig. 12.12 middle). As with the standard rectangle form, compartments and internal properties may be
shown within the rountangle. Using this shape enables avoiding the need to explicitly record the
«constraint» keyword.

Figure 12.13 presents a parametric diagram that constraints fuel flow rate to a car fuel demand and
fuel pressure through the relation FuelFlow = Pressure/(4*(InjectorDemand)), presumably due the fact that
this is a 4-cylinder engine.

Any mathematical operation, from the basic four arithmetic operations to the most complex
computation, can be viewed in OPM in terms of a calculating (informatical) process that uses (but not
consumes) one or more input parameters to produce an output. With this in mind, any SysML parametric
diagram can be presented as an OPD where the constraint is a Calculating process preceded by the
mathematical expression that binds and constrains the input parameters. The input parameters are
instruments, unless we wish to specify that they are not kept after the Calculating process ends.

«constraint» par Block1 J
ConstraintBlock1
constraints X: Real length: Real
{L1} x>y} . . X:
nested: ConstraintBlock2 C1: Constraint1 _
) C1: Constraint1
parameters 3 widti eal
x: Real y: Real [— 7
y: Real

Fig. 12.12 A generic constraint block (left) and a parametric diagram (right). Source: OMG SysML v1.3, p.84

! Another, more complex example for doing calculations in appears in Fig. 22.5 and in Fig. 22.6.

148 SysML: Foundations and Diagrams

par [B\ock]PowerSubsyslem/

ice.fi.FuelDemand:Real

ice ft. FuelFlowRate:Real

injectorDemand:Real

/,-" B | .
{ fuelflow:FuelFlow

ice.fr.fuel.FuelPressure::Real

flowrate:Real constraints
{flowrate=press/(4*injectorDemand)}

press:Real

Fig. 12.13 A parametric diagram that constraints fuel flow rate to fuel demand and fuel pressure (source: OMG SysML
v1.3, p.199)

Adopting this simple concept transformation, Fig. 12.14 is an OPD representation of the parametric
diagram in Fig. 12.13. In addition to this compact graphic representation, we get “for free” the OPL
textual representation, which can be readily translated to code in any programming language or even
directly executed to compute Pressure/(4*(Injector Demand)). Another, more involved example for doing
calculations in OPM appears in Figs. 22.5 and 22.6.

Injector Demand :
float
Pressure/(4*(Injector Demand)) 3> Flow Rate :
Calculating float
Pressure :
float

Flow Rate, Injector Demand, and Pressure are of type float.
Pressure/(4*(Injector Demand)) Calculating requires Pressure and Injector Demand.
Pressure/(4*(Injector Demand)) Calculating yields Flow Rate.

Fig. 12.14 An OPD representation of the parametric diagram in Fig. 12.13

12.9 SysML-OPM Comparison

In this section we compare SysML to OPM first in terms of relating to each language as a whole and then
by discussing and showing how OPM can be applied to model several SysML diagram kinds. Table 12.1
provides a compact comparison between SysML and OPM in terms of various attributes.

Dori — Model-Based Systems Engineering with OPM and SysML

149

Table 12.1 Comparison between SysML and OPM attributes

Feature

SysML

OPM

Theoretical foundation

UML; Object-Oriented
paradigm

Minimal universal ontology;
Object-Process Theorem

Standard documentation
number of pages

~1670=700 (UML
Infrastructure) + 700 (UML
Superstructure) + 270 (OMG
SysML)

~180=100 (ISO 19450 main
standard) + 80 (appendices)

Standardization body

OMG

ISO

Number of diagram kinds

9

1

Top-level concept

Block (UML object class)

Thing (object or process)

Complexity management

Aspect-based

Detail-level-based

verification capability

some diagram kinds)

guiding principle decomposition decomposition

Hierarchical decomposition In some diagram kinds Yes

Number of symbols ~120 ~20

Graphic modality Yes Yes

Textual modality No? Yes

B_U|I_t—|n_phy5|cal—|nformat|cal No Yes

distinction

g_ysFem.l c-environmental Partial (using boundaries) Yes
istinction

Logical relations (OR, XOR,

AND) No Yes

Probability modeling No Yes

Execution, animated o

simulation, validation and Partial (in some tools for Yes

Tool availability

Many, some free

Currently one free (OPCAT)
from

http://esml.iem.technion.ac.il/

Cloud-based tool under
development

’It is possible to generate a textual modality using some commercial SysML tools’ reporting and documentation
modules but this is not part of the language standard and there is no predefined syntax for formal sentences.

http://esml.iem.technion.ac.il/

150 SysML: Foundations and Diagrams

12.9.1 OPM Processes as First Class Citizens

Underlying OPM is a philosophy stipulating that in order to faithfully and naturally model, analyze, and
design systems in any domain, processes need to be recognized as “first class citizens.” Like objects,
OPM processes are considered as bona fide, stand-alone “things” rather than being encapsulated within
objects, as the object-oriented (OO) approach advocates. The lack of a direct acknowledgement of
process as a foundational ontological concept beside object results in a multitude of terms and symbols
for process in UML and SysML: use case, activity, action, method, and sequence. All of these are
processes, but each has some nuance or connotation that is not explicitly defined.

Objects in OPM are things that persist, while processes are transient things that transform objects.
Processes transform objects in one of three ways: (1) affecting their state, (2) generating new objects, or
(3) consuming existing objects.

12.9.2 Physical and Informatical Things

Geared for systems engineering from the outset and treating software systems as specializations of
general systems, OPM has no inherent “software-oriented” language semantics. For example, OPM
objects and processes can be informatical, or cybernetic, which may exist in models of both software
systems and other general systems, or physical, which is atypical of pure software systems but obviously
essential for systems in general.

Both objects and processes can be physical or informatical. Not only can objects and processes be
physical or informational, they can also be systemic (part of the system) or environmental (part of the
environment interacting with the system).

12.9.3 Model Multiplicity Versus Model Singularity

A major difference between SysML and OPM is the number of views (diagram types) used in each
language. While OPM is based on a single diagram type—Object-Process Diagram (OPD), SysML has
inherited UML’s model multiplicity (Peleg and Dori 2000), i.e., it presents each one of the system’s
aspects in a different view, using a different diagram type. SysML includes a subset of UML diagrams, as
well as two new types of diagrams for systems engineering: Requirement Diagram and Parametric
Diagram.

A set of inter-related Object-Process Diagrams (OPDs), showing portions of the system at various
levels of detail, constitutes the graphical, visual OPM formalism. OPD, OPM’s single type of diagram,
may be missing some elements that are important for systems engineering, such as the SysML parametric
constraints, although these can be treated in OPM as attributes with values that are manipulated by
processes that are mathematical operations.

Both languages support hierarchical representation of the model. However, in contrast to SysML,
where the model is represented in separate views with partial support of hierarchy, in OPM the entire
system model is based on a well-defined hierarchy of OPDs. These are but few of several dissimilarities
between the languages, which make it interesting to study and compare the differences between them.

Dori — Model-Based Systems Engineering with OPM and SysML 151

12.9.4 Graphics Versus Bimodal Graphics-Text Combination

OPM combines mathematically-grounded formal yet simple graphical language with natural language
sentences to express the function, structure, and behavior of systems in an integrated, single model. The
two semantically equivalent modalities, one graphic and the other textual, jointly express the same OPM
model. While the visual-graphic and the verbal-textual modalities are semantically equivalent, they
appeal to two different information processing channels of the brain, the visual and the lingual.

OPM is a prime vehicle for carrying out the tasks that are involved in system development. It does so
in a straightforward, friendly, unambiguous manner. One important reason for this is that the design of
OPM has not been influenced by what current programming languages can or cannot do, but rather, what
makes the most sense when trying to represent and conceptually model systems as best as possible.

Due to the resulting intuitiveness, OPM is communicable to both technical and non-technical
stakeholders of the system being developed, including peers, customers and implementers. At the same
time, the formality of OPM makes it amenable to computer manipulation for generating, automatically or
semi-automatically, large portions of the conceived system, notably program code and database schema.

12.9.5 Activity Diagrams Compared with OPDs

As noted, flows in an activity diagram can be of two kinds: control flow and object (or block) flow. A
control flow designates the flow from one action to another without explicit mention of an object. Figure
12.7 is an example where all the flows are control flows; the message being passed from one action to the
next is implicit. In contrast, an object flow has a specific object that is an output of one action and is input
to the next. There are two ways to model object flow, both shown in Fig. 12.15. The one at the top is the
pin notation: Blueprint is both the output on the pin of the Designing action and the input on the pin of
the Manufacturing action. The type of the input and output must be the same. The second way to model
object flow, shown at the bottom of Fig. 12.15, is the explicit object notation: The object (or block) is
depicted as both the output and input.

Blueprint Blueprint
. [] Manufacturing

Fig. 12.15 Two ways to show an object flow. Top: pin notation. Bottom: object notation

The activity diagram at the bottom of Fig. 12.15 looks very similar to an OPD. It looks like all we
need to do is replace the activity symbol—the rountangle—with the OPD symbol for process—the
ellipse, we will get a semantically equivalent model. Doing this produces the OPD in Fig. 12.16. The two
models really look isomorphic: just replace the shape and voila! However, to gain insight into the exact
semantics of this OPD, we should read its OPL paragraph:

152 SysML: Foundations and Diagrams

Designing ————>> Blueprint P>

Fig. 12.16 First attempt at OPM modeling of the activity diagram at the bottom of Fig. 12.15

Designing yields Blueprint.
Manufacturing consumes Blueprint.

Is this really what we wanted to model? Is Blueprint really consumed by Manufacturing? What we
really want to model is that once ready, Blueprint enables Manufacturing. However, Manufacturing does
not consume Blueprint, but rather references it, so Blueprint is an enabler, or, more specifically, an
instrument: It is required by the Manufacturing process, but it is not destroyed by it. Moreover, while
Blueprint is an informatical object, Manufacturing is a physical process.

The OPL paragraph of this OPD is indeed more telling and it confirms our improved graphical model
(Fig. 12.17):

Designing yields Blueprint.

Manufacturing is physical.
Manufacturing requires Blueprint.

Designing — Blueprint Manufacturing

Fig. 12.17 An improved OPM model of the activity diagram at the bottom of Fig. 12.15

Contemplating on the thought process that this exercise involved, we realize that the semantics of the
activity diagram is less expressive than that of the OPD. Arrows between an activity and an object in an
activity diagram have flow semantics, while in OPM they have transformation semantics—creation,
consumption, or state change. The Blueprint in the activity diagram simply “flows” between the two
actions, implicitly changing its logical location as it does so, but weather Blueprint is consumed by
Manufacturing or it just enables it is not specified. Conversely, the OPM arrows do not have flow
semantics—they do not imply that the object involved changes its location, only that it undergoes some
transformation.

The activity diagram cannot distinguish between an instrument and a consumee (neither can any other
SysML diagram type, at least not directly). The distinction between the informatical essence of Designing
and Blueprint on one hand and the physical essence of Manufacturing on the other hand cannot be
modeled either. Neither this essence distinction nor the distinction between an enabler and a transformee
can be modeled in a straightforward manner by any one of the nine SysML diagram kinds.

Dori — Model-Based Systems Engineering with OPM and SysML 153
Voice Connection «decisioninput»
ishi R Received?
M Establishing esponse Receive!
Response Received?
Crash Information
Providing

Voice Connection
Establishing

®
iomeicn el
A Conferencing Public Aid
Providing o /

Fig. 12.18 Example of an activity diagram decision node. Left: a relevant portion of the OPD. Right: an equivalent
activity diagram

12.9.6 Flow of Control in Activity Diagrams Versus OPDs

The flow of control in activity diagrams is achieved through decision nodes, which are diamond-shaped
nodes from which two or more control flow lines emanate, as shown in Fig. 12.18. On the left hand side
of Fig. 12.18 is a relevant portion of the OPD, while on the right hand side is the equivalent activity
diagram.

Examining the two models, we see that OPM does not require the special decision symbol—the
diamond in the activity diagram. Rather an object with two states—a Boolean object—is used. Moreover,
the decision symbol often requires, as is the case here, a note (whose symbol is a piece of paper with its
top right corner folded; see Fig. 12.18) with the reserved word «decisionInput» in order to be able to
specify what is being decided in the decision node. Notes are informal annotations that prevent
automating the model execution. Moreover, the decision variable is often an object or part of an object in
and of itself (e.g., a message or the result of a function), possibly with states, attributes, and other
refinees, but using a decision node does not provide for modeling that object.

12.9.7 OPM Implementation of a Requirements Diagram
As with other SysML diagrams we have seen, OPM enables modeling requirements with no need for a
specialized symbol set. Consider, for example, the following requirement, called Flow Rate Regulation:

“Gasoline flow rate shall be directly proportional to the piston pressure and inversely proportional to the
injector demand and to the number of pistons.”

154 SysML: Foundations and Diagrams

req Flow Rate Regulation)

«requirement» «satisfy» Flow Rate:

Sensor Set [Erarmmsmmmm e n s s m iy Real

Text = "Gasoline flow rate
shall be directly
proportional to the piston
pressure and inversely
proportional to the
injector demand and to
the number of pistons."
ID=12.1

Fig. 12.19 Flow Rate Regulation requirements diagram

Requirement

Flow Rate Regulation :
Requirement

the piston pressure and inversely proportional to
the injector demand and to the number of pistons.

[Gasoline flow rate shall be directly proportional to]

S
%
Injector Demand : 2
float
Flow Rate as _
Pressure/(4*(Injector Demand)))——=> Flow Rate :
Calculating float
Pressure :
float

Fig. 12.20 The Flow Rate requirement from Fig. 12.19 expressed in an OPM model

This requirement is presented in the requirements diagram in Fig. 12.19. In OPM we define an
informatical object class Requirement, which has an instance to Flow Rate Regulation. Since Flow Rate
satisfies this requirement, extending the OPD in Fig. 12.14, we express this relation using OPM’s tagged
structural link satisfies in Fig. 12.20.

Another approach is to formally model the requirement and derive the textual requirement
specification from the resulting OPL text, rather than writing freestyle requirements. Using the exhibition-
characterization relation, we can model the Requirement in Fig. 12.20 as exhibiting several parts,
including Client Free Text, Vitality, Urgency, Satisfying Status, and Deriving Requirement. The value of
the attribute Client Free Text of the instance Flow Rate Regulation will be “Gasoline flow rate shall be

Dori — Model-Based Systems Engineering with OPM and SysML 155

directly proportional to the piston pressure and inversely proportional to the injector demand and to the
number of pistons”.

To increase the generality we can model the object Piston Set whose Size attribute value is a
parameter instead of the number 4 in the mathematical expression which is part of the process name
“Flow Rate as Pressure/(4*(Injector Demand)) Calculating”. Furthermore, instead of including this
expression in the process name, we can in-zoom and model how the result is computed step-by-step using
the parameters. This way if any one of the parameters or even the expression changes, the process name
does not need to be changed.

12.10 SysML-OPM Synergies

Grobshtein and Dori (2011) evaluated aspects of SysML and OPM on the basis of a concrete sample
problem, in which multiple aspects of the system were modeled in both SysML and OPM. OPM was
found advantageous in presenting the system different hierarchy levels and combining structure with
behavior, while SysML was found more convenient for modeling detailed views of some aspects. This
finding was corroborated in a later empirical work, which pointed out that for answering particular
focused questions, a certain SysML view, which was automatically generated from an OPM model, may
provide a better answer quicker. Hence there is apparent potential synergy of combining advantages of
these two languages.

12.11 Summary

e Activity diagrams are illustrations of workflows, which describe the flow among actions and are
closest in semantics to OPDs.

e An action is a basic unit in an activity diagram, but by using the rake symbol it can be elaborated
into an entire activity diagram in its sown right, providing for a refinement mechanism similar to
OPM in-zooming.

e Flows in activity diagrams can be of two kinds: control flow and object flow.

e Accept, send, and time event action nodes have special syntax and semantics.

e Join and fork nodes are used for synchronizing actions.

e Arrows between an activity and an object in an activity diagram have flow semantics, while in
OPM they have transformation semantics—creation, consumption, or state change.

e Flow of control in activity diagrams is achieved through decision nodes, which are diamond-
shaped nodes to which a decision input notes are often attached. In OPM, flow of control is
based in part on Boolean objects.

e Requirements diagrams bridge typical requirements management tools and the system model.

e Parametric diagrams use constraint property blocks to bind system parameters to each other via
mathematical expressions. In OPM this can be done by expressing the mathematical formula as a
computation process.

156

SysML: Foundations and Diagrams

Requirements and parametric diagrams (like all the other SysML diagram kinds) can be modeled
in OPM without special symbols.

12.12 Problems

N =

6.

Draw an activity diagram of the OPD in Fig. 7.4.

Draw an activity diagram of the OPD in Fig. 8.6.

Using the rake symbol, connect the two activity diagrams from problems 1 and 2.

For each one of the two activity diagrams from problems 1 and 2, indicate the control flows by
red and each object flow by green.

Explain the difference in the semantics of arrows between activity diagram and OPD.

Use the specification below to draw a requirements diagram.

A passenger arriving at an airport deposits her baggage with the airline she is flying with. A
baggage handling system manages the transfer of the baggage to the passenger’s destination.

7.

Compare the requirements diagram from Problem 6 with the OPD in Fig. 2.5.
Draw a parametric diagram for the formula E = mC”.

Draw an OPD for the formula £ = mC.

Compare the parametric diagram from Problem 8 with the OPD from Problem 9.

Chapter 13
The Dynamic System Aspect

Every day we are confronted with systems that have an inherent tendency to change.
The weather, the stock market, or the economic situation, are examples.

Meinhardt (1995)

Systems change over time. An important motivation in the development of OPM has been to strike a
needed balance in a system’s conceptual model between the structural, static and procedural, dynamic
aspects of the system. The dynamic aspect of a system specifies how the system operates to attain its
function, complementing its static aspect. OPM is at least process-oriented as it is object-oriented. Indeed,
OPM models unify structure and behavior in one coherent frame of reference, with time being the
fundamental underlying concept. This chapter addresses modeling the dynamics aspect of a system.

13.1 Change and Effect

Processes and system dynamics are closely associated with the notion of change. Change is such a
familiar and basic concept that defining it seems both difficult and unnecessary. However, when we talk
about a change in OPM, we need to be specific about what a change means.

A change of an object is an alteration in the state of that object.

More specifically, a change of an object is replacing its current state by another state. The only thing
that can cause this change is a process. The process causes the change by taking as input an object at
some state—the input state, and outputting it in another state—the output state. Hence, a change of an
object means a change in the state the object is at.

Stateful objects can be affected, i.e., their states can change. This change mechanism underlines the
intimate, inseparable link between objects and processes. We call this change in state the effect of the
process on the object.

|Effect is a change in the state of an object that a process causes by its occurrence.

While the terms “change” and “effect” seem almost synonymous, there is a subtle difference in their
usage. We use effect to refer to what the process does to the object, and change—to what happens to the
object as a result of the process occurrence. Later in this section we refine the above definition of effect
with the notions of input and output links.

© Springer Science+Business Media New York 2016 157
D. Dori, Model-Based Systems Engineering with OPM and SysML, DOI 10.1007/978-1-4939-3295-5 13

158 The Dynamic System Aspect

13.2 Existence and Transformation

In Sect. 10.3.2, we have defined transformation of an object by a process as the generalization of
construction, effect, and consumption. Construction is synonymous with creation, generation, or yielding.
Effect is synonymous with change or switch, and consumption is synonymous with elimination,
termination, annihilation, or destruction. The effect of a process on an object is to change that object from
one of its states to another, but the object still exists, and it keeps maintaining the identity it had before
the process occurred. Construction and consumption change the very existence of the object and are
therefore more profound transformations than effect. When we say that a process constructs (yields,
generates, creates, or results in) an object, we mean that the object, which had not previously existed, has
undergone a radical transformation and is now a new, separate entity. When we say that a process
consumes (eliminates or destroys) an object, we mean that the object, which had previously existed, has
undergone a radical transformation so it no longer exists in the system.

13.2.1 Construction and Consumption: Extreme Object Changes

When we consider existent and non-existent as states of an object, construction and consumption become
extreme cases of object state changes, as

Fig. 13.1 presents using nine OPDs. The rows in this 3x3 matrix are three stages of transformation
evolution of three objects, Constructed Object, Existing Object, and Consumed Object. The horizontal
axis (the three columns) represents the kind of object transformations, from constructive on the left to
destructive on the right. Accordingly, there are three corresponding processes: Constructing on the left
column, Changing in the middle, and Consuming on the right.

The vertical axis (the three rows) represents the level of detail, from the most detailed at the top row to
the most abstract at the bottom row. In the top row, all the states of all three objects are expressed, and
input-output link pairs originate from and arrive at these states. In the middle row, since the state non-
existent of Constructed Object and the state non-existent of Consumed Object do not exist, they are
removed along with the links connecting them. Also, edges of the remaining transforming links in all
three columns have migrated from the states to the contour of the object box. This is an interim stage
aimed at showing the evolution of links. Finally, in the bottom row, all the remaining states are
suppressed, showing the final three transforming links: result, effect, and consumption links. The effect
link (bottom center) is an abstraction of the input-output link pair (top center), in which the states are
suppressed such that the semantics of the effect link is a change in the states of the object from some
unspecified input state to another unspecified output state.

The use of the states non-existent and existent of an object is useful when we wish to explicitly model
that the object is present in or missing from the system. For example, we have used it to model molecular
biology concepts such as removal of a factor or gene knockdown (Somekh et al. 2014).

13.2.2 Change of State or Change of Identity?

During their life, objects can undergo a host of transformations. Transformation of an object can, by our
definition, take place only when a process acts upon the object. This transformation generates, affects, or
eliminates the object. The extent of the change can vary from very small to very large. If the change is

Dori — Model-Based Systems Engineering with OPM and SysML 159

small, such as a change in the location of the object or in its color, we tend to say that the object was
altered from one of its states to another while keeping its identity. As the extent of the effect grows, so
does the difference between the object before the process started and after it ended. At some point, the
two become so conceptually different that the modeler is inclined to think of the object resulting from the
process as a newly created object. The object that had existed before the process took place may have
been eliminated or at least changed radically. As we show below, the issue of whether an object changed
only its state or its entire identity is similar in natural and artificial systems.

Construction Effect Consumption
Stage , — . ,
change Constructed Object Existing Object Consumed Object
output link
pair

()
@A
(X

Nor;-tZ)t(leSStent Constructed Object Existing Object Consumed Object
romoved;
links 7 ‘
migrated
‘ @ ‘
All states
removed,
mp.Ut'OUt_pUt Constructed Object Existing Object Consumed Object
link pair
joined, %
resulting in
result, V /
effect, and
consumption
links

Fig. 13.1 Construction and consumption as extreme cases of effect

13.2.3 Transformations in Living Organisms

In nature, living organisms undergo a striking variety of transformations. Some of the transformations are
deemed as just a change in state, while others are considered to be a change in the organism’s identity.
The transformation from a cub to a grown-up lion is considered a change in the state of a lion from young
to adult. Similarly, growing of a baby into an adult is considered a change in the person’s state. The

160 The Dynamic System Aspect

silkworm, on the other hand, has four distinct forms of existence. It transforms from egg to larva (worm,
or caterpillar) to pupa, the larva undergoes complete transformation within a protective cocoon or
hardened case, to butterfly, which, in turn, lays the eggs of the next silkworm generation. Each
transformation yields an object that is very distinct from its predecessor in shape and function. The
difference is so profound that each such transformation is called metamorphosis. We are inclined to view
each reincarnation as a separate object rather than a mere change of the same object’s state. A frog, like
other amphibians, transforms from spawn to egg to tadpole to legged tadpole to froglet to adult, providing

an example similar to the silkworm.

Spliting)k

T

Splitting h

legged \
tadpole

Water-to-Land
Migrating

Frog can be spawn, egg, tadpole, legged tadpole, froglet, or adult.

Frog is initially spawn and finally Adult.
Mating & Fertilizing (Amplexus) is physical.

Mating & Fertilizing (Amplexus) changes Frog from adult to spawn.

Mating & Fertilizing (Amplexus) invokes Splitting.

Splitting changes Frog from spawn to egg.

Splitting invokes Hatching.

Hatching changes Frog from egg to tadpole.

Hatching invokes Legs Growing.

Legs Growing changes Frog from tadpole to legged tadpole.
Legs Growing invokes Water-to-Land Migrating.

Maturing changes Frog from froglet to aduit.

Maturing invokes Mating & Fertilizing (Amplexus).
Water-to-Land Migrating changes Frog from legged tadpole to
froglet.

Water-to-Land Migrating invokes Maturing.

Froglet Frog |.|. 'é‘;glg'gmg I«—~—

Water-to-Land
Migrating &

Mating & Fertilizing (Amplexus)
consumes Adult Frog.

Splitting consumes Spawn Frog.
Splitting yields Egg Frog.

Hatching consumes Egg Frog.
Hatching yields Tadpole Frog.

Legs Growing consumes Tadpole Frog.
Legs Growing yields Legged Tadpole
Frog.

Maturing consumes Froglet Frog.
Maturing yields Adult Frog.
Water-to-Land Migrating consumes
Legged Tadpole Frog.

Water-to-Land Migrating yields Froglet
Frog.

Fig. 13.2 Two concurrently simulated models of Frog lifecycle. Left: Change of object state. Right: Change of object
identity
Figure 13.2 shows an OPCAT screenshot of two OPM models that are simulated concurrently. The
model on the left shows Frog as a single object with six states: spawn, egg, tadpole, legged tadpole,
froglet, and adult. Thanks to the invocation links, once invoked by externally activating Splitting, this
model completes a whole cycle from spawn to adult.

The model on the right shows six different stateless objects of the various incarnations of frog: Spawn
Frog, Egg Frog, Tadpole Frog, Legged Tadpole Frog, Froglet Frog, and Adult Frog (here each process

Dori — Model-Based Systems Engineering with OPM and SysML 161

needs to be invoked separately; this can be avoided if we replace each consumption link, e.g., the one
from Egg Frog to Hatching, with an event consumption link). At this point of the simulation the process
Legs Growing is active (as the dark color and points along the arrows show). The pertinent OPL sentence
for the model on the left is:

Legs Growing changes Frog from tadpole to legged tadpole.

The pertinent OPL sentences for the model on the right is:
Legs Growing consumes Tadpole Frog.
Legs Growing yields Legged Tadpole Frog.

The frog and silkworm examples are conveniently thought of as changes of object although
genetically they are the same organism, because the various incarnations of these creatures are profoundly
different from each other in both appearance and behavior. The human and lion examples, on the other
hand, are more naturally modeled as a change of the object’s state.

13.2.4 Transformations of Artificial Objects

The situation with transformations of artificial objects is similar to natural ones: If the change is profound,
objects change identity, otherwise, the same object just alters its state. What transformation is “profound”
is subjective and context-sensitive. Consider, for example, two processes from a manufacturing realm:
Molding and Testing. Molding acts on the object Raw Material (e.g., plastic), converting it to another
object, that we call Product. The identity of Raw Material changed as a result of the Molding process to
the extent that we need to refer to the process outcome by a different name. Hence, the object Raw
Material has been eliminated or consumed, while a new object, called Product, has been created (or
constructed, or generated). We can model the relation between the two objects, for example by adding a
tagged structural relation from Product to Raw Material with the tag “is made of”’, which will result in the
OPL sentence Product is made of Raw Material.

Suppose Product now undergoes the process of Testing, in which its shear strength is measured. If the
test succeeds, Product is approved, otherwise it is rejected. Unlike the Molding process, which altered the
identity of the processed object from Raw Material to Product, Testing does not change Product to the
extent that we would be inclined to say that it lost its identity. Instead, the only effect of the Testing
process is to alter the state of Product (from untested to tested). While there is a difference between
Product before and after the Testing, (since after the test we have information about the product’s
strength, which we did not have before), this difference is not profound enough to justify change of
identity. However, it does cause a change in state. Hence, transformation can be thought of as a general
term that encompasses creation, effect (change of state) and elimination of an object. We will elaborate
on this when discussing system dynamics.

The criterion for whether the process changes the object’s state or the object’s identity is whether it is
possible and makes sense to create an attribute which the object in question exhibits with the same values
as the states of the object. In our case the attribute of Product would be Testing Status object with the
same values, pre-tested and tested. If this is possible, as is the case here, then the change is only in the
state of the object but not in its identity. If not, as is the case in the Raw Material to Product example—the
change is in the object identity.

162 The Dynamic System Aspect

Generalizing the natural and artificial examples, when the change is not profound or drastic, we are
inclined to think that the object only alters its state while retaining its identity. When the transformation is
extreme, a change in object identity takes place. As is the case in similar situations, the borderline
between “drastic” and “non-drastic” is not well-defined. Analyzing the same system, different modelers
may provide different viewpoints on whether a particular object should lose its identity and become a new
object. Indeed, we will see instances where it makes sense to model changes in objects either as a change
in their state (or attribute value), or as a change in their identity, and both versions would be acceptable.

13.3 Procedural Links

Procedural links are the indispensable “mortar” between processes and objects or their states. They
provide for integration of the system’s structure and behavior within a single model. Procedural links are
of utmost importance.

A procedural link is a link between a process and an object or its state, or between

two processes.

The majority of procedural links are between a process and an object or its state. The only three
procedural link kinds between two processes are the invocation link and the overtime and undertime
exception links discussed in Chap. 22. As discussed in Sect. 10.10.3 an invocation link may replace a
transient, short-lived physical or informatical object that a source process creates to initiate the destination
process, which immediately consumes the transient object. This is also true for the exception links (where
the object may be a message). Therefore we often omit the last part of the procedural link definition and
say that a procedural link is a link between a process and an object or its state.

The structure-behavior integration that procedural links provide is one of the most important features
of OPM. This integration within a single model eliminates in the first place the inherent diagram kind
multiplicity problem (Peleg and Dori 2000) that are characteristic of object-oriented methods such as
UML and SysML, whose ontology is far from being minimal.

13.3.1 Transforming Versus Enabling Procedural Links

The definition of OPM process requires that the process transforms at least one object. In addition to the
object(s) being transformed, the process can also require one or more objects that enable that process, but
are not transformed by it. Hence, from the viewpoint of a given process, OPM distinguishes between two
types of objects: a transformee—an object that the process transforms (generates, affects, or consumes),
and an enabler—an object that enables the process but is not transformed by that process. Accordingly,
there are two types of procedural links: transforming links and enabling links.

13.3.2 Transformees

We have defined transformee of process P is an object B that P transforms as a result of its occurrence.
The transformation can be construction, effect (change of state) or consumption. Transformee is a role
that the object B assumes with respect to the particular process P. so B can be a transformee with respect

Dori — Model-Based Systems Engineering with OPM and SysML 163

to some process P; and an enabler with respect to another process P,. A transformee can be one of three
types defined below.

A consumee of a process P is a transformee of P that P consumes as a result of the
occurrence of P.

A resultee of a process P is a transformee of P that P creates as a result of the
occurrence of P.

An affectee of a process P is a transformee of P that that P affects as a result of the
occurrence of P.

In the bottom line of Fig. 13.1, Consumed Object, Constructed Object, and Existing Object arc the
consumee, resultee, and affectee, respectively. A consumee can be thought of as an input to the process,
as the process consumes it, and a resultee—an output of the process, as the process creates it. An affectee
is both input and output: the process takes it in its input state and outputs it in its output state.

These analogies are definitely true for physical objects. However, an informatical object can serve as
input to a process without being consumed in whole or in part. For example, suppose in Fig. 13.3 a File in
a database is erased by an Erasing process, then File is a consumee of as well as an input to Erasing. If
File is created by a Creating process, then File is a resultee as well as an output of Creating. If the File is
edited (such that data is added to, changed, or removed from the file) by an Editing process, then File is an
affectee of Editing, as well as both input and output.

If the File is read from via a Reading process, then File is an input to this process, but it is not
consumed or changed in any other way—it serves as an instrument for Reading, as we discuss below. A
physical object, such as a resource, which is an input to a process, is consumed by the process, at least in
part. There are many physical objects, such as a Hammer—a tool for the process of Nail Driving, that are
instruments and are essentially unchanged by the process which they enable.

13.4 Transforming Links

Transforming links are unidirectional or bidirectional arrows connecting the transformee to the process
which transforms it.

A transforming link is a procedural link that connects a process with a transformee of

that process.

Figure 13.3 shows the links between File on one hand and File Creating, File Editing, and File Deleting
on the other hand as examples of result, effect, and consumption links, respectively. These are
specializations of a transforming link, as defined below.

In Fig. 13.4, Processing is linked to three Transformee specializations: Consumee, Affectee, and
Resultee via their corresponding transforming links—consumption, effect, and result links.

164 The Dynamic System Aspect

AN
File File
Editing Deleting
File Creating yields File.
File Deleting consumes File.
File Editing affects File.
Fig. 13.3 Result, effect, and consumption link between File and File Creating, File Editing, and File Deleting,
respectively

A result link is a unidirectional transformation link from a process to the resultee that

this process creates.

An effect link is a bidirectional transformation link that connects a process with an

affectee of that process.

A consumption link is a unidirectional transformation link from a consumee to the

process that consumes it.

Transformee <{j

Consumee

Processing

Affectee

Resultee

Consumee, Affectee, and Resultee are Transformees.
Processing consumes Consumee.

Processing affects Affectee.

Processing yields Resultee.

Fig. 13.4 Processing linked the three transformee types by their corresponding transforming links Enablers

13.4.1 Consumption and Result Timing

Existence of a consumee is a precondition, or part of the precondition, for process activation. If the
required amount of consumee instances (usually 1) does not exist at the time of process initiation, then
process activation shall wait for that amount of consumee instances to become existent. The consumption
of the consumee instance(s) is immediate upon process activation, unless the model expresses
consumption of the object over time, in which case consumption rate, a specialization of transformation
rate, is used, as explained below.

Dori — Model-Based Systems Engineering with OPM and SysML 165

Machining consumes Steel Rod.
S > w >| Shatt Machining yields Shaft.

Fig. 13.5 Consumption and result timing: Steel Rod is consumed and disappears as soon as Machining starts. Shaft is
created only when Machining ends

In Fig. 13.5, Steel Rod is a consumee for the process Machining, which generates the resultee Shaft.
Once Machining has started, it consumes Steel Rod. However, Shaft is considered to be created only upon
termination of Machining. During the process, Steel Rod does not exist anymore, but neither does Shaft.

13.4.2 The Evolution of Effect Link

Explicitly expressing the states of an object in the diagram often yields an OPD that is too detailed,
crowded or busy, making it hard to read. This is a manifestation of the comprehensiveness-clarity
tradeoff: these two desired qualities of complex system models are in constant conflict.

Lamp Lamp Lamp
R
<] i i
\/ 4 N
Lighting affects Lamp. Lighting changes Lamp from on to off.

Fig. 13.6 The evolution of the effect link

Figure 13.6 shows state suppression and the evolution of the effect link, similar to the middle column
in Fig. 13.1. In the middle OPD, the input and output links, which on the right OPD are attached to the
state rountangles, migrate to the boundary of the Lamp object box. They now link the process and the
object directly, going from and to the object itself rather than from and to its states. This interim
representation is not valid in OPM. To reduce the graphic clutter, the input and output links, denoted by
two opposite unidirectional arrows, have been superimposed by joining them into one bidirectional arrow,
yielding the symbol of the effect link. Finally, on the left, the states of Lamp have been suppressed,
because they are no longer vital since the links are not attached to them.

13.5 Enablers

Suppose you wish to move from your place to an apartment in another city. To do this, you need a
moving truck, which you rent from a moving truck rental company. You return the truck to the same
place where you took it and with the same amount of gasoline as you took it. Hence, ignoring the
amortization of the truck, nothing in it has changed. However, you would not be able to carry out the

166 The Dynamic System Aspect

moving without it. We say that the Truck is an enabler of the Moving process. Moreover, since some of
your furniture are very heavy, you need a Friend as a second enabler of the Moving process.

An enabler of a process is an object that enables the process execution. Its presence is needed
throughout the duration of the process, but when the process is over, the enabler exists at the same state as
it was when the process started. In other words, an enabler of a process is an object that must be present
throughout the process duration in order for that process to occur and terminate successfully, but is not
transformed as a result of the occurrence of the process.

An enabler E of a process P is an object that must exist and be available in order for
P to start, and remain present throughout the occurrence of P in order for P to

terminate normally, with E ultimately unaffected.

The enabler might undergo state change during the process, but, as the enabler definition states, when
the enabled process is over, the enabler is at the same state at which it started. For example, the enabler
Oven in Fig. 13.7 will change state from off to on at the beginning of the enabled Baking process, and
from on back to off just prior to the end of Baking.

As the Moving example has shown, some enables are human, while others are inanimate. Hence, an
enabler has two specializations: an agent or an instrument, as defined below.

13.5.1 Agent: A Human Enabler

The term agent is reserved for a human enabler.

An agent is an enabler who is a human or a group of humans.

An agent is an intelligent enabler, who can control the process it enables by exercising common sense
or goal-oriented considerations, implying that it must consist of one or more humans. Usually, it is a
single person—the system’s user or beneficiary. An agent can also be an organization, or a unit within a
man-made organization, such as department, city council, government, group, team, etc.

The notion of agent is important because it provides for modeling the “human in the loop”, i.e., how
people interact with the system. This is a clear indication to the system designer of points of interaction
with the system where human interface needs to be developed. Moreover, the hierarchy of processes that
the agent is involved in provides an excellent guideline for the arrangement of a friendly graphic user
interface, and creation of such interface can even be automated to some extent based on this model.

In the world of software and embedded systems, robots are often referred to as agents, and software
agents are common in the Internet, capitalizing on evolving agent technologies. In OPM, which is geared
to model all kinds of systems, including complex socio-technical systems and systems where humans are
users and beneficiaries, humans (as individuals or groups) are privileged and distinguished from all the
other inanimate enablers, so the term agent is reserved for humans only." This enables focusing the
attention of system architects and designers to care for humans’ safety and special needs and desires

'A robot can still be called an embedded-software agent, and programs acting in the Internet on behalf of humans can
still be called software agents. Agent without any qualification is reserved for individuals or groups of humans.

Dori — Model-Based Systems Engineering with OPM and SysML 167

while interacting with the rest if the system—the system’s usability and the users’ experience and delight
from using a well-designed and human-friendly and accommodating system.

The agent link is somewhat analogous to the actor—the “stick figure” in UML’s or SysML’s use-case
diagram. In OPM, however, no separate kind of diagram is needed, as modeling the user is incorporated
into the single OPM model. Use cases in SysML notation can automatically be extracted from the OPM
model, as can other SysML models (Grobshtein and Dori 2011).

Not any human or organization is necessarily only an agent. For example, if a Student is engaged in
the process of Studying, his or her Knowledge Level attribute change, say from shallow to deep. In this
case, Student is not only an agent, but also a transformee. Likewise, if a department in an enterprise is
undergoing business process reorganization, its structure and/or behavior changes as a result of this
process, so in addition to being an agent, it is also a transformee.

The procedural link uniqueness OPM principle states that at any level of detail, an object and a
process can be connected with at most one procedural link. Semantic strength and link precedence are
defined and discussed in detail in Chap. 21. Here we note only that transforming links are semantically
stronger than enabling links, because the transforming links denote creation, consumption, or change of
the linked object, while the enabling links only denote enablement. A transforming link has precedence
over an enabling link as shown in Fig. 21.15, therefore if we need to choose between an agent link and an
effect link, as in the examples above, effect link shall be chosen.

13.5.2 Instrument: A Non-Human Enabler

An instrument of a process is any non-human, physical or informatical object, which does not change as a
result of the execution of the process.

An instrument is a non-human enabler.

Examples of instruments include machines, tools, computers, robots, controllers, hardware, software,
documents, orders, recipes, algorithms, prescriptions, files, commands, information, and data. Algorithms
and recipes are prime examples of informatical instruments that can be used repeatedly, ideally without
wearing out (in practice we may witness “software amortization” as well...).

Physical instruments usually change to some extent as they enable a process. In particular, they can
wear out or degrade as they are being used as process enablers. Yet, from the viewpoint of the system
under development, such objects would still be considered instruments, as these changes are either not
significant enough to be accounted for, or they are out of the system’s scope.

In other cases, wear and tear are factors to be considered. For example, in developing a Manufacturing
System, a system architect may be required to account for Maintaining a Machine that wears out due to
the Metal Cutting process it enables. In this case, the Machine should not be assigned the role of an
instrument. Rather, it will be modeled as an affectee. The attribute of the Machine that changes as a result
of its operation can be, for example, its Amortization Level, or hours of operation since the last overhaul.
We will have to take this Machine Wearing process in account if our system encompasses the
maintenance aspect of the Machine. The distinction in an OPD among the two types of enablers—agents
and instruments—is made possible by their connection to the process they enable through the different
enabling links, defined next.

168 The Dynamic System Aspect

13.5.3 Enabling Links: Agent and Instrument Links

Enables are linked to processes through enabling links.

An enabling link is a procedural link that connects a process with an enabler of that

process.
An agent link is an enabling link that connects a process with an agent of that process.

An instrument link is a procedural link that connects a process with an enabler of that

process.

Ingredient Set

” Baker

Cake

Oven

Baker handles Cake Making.

Cake Making requires Oven.

Cake Making consumes Ingredient Set.
Cake Making yields Cake.

Fig. 13.7 Enabling links example: The agent link from Baker and the instrument link from Oven

Graphically, as Fig. 13.7 shows, an enabling link is a “lollipop”, a line leading from the enabler
(Baker) to the process (Cake Making) it enables, which ends with a circle touching the process side. If the
enabler is a human or a group of humans, the enabling link is an agent link, denoted as a “black lollipop”,
i.e., its ending circle is filled in (black).

The distinction between a human and a non-human enabler is important, since for humans to interact
with the system, a dedicated interface needs to be designed. Hence, an optional stick figure can be added
at the top-left corner of the agent’s object symbol, as shown in Fig. 13.7. This optional stick figure is
especially useful when the human in the model is an affectee, i.e., she or he is affected by the process to
which it is linked, in which case we must use the effect link rather than the agent link. In this case, the
stick figure retains the information that a human is involved.

If the enabler is an instrument, the enabling link is a “white lollipop”, i.e., its ending circle is blank
(white). The two OPL sentences associated with these links are:

Agent handles Processing.

Processing requires Instrument.

The OPL syntax of the first (agent) sentence is designed such that the agent appears first, followed by
the reserved OPL phrase handles, followed by the process name. For the instrument sentence, the OPL
syntax is such that the process name appears first, followed by the reserved OPL phrase requires, followed
by the instrument name. This difference in both the OPL phrases and the order of the enablers in the
sentences underlines that being humans, agents are more important than instruments.

Dori — Model-Based Systems Engineering with OPM and SysML 169

All the process enablers must be present throughout the execution of the process which they enables.
For example, in Fig. 13.7 both the agent Baker and the instrument Oven must be present throughout a
Cake Baking process.

Furniture

Moving Truck

in need of Location
=

apartment apartment
% 7' 5 A
:: Servicing :f a 5.
Moving Truck can be in need of service or Servicing changes Moving Truck from in need of service
serviced. to serviced.
Furniture exhibits Location. Moving requires Moving Truck.
Location of Furniture can be old apartment or new Moving changes Location from old apartment to new
apartment. apartment.

Fig. 13.8 The same object playing the roles instrument and affectee: Moving Truck is an instrument of Moving and an
affectee of Servicing

13.5.4 Enabler Versus Affectee

Enabler and affectee are possible roles that an object plays with respect to some processes. The same
object can be an enabler for one process but not for another, or it can be an enabler for one process and an
affectee for another. For example, the (environmental) process Servicing in Fig. 13.8, which the moving
company applies periodically to its Moving Truck, changes the state of Moving Truck from in need of
service to serviced, hence Moving Truck is an affectec of Servicing. However, with respect to the
(systemic) process Moving, Moving Truck is an enabler—an instrument for Moving, while Location of
Furniture is an affectee, as Moving changes the value (attribute state) of the Location attribute of Furniture
from old apartment to new apartment.

13.6 The Preprocess and Postprocess Object Sets

Recall that the involved object set is the union of the preprocess object set and postprocess object set.
As Fig. 13.9 shows, if the involved object-set contains enablers (agents and/or instruments), they are
common to the preprocess and postprocess object sets, because their presence is required throughout the
duration of the process they enable. Each process has its own involved object set, preprocess object set,
and postprocess object set, and each can contain any number of objects.

Affectees are also common to the pre-process and post-process object sets, because they had existed
before the affecting process started and remain existent after this process ended. Consumees disappear, so

170 The Dynamic System Aspect

they belong only to the pre-process object set, while resultees are created, so they belong only to the post-
process object set.

Involved
Object Set
| |
Preprocess Postprocess
[Object Set Object Set
I | | |
Instrument Affectee Agent

1 Consumee

0
———>> Reslltee

Involved Object Set consists of Preprocess Object Set and Postprocess Object Set.
Preprocess Object Set consists of Consumee, Affectee, Agent, and Instrument.
Postprocess Object Set consists of Resultee, Affectee, Agent, and Instrument.

Fig. 13.9 The Involved Object Set partitioned into Preprocess Object Set and Postprocess Object Set

The Preprocess Object Set and the Postprocess Object Set are not necessarily disjoint—they may be
overlapping. Indeed, in Fig. 13.9, the overlapping members are the two enablers—Agent and Instrument,
and one transformee—the Affectee. Agent and Instrument might belong to both object sets, because, by
their definition, being enablers, they are required throughout the process (and are not supposed to change
as a result of the occurrence of the process they enable). Affectee belongs to both the preprocess object set
and postprocess object set, because it continues to exist after the process occurred, albeit in a different
state. Consumee is the only involved object which is not in the Postprocess Object Set, because the
Processing process consumed it, so it does not exist after Processing terminated. In an anti-symmetric
manner, Resultee is the only involved object which is not in the Preprocess Object Set, because
Processing generated it, so it did not exist prior to the beginning of Processing. The procedural links are
summarized in Table 13.1.

13.7 State-Specified Procedural Links

It is often the case that we wish to specify in our model not just that an object is transformed or that it
enables a process, but also at what state an enabler has to be in order for it to enable the process. We may
also wish to be able to specify not just the object that a process generates, but also the particular state at
which that object is generated as a result of the occurrence of a process. Likewise, one may wish to

Dori — Model-Based Systems Engineering with OPM and SysML 171

specify not just what object a process consumes, but also the particular state that the object needs to be at
in order for the process to be able to consume it. State-specified procedural links provide for this.

A state-specified procedural link is a procedural link that connects a process to a

state of an object.

For each procedural link there is a state-specified version. State-specified procedural links differ from
their non-state-specified version in that rather than connecting the (transforming or enabled) process to
the involved object (transformee or enabler), they connect the process to one of the involved object’s
states. Thus, state-specified procedural links are elaborate versions of their regular procedural
counterparts.

Table 13.1 Procedural links, their semantics, symbols, source, and destination

LMtk Name Semantics Sample OPD & OPL Source Des-tl-
Type nation
Food >
Consumption I&ZE; GO ConiTes K Consumee | Process
- Eating consumes Food.
=
g
Z,
S The process generates the —3>| Copper
E Result abjidt Process |Resultee
a%. Mining yields Copper.
g
= The process affects the object <> Object and Process
Effect by changing it from one Conper are both source and
unspecified state to another. Purifying affacts Copper. destination.
The agent—a human—handles
the process and is required to be Miner [——®{ o
inin
F—f Agent there throughout the process, g ageat | Fraccss
H i . s
= but it is not transformed. Miner handles Copper Mining.
u%-
= The process requires the GonpéE
= idiien instrument—a non-human Dril —0O Mimeg Instru- Piess
SHHITICH object— throughout the ment
process, but not transformed. Copper Mining requires Drill.

13.8 State-Specified Enabling Links

State-specified enabling links—agent link and instrument link—are defined as follows.

A state-specified agent link is an agent link that originates from a specific state s of an
agent G to process P, denoting that in order for G to handle P, G must be at state s
throughout the duration of P.

172 The Dynamic System Aspect

Like its state-specified consumption link and result link counterparts, the state-specified instrument
link originates from a specific state and terminates at a process. The semantics of this link is that the
process is enabled if and only if the object exists and is at the state from which the link originates. This is
contrasted with the “regular” instrument link, which originates from the enabling instrument but not from
any particular state of that instrument. For example, a pilot must be sober in order to qualify as an agent
for the flying process of an Airplane. In OPL: Sober Pilot handles Flying.

A state-specified instrument link is an instrument link that originates from a specific
state s of the instrument I to process P, denoting that in order for P to execute, I must

be at state s throughout the duration of P.

The difference between the two instrument link types is demonstrated in Fig. 13.10, where on the left
hand side, the object Moving Truck is the instrument for Moving, implying that the state at which this
Moving Truck is does not matter. On the right hand side, the instrument link originates from the state
serviced of Moving Truck, implying that only if Moving Truck is serviced, Moving can take place.

Furniture Furniture

Moving Truck d Moving Truck -
in need of Location T Location
apartment apartment 7! apartment apartment
% f 5 A %]‘ Y A
- s F 3 == b
l’ \

Servicing | !

.

............

Moving requires Moving Truck. Moving requires serviced Moving Truck.

Fig. 13.10 Instrument link vs. state-specified instrument link: Left: Instrument link—Moving Truck is an instrument of
Moving. Right: State-specified instrument link—serviced Moving Truck is an instrument of Moving

Table 13.2 summarizes the semantics, symbols, source, and destination of the two state-specified
enabling links.

Dori — Model-Based Systems Engineering with OPM and SysML

13.9 State-Specified Transforming Links

State-specified transforming links differ from their corresponding regular, non-state-specified versions in
that rather than connecting the transformee (consumee, affectee, or resultee) to or from the transforming

process, they connect one of the transformee states to or from that process.

Table 13.2 State-specified enabling links: semantics, symbols, source, and destination

i Desti-
Name Semantics Sample OPD & OPL Source 1
nation
State- The human agent —
S eciﬁed enables the sick | | heattny =
pA process provided 2l O M Agent state Process
g'ent she is at the
Link specificd state. Healthy Miner handles Copper Mining.
State- The process Dril
specified requires the -_ of Copper Instrument Pt
Instrument instrument at the Mining State ocess
Link specified state. — - _ -
Copper Mining requires operational Drill.

Each one of the three transforming links—consumption, effect, and result—has a state-specified
version, as defined below. The three transformees—consumee, transformee and resultee—are also roles
with respect to the corresponding processes associated with them, as are agent and instrument. Similarly,
the terms “input state” and “output state” refer to roles of two states of an affectee with respect to the
affecting process. The input state is the state just before the affecting process starts, while the output state

is the state the object is at just as that process ends.

An input state of object B is a state s; of B at which B is when process P starts.
An input link is a link from the state s; to process P.
An output state of object B is a state s, of B at which B is when process P ends.

An output link is a link from process P to the state s,,.

state s; of the consumee C and ends at process P, denoting that in order for C to be

consumed by P, it must be in state s;.

A state-specified consumption link is a consumption link that originates from an input

The state-specified consumption link expresses the fact that the consumee is consumed by the process
if and only if the consumee is in the specified state—the one to which the consumption link is connected.

174 The Dynamic System Aspect

A state-specified result link is a result link that originates from process P and ends at

a state s of the resultee R, denoting that when P terminates, it creates R in state s.

The state-specified result link expresses the fact that the resultee is generated by the process only at
the specified state—the one to which the result link is connected.

A state-specified effect link is an in-out (input-output) link pair, whose input link
originates from an input state s; of the affectee A and ends at process P, and whose
output link originates from P and ends at an output state s, of A, denoting that in order
[for A to be affected by P, A must be in s;, in which case when P terminates A will be at

S,

Figure 13.11 shows two examples of state-specified consumption and result links. Machining can only
consume Raw Metal Bar in state cut and generate Part in state pre-tested. The corresponding OPL sentences
follow. The OPL syntax for a state-specified object is “state name” followed by “Object Name”. This
syntax is demonstrated in the two OPL sentences in Fig. 15.13 by cut Raw Metal Bar and by pre-tested
Part. When naming a state, one should therefore test its expressiveness by evaluating whether the phrase
that results from this concatenation makes sense and reads well in OPL sentences where it appears.

Since the function of this system is Machining, Cutting and Testing are environmental processes.”
Cutting must precede Machining in order to change Raw Metal Bar from its pre-cut to its cut state, while
Testing changes Part from pre-tested to tested. Additional examples of state-specified transforming links
appear in Table 13.3.

Machine
Operator

Raw Metal Bar

|Pre cy [cut |
J

vk

P 5 ‘i}. pre 1esled tesled
' Cutting) A

”- Coolant \l f

e b

\ Testing !

Machining consumes Coolant and cut Raw Metal Bar.
Machining yields pre-tested Part.

Fig. 13.11 State-specified consumption and result links: Machining can only consume Raw Metal Bar in state cut and
generate Part in state pre-tested

’In a system with a larger scope of Manufacturing, the three processes Cutting, Machining, and Testing, in that
sequence, would all be systemic subprocesses of Manufacturing.

Dori — Model-Based Systems Engineering with OPM and SysML 175

13.9.1 State Change Versus Object Consumption and Generation

We have noted that object consumption and generation can be thought of as extreme cases of state
change, when the states are implicitly non-existent and implicitly existent. For example, in Fig. 13.11, the
Machining process consumes an object—Raw Material Bar—and generates a different object—Part.
However, the Cutting and Testing processes change only the states of Raw Material Bar and Part,
respectively, but not their identity. This is so because the Machining process is more drastic—it changes
the input object profoundly such that its identity as Raw Material Bar is lost, and a new object, Part, is
born.

As a result of the occurrence of the Machining process, Raw Material Bar has changed its state from
existent to non-existent. In other words, it was consumed. Part has changed its state from non-existent to
existent. In other words, it was generated. Conversely, Testing does not consume Part. It merely adds
information about the part, indicating whether it can pass to the next production stage. Cutting is not such
a clear-cut case, as one can justifiably argue that this process takes as input a long Raw Material Bar object
and outputs several shorter Raw Material Bar Segment objects, each of which is separately input to
Machining.

13.10 State-Specified Effect Links

Each of the five procedural links presented in Table 13.1 has a state-specified counterpart, which is
shown in Table 13.3. The single stateless effect link from Table 13.1 gives rise to three kinds of state-
specified effect link pairs, shown in Table 13.4.

Table 13.3 Consumption and result state-specified procedural links: semantics, symbols, source, and destination

Name Semantics Sample OPD & OPL Source Destination
Food

The process

Sta_te- consumes the object er::lqgle edible |l .

specified . - : 2> consumee consuming
3 if and only if the
consumption S state process

object is in the

L specified state.

Eating consumes edible Food.

) Copper
State- The process _ S -
3 generates the object raw pure generating
specified A ——" Sess resultee state
result link State P P

Mining yields raw Copper.

Instead of the single effect link in Table 13.1, when states were not present, in Table 13.4 there are
three types of state-specified effect link pairs. Each link pair consists of an input link and an output link.

176 The Dynamic System Aspect

The difference between them stems from the origin of the input link and the destination of the output link.
We use the word in-out as a shorthand notation for input-output.

An in-out-specified effect link pair of process P is a pair of links consisting of an
input link from the input state s;, of object B to P and an output link from P to the
output state s,

Table 13.4 Input output state-specified procedural links: semantics, symbols, source, and destination

Name Semantics Sample OPD & OPL Source Destination
In-out- affectee input | affecting
sf;f)ecli"lliedk Copper (source) state | process
eftec! 1
i The process changes -,aw -pure
EUE the object from a \ A
(consisting of specified input state Y
T via the input link to affectee
specified 2 apecified cirpat affecting output
input link and || State via the output process (destination)
one state- link. state
specified Purifying changes Copper from raw to pure.
output link)
Input-
specified i
effect link [a‘"g'é't”g} [pi‘;gted] [r?élsetd] affectee input | affecting
pair 5 (source) state | process
o The process changes A
(consisting of || the object from a A
one state- specified input state
specified to any output state.
input link and
one state- affecting
unspecified . " process atfecten
output fink) Testing changes Sample from awaiting test.
Output- Enoiie Hood
specified HamE affecting
effect link [o] [olly J [pamted J Aliseiee process
palr The process changes —
(consisting of the object from any
b—— input state to a N
unspecified specified output Cleaning & s
input link and || State. Painting affecting output
one state-) o . process (destination)
specified Cleaning & Painting changes Engine Hood to state
output link) painted.

In the example for the in-out-specified effect link in Table 13.4, the OPL sentence is:

Dori — Model-Based Systems Engineering with OPM and SysML 177

Purifying changes Copper from raw to pure.

Here, raw and purified are the input (source) and output (destination) states of Copper, respectively.

An input-specified effect link pair of process P is a pair of links consisting of an input link from the
input state s;, of object B to P and an output link from P to B.

In the example for the output-specified effect link in Table 13.4, the OPL sentence is:
Testing changes Sample from awaiting test.

Here, awaiting test is the input state of Sample. The output state of Sample is not specified, implying that
(depending on the outcome of Testing) it can be any one of the three of Sample states.

An output-specified effect link pair of process P is a pair of links consisting of an
input link from object B to P and an output link from P to the output state s,,, of B.

In the example for the output-specified effect link in Table 13.3, the OPL sentence is:
Cleaning & Painting changes Engine Hood to painted.

Here, painted is the output state of Engine Hood. The input state of Engine Hood is not specified,
implying that it can be any one of the three Engine Hood states.

13.10.1 Value-Specified Procedural Links

A value-specified procedural link is a link between a process and one or two values of

an attribute that the process changes.

Each state-specified procedural link in Table 13.4 has a value-specified procedural link counterpart.
The three value-specified procedural links are depicted in Table 13.5. Values are states of attributes, so
the semantic and syntax of value-specified procedural links are somewhat different than their state-
specified counterparts, as specified in Table 13.5 and defined below.

A value setting link is a unidirectional value-specified procedural link from a process

to an attribute value, which sets that value, regardless of what it was earlier.

The value setting link is the counterpart of the state-specified result link of an object that is not an
attribute. The difference is that while the state-specified result link creates an object in the specified state,
the attribute is not created since it exists along with its exhibitor. What it does is to specify the value of
that attribute.

A value effect link is a bidirectional value-specified procedural link from a process to
an attribute value and back, which changes that value from some unspecified value to
another.

A value can be easily distinguished from a state by inspecting the object that “owns” the state in
question: If that owning object is an attribute, then the state is a value, and if not—the state is just a state.

178 The Dynamic System Aspect

The value effect link is the counterpart of the state-specified effect link of an object that is not an
attribute. The difference is that while the state-specified effect link changes an object from one
unspecified state to another, the value effect link changes the value from some unspecified value to
another.

An in-out-specified value effect link pair is a pair of a value-specified input link and
a value-specified output link which change that attribute value from the input vale to

the output value.

Table 13.5 Value-specified procedural links: semantics, symbols, source, and destination

Name Semantics Sample OPD & OPL Source Destination
m Temperature
4‘——‘ Heating
Value Tl:e prciy:cess ;eFSb ﬂt’e o attribute
. ; value of an attribute.
Setting Link Engine exhibits Temperature. value
The value of Temperature of Engine is t_new.
Heating sets the value of Temperature of
Engine to t_new.
Engine
The process affects
the value of an
attribute by Temperature
ing i ttribute attribute
Value Effect | changing it from an —>> Heatin, o
Link unspecified input @4—_ " value and value and
value to an process process
unspecified output | Engine exhibits Temperature.
value. The value of Temperature of Engine is t.
Heating affects the value t of Temperature of
Engine.
In-out-
specified Engine Temperature
value effect || -
link pair The process changes A = Heating input value Process
the value of an tnew [<
(consisting of attribute by
one value- changing it froman | Engine exhibits Temperature.
 specified input value to an | The yalye of Temperature of Engine can be
input link and output value. t_old and t_new. process output value
osnf::ﬁ]’nzg- Heating changes the value of Temperature of
ou‘;pu) lind) Engine from t_old to t_new.

The in-out-specified value effect link pair is the counterpart of the in-out-specified effect link pair of
an object that is not an attribute. The difference is that while the in-out-specified effect link pair changes

Dori — Model-Based Systems Engineering with OPM and SysML 179

an object from one specified state to another specified state, the value effect link changes the value from
some specified value to another specified value.

The names of the values are parameter names. For example, t_new is the new value of Temperature of
Engine set by Heating. We can also assign actual numbers to the parameters, as demonstrated in Fig.
13.12.

Engine Temperature
[deg C]

Engine Temperature [l_old=23.3] [t_new::;sn]
[deg C] \ 4]
(e J ™ *

Engine exhibits Temperature in deg C. Engine exhibits Temperature in deg C.

The value of Temperature of Engine in deg C is t_new. The value of Temperature of Engine in deg C can
Heating sets the value of Temperature of Engine in deg C be t_old=23.3 and t_new=46.1.

to t_new=46. Heating changes the value of Temperature of

Engine in deg C from t_old=23.3 to t_new=46.1.
Fig. 13.12 Value-specified procedural links with parameters and actual numeric values

13.11 Summary

e A change of an object is an alteration in the state of that object.
e Effect is a change in the state of an object that a process causes.

e Construction is an extreme case of object effect, where the object’s input state is nonexistent
and the output state is existent.

e Consumption is an extreme case of object effect, where the object’s input state is existent and
the output state is nonexistent.

e When the transformation is extreme, a change in object identity takes place.

e When the change is not profound or drastic, the object only alters its state while retaining its
identity.

o A transformee of process P is an object B that P transforms as a result of the occurrence of P.
o A consumee of a process P is a transformee of P that P consumes as a result of the occurrence of P.
o A resultee of a process P is a transformee of P that P creates as a result of the occurrence of P.

o Anaffectee of a process P is a transformee of P that that P affects as a result of the occurrence of P.

180

The Dynamic System Aspect

A transforming link is a procedural link that connects a process with a transformee of that
process.

o A result link is a unidirectional transformation link from a process to the resultee that this process
creates.

o An effect link is a bidirectional transformation link that connects a process with an affectee of
that process.

o A consumption link is a unidirectional transformation link from a consumee to the process that
consumes it.

An enabler E of a process P is an object that must exist and be available in order for P to start,
and remain present throughout the occurrence of P in order for P to terminate normally, with £
ultimately unaffected.

o Anagent is an enabler who is a human or a group of humans.
o Aninstrument is a non-human enabler.
An enabling link is a procedural link that connects a process with an enabler of that process.
o Anagent link is an enabling link that connects a process with an agent of that process.
o Aninstrument link is a procedural link that connects a process with an enabler of that process.
An input state of object B is a state s; of B at which B is when process P starts.
An input link is a link from the state s; to process P.
An output state of object B is a state s, of B at which B is when process P ends.
An output link is a link from process P to the state s,.

A state-specified consumption link is a consumption link that originates from an input state s; of
the consumee C and ends at process P, denoting that in order for C to be consumed by P, it must
be in state s;.

A state-specified result link is a result link that originates from process P and ends at a state s of
the resultee R, denoting that when P terminates, it creates R in state s.

A state-specified effect link is an in-out (input-output) link pair, whose input link originates
from an input state s; of the affectee A and ends at process P, and whose output link originates
from P and ends at an output state s, of A, denoting that in order for A to be affected by P, A
must be in s;, in which case when P terminates A will be at s,,.

o An in-out-specified effect link pair of process P is a pair of links consisting of an input link from
the input state s;, of object B to P and an output link from P to the output state sy, of B.

o An input-specified effect link pair of process P is a pair of links consisting of an input link from
the input state s;, of object B to P and an output link from P to B.

o An output-specified effect link pair of process P is a pair of links consisting of an input link from
object B to P and an output link from P to the output state s,y of B.

A value changing link is a link between a process and an unspecified value of an attribute which
the process changes.

Dori — Model-Based Systems Engineering with OPM and SysML 181

13.12 Problems

The

Give two examples of each of the following, provide their OPM models, and verify that the
resulting OPL describes your original intent.

Change of an objects.

Consumption of an objects.

Creation of an objects.

following questions relate to Figs. 13.13 and 13.14, which describe a system being simulated by
animation.

5. What is the system described in this OPD?

6. What are the affectee, agent and instrument?

7. What is the OPL sentence that describes effect?

8. What is the relation between Driver and Car? What link is used to express this?

9. What is the relation between Gasoline Tank and Car? What link is used to express this?

10. What is the process within Car Fueling taking place at this time?

11. What object does it transform and how? What is the OPL sentence describing this?

12. What link is missing between this process and Pump? What is the OPL sentence that would be
created if you added this link?

13. What are the five affectees in this OPD? Which one is different than the other four and why?

14. What agent link is missing?

15. Describe the state changes of Pump.

16. What can you tell from the colors of the states of the various objects? Please refer specifically to
Gasoline Tank.

17. What effect link is missing? Hint: Look at the one present.

18. Suppose Car is the only vehicle in the Gas Station throughout the Car Fueling process. Where
would you place the states called car present and car absent?

19. How would the corresponding link change as a result?

20. What process reverts Gas Station to its original state?

182 The Dynamic System Aspect

8
£
S

Fig. 13.13 OPD for Chapter problems

Fig. 13.14 OPD of Car Fueling from Fig. 13.13 in-zoomed

21. Based on your responses to the previous two questions, explain why is it OK that in Fig. 13.13
Gas Station is an instrument, while in Fig. 13.14 it is an affectee?

Chapter 14
The Structural System Aspect

The Piglet lived in a very grand house in the middle of a beech-tree, and the beech-
tree was in the middle of the Forest, and the Piglet lived in the middle of the house.
Next to his house was a piece of broken board which had: “TRESPASSERS W on it.

Winnie-The-Pooh, by A. A. Milne

Structure pertains to the relatively fixed, non-transient, long-term relationships that exist among objects—
components or parts of the system. Alternatively, structure can be viewed as a snapshot—a picture of the
generally dynamic system, or part of it, at some point in time. This snapshot captures the entire system at
some state, where each stateful object is at some state or in transition between two of its states, and
specific relationships between objects hold. Structure is contrasted with the complementary dynamic
aspect of the system, or its behavior, which has to do with the changes the system undergoes over time,
along with the causes for and effects of these changes. In other words, structure is about the static aspect
of the system, while behavior is about its dynamic aspect. This chapter is devoted to discussing the
structure of systems and expressing it through OPM.

14.1 Structural Relations

A basic concept that is needed in order to discuss structure is structural relation.

A structural relation is a linkage, connection, or association between two objects or

between two processes that holds in the system for at least some time.

A structural relation in the system is not contingent upon conditions that are time-dependent. While
structural relations usually exist between two objects and are less frequently used between two processes,
there are processes that exhibit structural relations. For example, subprocesses inside an in-zoomed
process are parts of that process, so there is structural relation, and more specifically an aggregation-
participation (whole-part) relation between them, with the in-zoomed process being the whole, and the
subprocesses—the parts. As we discuss below, a structural link is the graphical expression of a structural
relation.

14.1.1 Binary Relations in the Focus

By its nature, a structural relation is multilateral, because every thing that participates in the association
has some relation with the rest of the things. The number of things involved in the structural relation
determines the arity of the relation: a relation of a thing to itself is a unary structural relation, a relation
between two things is a binary structural relation, a relation between three things is a fernary structural
relation, and so forth.

© Springer Science+Business Media New York 2016 183
D. Dori, Model-Based Systems Engineering with OPM and SysML, DOI 10.1007/978-1-4939-3295-5 14

184 The Structural System Aspect

A unary structural relation is possible with respect to aggregation participation, which is a structural
relation. For example, as the OPD in Fig. 14.1 shows, a Military Unit is comprised of one or more
(smaller) Military Units.

Military Unit
+

Platoon

Company

Battalion

Military Unit consists of at least one Military Unit.
Platoon, Company, and Battalion are Military Units.

Fig. 14.1 Modeling a unary structural link as a link from the object to itself

As an example of how to model ternary or higher arity structural relations, consider modeling the
following sentence: “An underwater tunnel connects the city with an airport.” The relation “connects” can
be thought of as ternary relation, as it involves the three objects in that sentence. Using the state-
preserving process Connecting, we can model this system in OPM using three procedural links, as shown
in Fig. 14.2.

Underwater
Tunnel

City Airport

Connecting affects City and Airport.
Connecting requires Underwater Tunnel.

Fig. 14.2 Modeling a ternary structural link as three procedural links with the state-preserving process Connecting

As this example shows, n-ary relations with # > 3 can be analyzed as a set of structural or procedural
binary links. Figure 14.3 shows the system in Fig. 14.2 using two structural links only and no process
whatsoever. Moreover, as we shall see, given that the relation tagged connected is transitive, it is possible
to conclude that “City and Airport are connected.”

Dori — Model-Based Systems Engineering with OPM and SysML 185

connected connected E
Airport &;I Underwater Tunnel H City

City and Underwater Tunnel are connected.
Underwater Tunnel and Airport are connected.
Fig. 14.3 The system in Fig. 14.2 specified using structure only

In view of this observation, we focus our attention on binary relations. Binary structural relations are
held between two things with the same perseverance, i.e., either between two objects—things whose
perseverance value is persistent, or static, or between two processes—things whose perseverance value is
transient, or dynamic. For example, aggregation-participation is a fundamental structural relation that is
applicable to processes just as well as it is to objects. However, in general, structural relations are more
prevalent with objects than they are with processes, so in this chapter we focus on binary structural
relations between objects.

14.1.2 Forward and Backward Structural Relations

A binary structural relation is bidirectional: if thing 7) relates to thing 7, through the relation R, then it is
also true that 7 relates to 7 through another relation ‘R’, and vice versa.

Symbolically, 71 R T, < T, R' T.
R is a symbol that stands for the forward structural relation, that is, the structural relation as T views

it while referring to T,. Conversely, R’ is the backward structural relation, i.e., the relation as T views it
while referring to 7). R and R’ constitute a structural relation pair.

R and R’ may be semantically identical, in which case they are symmetric. Symbolically, R = R’. For
example, if R = “touches” then R’ = “touches”. Hence, if “A touches B” then “B touches A.” As we
discuss in the sequel, a pair of symmetric relations can be converted to a single reciprocal relation.

R and R’ may be the inverse of each other, or anti-symmetric, such that existence of a relation in one
direction mandates the existence of the opposite relation in the opposite direction. Symbolically, if R and
R’ are the inverse of each other, then (R’)’ = R. For example, if R = “is parent of”, then R’ = “is child
of”. Hence, if “A is parent of B”, then “B is child of A.” Not any pair of relations is symmetric or anti-
symmetric. For example, if A points to B, it is not necessarily true that B points to A.

14.1.3 Structural Links Versus Structural Relations

Links express graphically the semantics of relations.

A link is the graphical representation of a relation.

This definition of link holds for both procedural and structural relations. While a structural relation
models an association between two things (usually objects) that is meaningful in the system, a structural
link graphically represents the structural relation.

186 The Structural System Aspect

A structural link is an arrow with an open head that represents a binary structural

relation in an OPD from a source object to a destination object.

The relation between structural relation and structural link is the same as the relation between
procedural relation and procedural link: In both cases, the link expresses graphically what the relation
expresses verbally. For example, the procedural (instrument) link in Fig. 14.2 between Underwater Tunnel
and Connecting is the graphical expression of the instrument relation between these two things. Likewise,
the structural (bidirectional tagged) link in Fig. 14.3 between Underwater Tunnel and City is the graphical
expression of the structural relation between these two objects, tagged connected.

The open head arrow, —=, which symbolizes a structural link, is contrasted with the closed triangular
arrowheads of the transforming links. As a reminder, transforming links include the four unidirectional
links symbolized as —=—with different sources and destinations: (1) the consumption link (from object
to process), (2) the result link (from process to object), (3) the input link (from state to process), and (4)
the output link (from process to state). As we see, these four links share the same graphical symbol, and
the only difference between them is their different sources and destinations. The only bidirectional
transforming link is the effect link, =——, connecting a process and an object to denote an unspecified
state change (when we discuss values, which are states of attributes, we will see another use for this
symbol as well as for the input and output links).

14.1.4 Structure Tag and Tagged Structural Link

The structural link’s open arrow points from one object to another. We have defined phrase as a
combination of one or more words, separated by spaces, which constitutes a logical entity, but not a
complete sentence. A meaningful structural tag can be recorded along a structural link, making it a
tagged structural link.

A structural tag is a phrase that expresses the semantics—the nature, meaning, or
content—of the structural relation between the two things that participate in the

relation.

Examples of structural tags (or shortly just tags) are resembles, owns, is next to, similar to, extends,
restricts, resides in, borders with, eliminates the need for, represents, is equivalent to, and contains.

A tagged structural link is structural link with a structural tag recorded along the
link.

On the left of Fig. 14.4 is an example of an OPD with four objects—Airport, City, Highway, and
Underwater Tunnel, and three tagged structural links. Two are unidirectional, with the tags serves and
surrounds. The third is a bidirectional tagged structural link with the tags “passes through the” and
“provides for shortening the”.

The OPD on the right of Fig. 14.4 demonstrates that a structural relation can exist also between two
processes. As the OPL sentences in Fig. 14.4 demonstrate, the syntax of a tagged structural OPL sentence
is a simple concatenation of the source thing followed by the tag, followed by the destination thing. The
tag is non-capitalized and is in bold Arial letters since it is user-defined rather than a reserved phrase.

Dori — Model-Based Systems Engineering with OPM and SysML 187

passes through the
Underwater Tunnel ll/

Highway

6“’ involves
r’\g‘o*‘\ Manufacturing J————=>

serves

Airport City

Airport serves City.
Highway surrounds City. Manufacturing involves Testing.
Highway passes through the Underwater Tunnel.

Fig. 14.4 Examples of unidirectional tagged structural relations

14.1.5 Bidirectional Tagged Structural Link

The tagged structural relations and links defined and exemplified so far have been unidirectional. The tag
is therefore a forward tag—a tag from the source thing to the destination thing. As discussed, for any
tagged structural relation (and its graphical representation as a link) there is a corresponding tagged
structural relation (and link) in the opposite direction, expressed by a backward tag—a tag from the
destination thing to the source thing. We can express the two relations in a single bidirectional tagged
structural link.

A bidirectional tagged structural link is a combination of two tagged structural links

in opposite directions.

The bidirectional structural link is depicted as a harpoon-shaped arrow, === which links the two things.
The tags of the relation in one direction and in the other direction are recorded such that the harpoon
edges sticking out of the arrowheads unambiguously determine the direction in which each relation holds,
as Fig. 14.5 demonstrates. The harpoon points to the destination thing. Consider the OPD on the left of
Fig. 14.5, where the objects Highway aad Underwater Tunnel ae linked with a bidirectional tagged
structural relation. The tag from Highway to Underwater Tunnel is “passes through”, while the one in the
opposite direction is “provides for shortening the”. Similarly, in the OPD on the right of Fig. 14.5, the
processes Manufacturing and Testing are linked with a bidirectional tagged structural relation, where the
two tags are “involves” and “is embedded in”.

In the OPD on the left of Fig. 14.5, the inverse relation from City to Airport is “is served by”, and the
one from City to Highway is “is surrounded by”. Since no information is added by specifying these
passive voice relations, we avoid doing so. However, we need to bear in mind that in principle any
structural relation is bidirectional.

UML and SysML use the association link as something analogous to OPM’s tagged structural link
(either unidirectional and bidirectional), but these are applicable only to objects (in UML) or to their
counterparts in SysML, called blocks. As for processes, this is possible only in use case diagrams, where
tags can indicate relations between use cases.

188 The Structural System Aspect

Und ter T I I provides for shortening the
e DI | passes through the Highway

&
07"“6 involves
o f———— >
is embedded in

serves

Airport City

Airport serves City.

Highway surrounds City. Manufacturing involves Testing.
Underwater Tunnel provides for shortening the Highway. Testing is embedded in Manufacturing.
Highway passes through the Underwater Tunnel.

Fig. 14.5 Highway and Underwater Tunnel are linked with a bidirectional tagged structural relation

14.2 Reciprocity and Transitivity of Structural Relations

Two properties (OPM model element attributes) of structural relations are useful for inference and cause
and effect determining: reciprocity and transitivity. These are discussed and defined next.

14.2.1 The Reciprocity Attribute of Structural Relation

In the examples we have seen, the anti-symmetric forward and backward structural relations between the
source and destination objects differ in name and semantics. However, there are cases in which the
forward and backward structural relations are identical. Consider the example in the OPD on the left hand
side of Fig. 14.6 and the corresponding two OPL sentences.

A bidirectional tagged structural relation is reciprocal if the structural relation tag between objects A
and B in both directions is the same. To avoid repeating the same tag twice in the OPD and getting two
separate sentences in the OPL paragraph, we change the tag such that a meaningful sentence will result in
from concatenating it to a sentence of the from “A and B are”, For example, in Fig. 14.6 we need a tag
to complete the sentence “Engine and Gearbox are” Thus, in the OPD on the right hand side of Fig.
14.6 we use the single reciprocal structural relation attached that is semantically equivalent to the OPD
on the left. A4 reciprocal structural relation is a bidirectional tagged structural relation, in which the
forward and backward structural relations are identical.

Algebraically, let R be a structural relation from A to B such that A R B, and let R’ be a structural
relation from B to A such that B R’ A. Iff R = R’ then R is reciprocal. The equality sign here is to be
interpreted as “are semantically the same”.

A reciprocal structural relation % is a structural relation for which it holds that if A
9t Band B 9' A then 97 = 9.

Dori — Model-Based Systems Engineering with OPM and SysML 189

Engine Engine

s
S %
S

Gearbox Gearbox

Engine is attached to Gearbox.

Gearbox is attached to Engine. Engine and Gearbox are attached.

Fig. 14.6 Reciprocity exemplified. Left: The relation between Engine and Gearbox is reciprocal, since the two tags in the
bidirectional tagged structural relation, “is attached to”, are identical. Right: The equivalent, more succinct OPD, with
attached as the single reciprocity tag

A reciprocal structural link—the graphical expression of the reciprocal structural relation—is defined
as follows.

A reciprocal structural link is a bidirectional tagged structural link, in which the

identical forward and backward tags are replaced by a single reciprocity tag.

Additional examples of reciprocal structural relations include mutually exclusive, in touch, siblings,
relatives, linked, equivalent, adjacent, intersecting, overlapping, engaged, related, connected, in
agreement, and in love with each other. The addition of the prefix “mutually” or the suffix “with each
other” can help render or clarify the reciprocity of many relations. As the example in Fig. 14.6 shows, an
OPL sentence that expresses a reciprocal structural relation is constructed by concatenating the two
objects, joined by the reserved word and between them, followed by the reserved word are, followed by
the reciprocal structural relation tag.

Reciprocity is a property of a structural relation that denotes whether its forward and

backward structural relations have the same semantics.

In the metamodel of a Structural Link, the three possible values of its Reciprocity property are
positive, neutral, and negative. The Reciprocity value is positive if the semantics of the link’s tag in both
the forward and backward directions is the same, negative if the tag semantics in the forward direction is
the opposite of that in the backward direction, and neutral if the tag semantics in the forward direction is
neither the same nor the opposite of that in the backward direction. The default Reciprocity value of
Structural Link is neutral.

A bidirectional tagged structural link with positive reciprocity can be called shortly a reciprocal
structural link, one with negative reciprocity is an anti-reciprocal structural link, and one with neutral
reciprocity—a non-reciprocal structural link.

190 The Structural System Aspect

14.2.2 The Transitivity Attribute of Structural Relation

Transitivity of a structural relation has the following definition and semantics, which is the same as the
definition of transitivity in algebra:

A transitive structural relation 9 is a structural relation for which it holds that if A
HBand B 9 C then A 97 C.

Figure 14.7 exemplifies the transitivity attribute of a structural link. The relation contains is transitive
and can therefore be extended from any object from which the link originates to any object to which it
points. Given that the structural relation contains is transitive, additional relations can be deduced from
the OPD in Fig. 14.7, such as:

Database contains File.

Folder contains Record.
Database contains Record.

Transitive structural relations yield hierarchies. Figure 14.7 is an example of a containment hierarchy.
We can extend this hierarchy by specifying, for example, that Record contains Field, Field contains
Character, etc. We cannot, however, construct a similar hierarchy for the structural relation attached,
because the structural relation attached is not necessarily transitive, so its transitivity is neutral.

Database| cq

Folder co,

—0s

Flle Conta/.ns

Record

Database contains Folder.
Folder contains File.
File contains Record.

Fig. 14.7 Transitivity exemplified. The relation contains is transitive and can therefore be extended from any object from
which the link originates to any object to which it points
Figure 14.8 is another example of a transitive relation. Due to the positive transitivity of the tagged
structural relation feeds, based on the model, it is possible to deduce, for example, that “Spring feeds
Lake.”

Transitivity is a property of a structural relation that determines whether the
structural relation is transitive.

Like reciprocity, the value of the transitivity property of a structural relation can be positive, neutral,
or negative, as determined by the semantics of the tag. When we say that a relation is transitive, we mean
that the value of the structural link’s transitivity is positive.

The relation contains in Fig. 14.7 is an example of a structural relation whose transitivity property
value is positive: it is always true that if A contains B and B contains C then A contains C. Since the

Dori — Model-Based Systems Engineering with OPM and SysML 191

structural relation contains is transitive, we say that the value of the transitivity attribute of the structural
relation contains is positive. The structural relation in the middle of, which appears several times in the
excerpt from Winnie-The-Pooh at the beginning of this chapter, is also transitive.

Spring Teeqs

Brook feeqs

River feegs

Lake

Spring feeds Brook.
Brook feeds River.
River feeds Lake.

Fig. 14.8 Transitivity symbol exemplified by the transitive relation feeds

A neutral transitive structural relation is a structural relation that may or may not be transitive.
Consider the relation is friend of as an example of a neutral transitive structural relation. It may be true
that if Al is friend of Ben and Ben is friend of Chen, then it may be the case that Al is friend of Chen, but
this is not guaranteed. Likewise, if A, B and C are closed shapes in a plane, A touches B and B touches C
may imply that A touches C, but this is not guaranteed. Hence, the transitivity value of both is friend of
and touches is neutral.

An example of a structural relation with negative transitivity is “directly contains™: If in Fig. 14.7 the
relation “contains” is replaced by “directly contains”, then if “Database directly contains Folder” and
“Folder directly contains File”, then it is false that “Database directly contains File”. A similar example
can be drawn for Fig. 14.8 if we change “feeds” to “directly feeds”.

As another example, suppose Jack is father of Jim and Jim is father of Jill, then Jack is not father of
Jill. As a final example from plane geometry, consider three points, A, B, C, and D along a straight line,
such that AB, BC, and CD are three line segments. If AB touches BC and BC touches CD, then the
sentence AB touches CD is always false. Hence, in this system, the transitivity of the structural relation
touches between two line segments on a line is negative.

In the metamodel of a Structural Link, the three possible values of its Transitivity property are
positive, neutral, and negative. The Transitivity value is positive if the semantics of the link’s tag is
transitive, negative if the tag semantics is such that the relation is never transitive, and neutral if the tag
semantics does not enable determining if the transitivity is positive or negative. The default Transitivity
value of Structural Link is neutral.

192 The Structural System Aspect

Table 14.1 Examples for the three values of Reciprocity and Transitivity

Value
Structural positive neutral negative

relation attribute

touches, connected, adjacent, likes, dislikes, is is father of, is on top of,
Reciprocity disconnected, equivalent, indifferent to surrounds, above, wears,

congruent, related, mixed consists of

feeds, contains, is ancestor of, adjacent, is next to, is is father of, directly
Transitivity surrounds, above, mixed, consists | friend of, holds hand of contains, directly feeds

of

Knowledge about the reciprocity and transitivity values of links in the model can help deduce
relations that can extend beyond the link destination, and this can be automated to generate new
knowledge from a complex model, where remote relations that may extend over several OPDs are not
obvious by merely inspecting the model visually. Table 14.1 provides several examples for each one of
the three values of the two structural relation properties—Reciprocity and Transitivity.

To enhance the analytical power of an OPM model, non-default values of a link’s reciprocity and
transitivity can be stored in a model by an OPM modeling tool as a property (meta-attribute) of the link,
which can be made accessible, (e.g., by double-clicking the link). For example, if the OPM model
contains a tagged structural relation with the tag “contains”, we can store the fact that the value of the
Transitivity property of this relation is positive, i.e., contains is a transitive relation. This enables the
model to deduce that if A contains B and B contains C, then A contains C.

14.2.3 Null Tags, Null Structural Links, and Their Default OPL Phrases

The tag in both the unidirectional and the bidirectional tagged structural links may be the null tag, i.c., an
empty tag. The OPM models in Fig. 14.9 show Freedom and Justice connected by a unidirectional (top)
and bidirectional (bottom) null structural links—structural links with null tags.

The default null tags are the most general ones; they involve word relation, as defined below.

The unidirectional default null tag is the default null tag for the unidirectional
structural link, and its associated OPL reserved phrase is “relates to”.

The bidirectional default null tag is the default null tag for the bidirectional structural

link, and its associated OPL reserved phrase is “related”.

For the OPDs in Fig. 14.9, these default null tags give rise to the OPL sentences written on the right
hand side of Fig. 14.9.

Dori — Model-Based Systems Engineering with OPM and SysML 193

Freedom Justice Freedom Justice

Freedom relates to Justice. Freedom and Justice are related.
Fig. 14.9 Freedom and Justice connected by a unidirectional (top) and bidirectional (bottom) null structural links

14.2.4 Model-Specific Null Tags

The default null tags can be altered by the system modeler for each system model separately or for an
entire enterprise, or an entire domain.

A Model-specific null tag is a tag defined by the system modeler that overrides the

default null tags for a specific system model, an enterprise, or a domain.

As there are two default null tags, the unidirectional default null tag and the bidirectional default null
tag, there are two respective user-defined null tags: the unidirectional model-specific null tag and the
bidirectional model-specific null tag.

Spring

\

Brook

River feegs

Lake

Spring and Brook are connected.
Brook and River are connected.
River feeds Lake.

Fig. 14.10 Example of use of the bidirectional user-defined null tag connected

For example, suppose for the system represented by Fig. 14.9, the system modeler sets the user-
defined unidirectional null tag to “leads to” and the user-defined bidirectional null tag to “equivalent”.
The two OPL sentences corresponding to the two OPDs in Fig. 14.9 would then be:

Freedom leads to Justice.

Freedom and Justice are equivalent.

Since user-defined null tags are, by definition, user-defined, they are bolded by default, but the user
can define them to be non-bold. The minimal scope of user-defined tags is the entire OPM model, but, as
noted, it can be extended to a group of models or to an enterprise or to an entire domain.

One of the most useful bidirectional user-defined null tag is connected. For example, suppose in the
OPM model in Fig. 14.10 the bidirectional user-defined null tag has been defined to be connected, the
OPL paragraph would change accordingly to the two first OPL sentences in Fig. 14.10.

194 The Structural System Aspect

14.3 Structural Relations as State-Preserving Processes

Many of the tags of the structural relations are some verb forms of state-preserving processes, discussed
in Chap. 13 above. Some examples are surrounds, precedes, follows, contains, holds, maintains,
remains, supports, owns, possesses, connects, surrounds, fastens, aggregates, and comprises. What,
then, is the difference between these verbs and bona fide processes? The difference lies in their semantics:
state-preserving processes convey a message of continuity, stability, detachment from time, or steady
state. Indeed, such verbs do not pass the process test, which stipulates three conditions for a thing to
qualify as a process:

(1) Object transformation: A process must transform at least one of the objects in the preprocess
object set.

(2) Association with time: A process must represent some happening, occurrence, action, procedure, or
activity that takes place along the timeline.

(3) Association with verb: A process must be associated with a verb.

Of these conditions, state-preserving processes do not fulfill the first and second conditions. The verb
in the tag of the structural relation does not (and should not) carry out any object transformation, and
therefore no happening, occurrence, action, procedure, or activity takes place along the timeline. Rather, a
verb representing a structural relation has the notion of static, steady state that is true as long as no
process acts upon any of the objects involved.

We can think of a state-preserving process as a process that acts against some force that attempts to
change the status quo. For example, supporting of a physical object on earth is a process that keeps an
object in its current place. Without that support, the object would fall due to gravity. Similarly, containing
of liquid in a vessel prevents it from being spilled. Conversely, if some non-trivial process must take
place to hold an object static against gravity or another force, such as the propelling of a helicopter to
keep it in one place, this process should be explicitly defined.

The same verb can serve as a process and as a structural relation. Telling the difference between an
actual process and a structural relation expressed by a verb requires deep understanding of the model
semantics. For example, in the OPL sentence “Highway surrounds City”, the word surrounds is a
structural relation. Once the highway has been built, for as long as it exists, it is static and keeps
surrounding the city regardless of the time element. However, in the sentence “Police surrounds House.”
the phrase Surrounding is a process that changes the object House from non-surrounded to surrounded.
It fulfills all the conditions of the process test: It requires Police activity that takes place along the time
line.

14.4 Summary

e A structural relation is a linkage, connection, or association between two objects or between
two processes that holds in the system for at least some time.

e A binary structural relation is bidirectional.

Dori — Model-Based Systems Engineering with OPM and SysML 195

14.5

A structural link is an arrow with an open head that represents a binary structural relation in an
OPD from a source object to a destination object.

A structural tag is a phrase that expresses the semantics—the nature, meaning, or content—of
the structural relation between the two things that participate in the relation.

A tagged structural link is structural link with a structural tag recorded along the link.

A bidirectional tagged structural link is a combination of two tagged structural links in opposite
directions.

Property is an attribute of an OPM model element.

A reciprocal structural relation % is a structural relation for which it holds that if A %/ B and B
97" A then = 97"

A reciprocal structural link is a bidirectional tagged structural link, in which the identical
forward and backward tags are replaced by a single reciprocity tag.

Reciprocity is a property of a structural relation that denotes whether its forward and backward
structural relations have the same semantics.

A transitive structural relation R is a structural relation for which it holds that if A 8 Band B
R Cthen A R C.

Transitivity is a property of a structural relation, which determines whether the structural
relation is transitive.

The values of both the reciprocity and the transitivity properties of a structural relation can be
positive, neutral, or negative.

The unidirectional default null tag is the default null tag for the unidirectional structural link,
and its associated OPL reserved phrase is “relates to”.

The bidirectional default null tag is the default null tag for the bidirectional structural link, and
its associated OPL reserved phrase is “related”.

A user-defined null tag is a tag defined by the system modeler that overrides the default null
tags for a specific system model, an enterprise, or a domain.

State-preserving processes convey a message of continuity, stability, detachment from time, or
steady state.

Problems

In Fig. 14.2, is Connecting a state-preserving process? Explain.

What is the difference between a structural relation and a structural link?

In Fig. 14.5, change each one of the two unidirectional tagged structural relations to a
bidirectional one.

Update the OPL to reflect the changes you made in response to the previous question.

In Table 15 add three examples in each one of the six cells.

196 The Structural System Aspect

6. Give three examples of state-preserving processes that are not provided in this chapter.

7. Write six English sentences that express binary structural relations. For each sentence draw the
corresponding OPD and write the OPL sentences.

8. Draw three OPDs that express unidirectional binary structural relations and three OPDs that
express bidirectional binary structural relations. For each OPD write the corresponding OPL
sentence(s).

9. Pick up a book, a newspaper or a magazine you have handy and open it at a random page.

a. Find 7-10 structural relations expressed in this page.
b. Write their OPL sentences.
c. Draw their OPDs.

10. Draw an OPD of a real product in your house or one that you are familiar with that has at least
three levels of aggregation. Write the corresponding OPL paragraph (the OPL sentences that are
equivalent to the OPD).

11. Find examples of three relations, one with a positive transitivity, one with a neutral and one with
a negative transitivity. Draw their OPDs and write their OPL sentences.

12. When Don turns his laptop on, using the power button, his Internet browser is set to open with

the URL of his favorite comics site, which he reads on a daily basis. A button near the top of his
browser opens his email account. After reading both, he shuts down the computer.

a. Apply OPM to model this description in three different ways:

(1) Using only objects and structural relations;

(2) Using as many processes and states as possible, and only procedural relations; and
(3) Using a combination of the two ways above.

b. Reflecting on the three models you built, answer the following questions.

(1) Which model most faithfully described the system?

(2) Which model conveys the most details?

(3) Which model captures best what Don was doing? Why?

(4) Which model do you prefer? Explain and point to likes and dislikes in each.

Chapter 15
Participation Constraints and Forks

Fork: the point or part at which a thing, as a river or a road, divides into branches.

Dictionary.com

In all the examples and discussions so far we have tacitly assumed that each thing, be it object or process,
participates in the relation singly, i.e., in a quantity of exactly 1. Indeed, the convention in OPDs is that
when no quantity is explicitly recorded by the side of a structural link, it is taken to be 1, which is the
default value. In general, however, we may wish to specify a certain number or a range of numbers of
instances of the same class of things that participate in the relation. Similarly, our models so far have
tacitly assumed that a process involves one object instance of each object class to which it is linked.
Indeed, this is the default. However, it is sometimes required to model the fact that more than one object
takes part in a process. Process participation constraints and link cardinalities are designed to take care of
this. We then turn to another useful notation—the fork—which is based on the observation that structural
relations are distributive in a sense analogous to the distributive law in algebra. This is graphically
represented via forks, as defined, discussed and demonstrated in this chapter.

15.1 Structural and Procedural Participation Constraints

When more than one object is involved in a relation, a participation constraint needs to be specified to
denote this.

A participation constraint is a property of a link expressing the number or a
mathematical expression recorded along a link next to an object, which denotes the
multiplicity (number of repetitions) of that object in that relation.

Since a relation and the link denoting it can be structural or procedural, there are two corresponding
kinds of participation constraints: structural and procedural.

A structural participation constraint is a participation constraint recorded along a

structural link.

A procedural participation constraint is a participation constraint recorded along a

\procedural link.

The default participation constraint is 1, and it is implicit. Thus, if exactly one thing participates in
the relation, no participation constraint needs to be specified. When the participation constraint on the

© Springer Science+Business Media New York 2016 197
D. Dori, Model-Based Systems Engineering with OPM and SysML, DOI 10.1007/978-1-4939-3295-5 15

198 Participation Constraints and Forks

destination side of the structural link is different than 1, it has to be specified explicitly, as shown in Fig.
15.1 for a structural relation.

15.2 Structural Participation Constraints

Structural participation constraints can be one- or two-sided.

A one-sided participation constraint is a participation constraint on either the source

or the destination link side.

A source participation constraint is a one-sided participation constraint on the source side of the link.
A destination participation constraint is a one-sided participation constraint on the destination side of the
link.

contains 6
~
/

Box Pencil

Box contains six Pencils.
Fig. 15.1 A destination participation constraint example

The OPD in Fig. 15.1 is an example of a destination participation constraint—a tagged structural link,
for which the participation constraint is on the destination (link target) object. In this example, it is
expressed as a specific number, 6. The destination object Pencil in the OPD of Fig. 15.1 has the
participation constraint 6, while the object Box has the implicit default participation constraint, which is 1.
If the participation constraint is explicit, as it is for Pencil in the OPL sentence “Box contains six
Pencils”, it means that the participation constraint is greater than 1. In this case, while generating the OPL
sentence from the OPD, the numeric or symbolic value or mathematical expression of the participation
constraint is put before the object name and the object name becomes plural.'

To keep up with English grammar, the verb for any tag, including the null tag, has to conform to the
plurality of source and destination things in the sentence. For example, if the source Bedroom of a
unidirectional null tag has a participation constraint of 3, and the destination is Apartment, the OPL
sentence is: “Three Bedrooms relate to Apartment.” To follow the rule to “spell small numbers out”, the
numerals (symbols) of numbers from zero to nine should be written in letters or as digits (figures), so
“Three Bedrooms relate to Apartment.” is preferable. Therefore the OPL sentence in Fig. 15.1 has in it six
rather than 6.

Ignoring the participation constrain in Fig. 15.2, the OPL sentence would be simply “Bolt fasten
Flange.” Since the source object Bolt has the participation constraint 8, while the destination object
Flange has the implicit default participation constraint, we get OPL sentence in Fig. 15.2.

'Usually that means concatenating the letter s, but a program that generates OPL sentences from OPDs should also
account for exceptions of converting a noun from singular to plural. Indeed OPCAT handles most of the irregularities
associated with plurals.

Dori — Model-Based Systems Engineering with OPM and SysML 199

8 fasten
Bolt Flange

Eight Bolts fasten Flange.

Fig. 15.2 A source participation constraint example

15.2.1 Parameterized Structural Participation Constraints

By default, a participation constraint is numeric, i.e., it is specified as a number, usually an integer, as
shown in the OPDs in Figs. 15.1 and 15.2. However, a participation constraint can also be parameterized,
i.e., it can be a mathematical expression containing one or more symbols.

A parameterized participation constraint is a participation constraint which is a
mathematical expression with one or more parameters.

Figure 15.3 is an example of a parameterized participation constraint. Here, n is a natural number and
the modeler expresses the fact that the number of Cylinders in Engine is even.

comprises 2*N

Engine Cylinder

Engine comprises 2*n Cylinders.

Fig. 15.3 A parameterized participation constraint example
When numbers, even small ones, are involved in a sentence with parameters, as in Fig. 15.3, or in a
range (as in Fig. 15.4, see next section), then the numbers are expressed as digit numerals and not in
letters. The syntax of participation constraint expressions and more elaborate example of parameterized
participation constraints are provided in Chap. 17 below on aggregation-participation.

15.2.2 Range Participation Constraints

A participation constraint can be more than just a single number or a single expression. It can also be a
range.

A range participation constraint is a participation constraint with lower and upper
bounds, each possibly an expression, on the number of possible objects that can take

\part in the relation.

A compound participation constraint can be any combination of numbers, expressions, and ranges. A
range is denoted as “quy .. Gumar - A single number or parameter can be thought of as a special case of
range Wlth Gmin = 4max-

200 Participation Constraints and Forks

Two compound participation constraints are exemplified in Fig. 15.4. In the left OPD, the compound
participation constraint comprises two ranges. In the first range, ¢,,;, = 3 is the lower bound and ¢,,,, = 5 is
the upper bound. The two quantities are separated by two consecutive dots. The second range is 8..10. In
the right OPD of Fig. 15.4, the compound participation constraint comprises one number, 2, and one
parameterized range, 3*n, where n<4.

Often, g,,;,is a small number, such as 0, 1, or 2, while g,,,, is the symbol *, which stands for many. The
symbol * is a “reserved symbol” in participation constraint, meaning that the exact value of “many” is not
fixed as in an algebraic equation. A letter stands for a parameter—a particular, yet unspecified number.

; ntrols 3.5, 8..10 . controls 2, 3*N; N<=4

Machine Sl i Machine Machine
Machine

Center Center

Machine Center controls 3 to 5 or 8 to 10 Machines. = Machine Center controls 2 or 3*n Machines, where n < 4.

Fig. 15.4 A one-sided cardinality with a range participation constraint of 3..5

15.3 Shorthand Notations and Reserved Phrases

The reserved phrase “g,;, to ¢..ex” can be used for any of the participation constraints, where both ¢,,;, and
gmax can be any real number. However, it frequently makes more sense to use different phrases that
express the participation constraint more naturally.

As in UML and SysML, the asterisk symbol * stands for “many”, so “0..*”” means zero or more, or, in
other words, “optional”, abbreviated as *. The range “1..*”, abbreviated as +, means one or more, and as an
OPL reserved phrase: “at least one”.

The four abbreviated participation constraint symbols are:
o “?7for0.1,
o ““”for0.*
e nothing for 1..1, and
o “+’for1.*

Each such abbreviation has a corresponding OPL reserved phrase. The abbreviated participation
constraint symbols, their bounds, OPL reserved phrases, and sample OPDs with corresponding OPL
sentences are shown in Table 15.1.

Combining particular values is also allowed. For example, the participation constraint “?, 3..*” is legal
and is translated in OPL as “optional or at least 3”. Finally, while all the examples so far referred to
objects, they can be applied to processes as well.

Dori — Model-Based Systems Engineering with OPM and SysML 201

Table 15.1 The abbreviated participation constraint symbols, their bounds, phrases, and sample OPDs with
corresponding OPL sentences

Lower & Upper
Bounds Symbol OPL Phrase OPD Example & OPL Sentence
Qmin -+ Omax
has 7
0.1 ? an optional Car = Sunroof
Car has an optional Sunroof.
: is equipped with *
0.* . BphiAal Car > Airbag
(+ plural)
Car is equipped with optional Airbags.
is steered by
1.4 (none) (none) Car = Steering Wheel
Car is steered by Steering Wheel.
carries +
1.3 + at least one Car =>| Spare Tire
Car carries at least one Spare Tire.

15.4 Cardinality

In a structural relation, each link edge—one on the source side and the other on the destination side—can
have a participation constraint that is in general independent of the participation constraint on the other
edge.

Source participation constraint is the participation constraint on the source side of
the (structural or procedural) link.

Destination participation constraint is the participation constraint on the destination
side of the (structural or procedural) link.

The definition refers equally to structural and procedural links. The combination of the two
participation constraints is the link’s cardinality, which also applies to structural and procedural links
alike.

202 Participation Constraints and Forks

Cardinality is a property of a link whose value depends on the combination of the

source and destination participation constraints of the structural link.

We denote the cardinality as [quin -+ Gmaxs G min - §'max), Where ¢ui, and g, are the lower and upper
bounds of the participation constraint on the source side of the link, while ¢’,;, and ¢',. are the
corresponding parameters on the link’s destination side.

15.4.1 The Four Common Cardinality Kinds

Cardinality is an important factor in database schema design, which takes place during the design phase
of information systems development. The various kinds of participation constraints on the two structural
link edges give rise to a number of combinations. Traditionally, these combinations were thought of as
yielding four possible cardinality kinds: one-to-one, one-to-many, many-to-one and many-to-many. These
are exemplified in Fig. 15.5.

One-to-one cardinality:

uses

Salesperson Laptop Salesperson uses Laptop.
—_— 6.5 One-to-many cardinality:
SHSSHOrSON Laptop Salesperson uses 0 to 3 Laptops.
2 3 use Many -to-one cardinality:
Salesperson Lapto
P ok 2 to 3 Salespersons use Laptop.
4.7 V8 2. Many -to-many cardinality:

Salesperson Laptop

4 to 7 Salespersons use 2 to many Laptops.

Fig. 15.5 The four cardinality kinds exemplified

As the top OPD in Fig. 15.5 shows, a one-to-one cardinality exists when no participation constraint is
recorded on either side of the structural link, in which case the default value 1 is assigned to both sides. A
one-to-many cardinality exists when there is an explicit participation constraint with ¢,,;, > 0 and g,,. > 1
on exactly one side of the structural link and 1 on the other. This is exemplified in the second OPD in Fig.
15.5, while the third is an example of many-to-one cardinality. Finally, a many-to-many cardinality exists
when the participation constraints on both sides of the structural link are explicit, and in both g,,,. > 1, as
exemplified in the bottom OPD of Fig. 15.5.

15.4.2 The 16 Cardinality Kinds

Combining pairs of the four symbols “?”, “*”, “1”, and “+”, we get 16 cardinality kinds. These are listed
in the 4x4 array in Table 15.2. The array cells with the four customary cardinalities, [1, 1], which is “one-
to-one”, [1, +], which is “one-to-many”, [+,1], which is “many-to-one”, and [+, +], which is “many-to-
many”, are greyed at the bottom-right part of the table. These cardinality kinds are the ones recognized in

Dori — Model-Based Systems Engineering with OPM and SysML 203

entity relationship diagrams (ERDs), proposed by Chen (1976), which are used to design databases. Here
we see that they comprise one quarter of the 16 possible combinations.

Table 15.2 The 16 cardinality types obtained by combinations of pairs of the four participation constraint kinds

Source
symbol
? * 1 +
Destination
symbol
? [?, 7] [?, 7 [?, 1] [?, +]
i [%7] ["] [11 [% 4]
1 [1, 7] 1,7 [1,1] [1, +]
i [+, 7] [+, %] [+ 1] [+ +]

15.5 Procedural Participation Constraints

By its definition, a process must transform at least one object, but there could be more. Moreover, we
want to be able to model the fact that an enabler, be it an agent or an instrument, is optional or is required
in a certain amount. A procedural participation constraint, defined above as a number or an expression
recorded along a procedural link next to the source or destination object, denotes the multiplicity of that
object in that procedural relation. The quantity of processes is always assumed to be one, so there is no
participation constraint next to the process end of the procedural link.

Figure 15.6 shows two procedural participation constraints, one on an agent link and the other—on an
effect link. As with the structural participation constraints, the + (plus) symbol stands for “at least one”,
while the * (asterisk) symbol—for “optional”. Following the grammatical rule that numbers up to ten
should be spelled out in text rather than as digits, the number 3 in the OPD is written as Three in the
corresponding OPL paragraph sentence. This is an optional convention and it is not used in conjunction
with parameters, as Fig. 15.7 demonstrates.

Mechanic 3

Motor

Repairing

Three Mechanics handle Repairing.
Repairing affects at least one Motors.

Fig. 15.6 Examples of two participation constraints on procedural links

204 Participation Constraints and Forks

15.5.1 Parameterized Procedural Participation Constraints

Figure 15.7 shows the use of a variety of participation constraints in procedural links with parameters,
ranges, and parameter constraints.

Jet Engine |
Aviaition A
Engine
Mechanic
b| Installed
Blade
Blade '} tle——— ettt
Blade Replacing 2 %
Fastening Purchasing
Tool .
Aerospace H
+ Engineer T EE .
{ Blade %
. Inspecting ¢
k=2 to 4 Aviation Engine Mechanics handle Blade Blade Replacing requires k Blade Fastening Tools.
Replacing. Blade Replacing changes Jet Engine from used to
Jet Engine can be used or refurbished. refurbished.
Jet Engine consists of b Installed Blades. Blade Replacing consumes i inspected Blades and
1 to 2 Aerospace Engineers handle Blade Replacing. b-i new Blades.
An optional Aerospace Engineer handles Blade Blade Replacing yields b Dismantled Blades.
Inspecting. Blade Inspecting consumes b Dismantled Blades.
Blade can be inspected or new. Blade Inspecting yields a<=b inspected Blades.

Purchasing yields b-i new Blades.
Fig. 15.7 Participation constraints in procedural links with parameters, ranges, and parameter constraints

As both the OPD and the OPL express, in this Blade Replacing system, a Jet Engine has b Installed
Blades. Two to four (a number set to k) Aviation Engine Mechanics handle the process, for which they
use k Blade Fastening Tools. The Blade Replacing process is also handled by one or two Aerospace
Engineers. This process yields 4 Dismantled Blades, which undergo Blade Inspecting, an environmental
process that yields a number a (which is at most b) of inspected Blades. The process consumes a total of
b Blades, of which i are inspected and b—i are new. This is the number of new Blades obtained by
Purchasing them. This example shows not only how parameterized participation constraints are used with
procedural links, but also how they can serve to express parameter constraints—constraints among the
parameters. Additional constraints can be added. For example we could specify that i< to avoid getting a
negative number for b—i.

Dori — Model-Based Systems Engineering with OPM and SysML 205

15.5.2 Enabler and Transformee Participation Constraints

A process must contain at least one transformee and it can have one or more enables. This is expressed in
the OPD in Fig. 15.8, showing a metamodel of the kinds of objects involved in Processing, classified into

Enablers and Transformees.
Enabler 1

o | 1

<&
Transformee j

Instrument

Consumee

Affectee

Resultee

Consumee, Affectee, and Resultee are Transformees.
Processing affects at least one Transformee.
Processing consumes optional Consumee.
Processing affects optional Affectees.

Processing yields optional Resultees.

Agent and Instrument are Enablers.

Optional Agents handle Processing.

Processing requires optional Instruments.

Fig. 15.8 Participation constraints on Enablers and Transformees

15.6 The Distributive Law of Structural Relations

In algebra, when we have an expression of the form ab + ac, we can factor it out and write it as a (b+c).
In a similar vein, the distributive law of structural relations is as follows.

If A, B, and C are all objects or are all processes, and R is a structural relation, then
ARB ARC AR B, C).

This is not just a law in mathematics and in OPM, but, as we see next, the same idea is applicable also
in natural languages. The two OPDs in Fig. 15.9 provide an example of the graphical application of the
distributive law of structural relations. In the OPD on the left hand side of Fig. 15.9 there are two disjoint
tagged structural links, both bearing the same tag employs. One employs tag is recorded along the link
from Firm to Graphic Designer and the other—along the link from Firm to Systems Engineer. This OPD

206 Participation Constraints and Forks

has exactly two graphic sentences, each giving rise to one OPL sentence. Denoting the relation employs
by R, Firm by A4, Graphic Designer by B and Systems Engineer by C, ignoring the added participation
constraints, this is like writing A ‘R B, 4 R C.

Firm Firm
%
& %
& 2
)
3.5 4.6 E—
@
Graphic Systems Graphic cisd 3:£ Systems
Designer Engineer Designer Engineer
Firm employs 3 to 5 Graphic Designers. Firm employs 3 to 5 Graphic Designers and 4 to 6
Firm employs 4 to 6 Systems Engineers. Systems Engineers.

Fig. 15.9 The distributive law of structural relations applied in OPDs. Left: disjoint links. Right: joint links

This is not just a law in mathematics and in OPM, but, as we see next, the same idea is applicable also
in natural languages. The two OPDs in Fig. 15.9 provide an example of the graphical application of the
distributive law of structural relations. In the OPD on the left hand side of Fig. 15.9 there are two disjoint
tagged structural links, both bearing the same tag employs. One employs tag is recorded along the link
from Firm to Graphic Designer and the other—along the link from Firm to Systems Engineer. This OPD
has exactly two graphic sentences, each giving rise to one OPL sentence. Denoting the relation employs
by R, Firm by A, Graphic Designer by B and Systems Engineer by C, ignoring the added participation
constraints, this is like writing 4 R B, 4 R C.

In the OPD on the right hand side of Fig. 15.9, the two employs tagged structural links are joined at
their origin and fork (diverge) somewhere along the link. Since now only one structural link emanates
from the source object, the two OPL sentences become one. Using our notation, again ignoring the added
participation constraints, this is like writing 4 R (B, C). The expressions representing the left and right
OPDs are the same as those in the algebraic formula of the distributive law above (with the addition of the
participation constraints). Indeed, they are semantically equivalent both graphically and textually.
Processes can also be related by structural relations that are distributive, but since the use of structural
relations is much more prevalent for objects, we focus on objects.

Graphically, joining of the origin of the two structural links in Fig. 15.9 having the same tag employs
has the same function as the algebraic parentheses. The parentheses in the distributive law expression
AR(B, C) <& ARB, ARC enable using R just once. Analogously, the joint tagged link enables using
employs just once in both the OPD and is corresponding OPL sentence. Finally, the OPL reserved word
and is analogous to the comma in the distributive law expression. Joining structural relations with the
same tag gives rise to forks, which are discussed next.

Dori — Model-Based Systems Engineering with OPM and SysML 207

15.7 Fork, Handle, and Tine

In algebra, the distributive law AR(B, C) <& ARB, ARC is extensible to any number 7 of elements. Thus,
AR(By, By, ... B)) & ARB;, ARB,, ... ARB,. The same is true for OPM and natural languages. To
express this in OPM we define fork below.

A fork is a combination of two or more structural links with the same semantics
expressed by the same tag.

A fork has a common joint edge on the origin side of the link, called #andle, which splits into two or
more edges on the destination side of the link, each of which is a tine.

Handle is the joint origin-side edge of the fork.

Tine is the split destination-side edge of the fork.

Handle thing is the thing linked to the handle of the fork link
Tine thing is a thing linked to a tine of the fork link.

Object fork is a set of objects connected by a fork.

Process fork is a set of processes connected by a fork.

Since a structural relation is between objects or between processes, if the handle thing is an object, all
the tine things are also objects, and the same applies to processes. The two OPDs in Figs. 15.10 and 15.11
exemplify the value of using fork relations. The OPD in Fig. 15.10 contains 10 separate structural links,
all having the tag passes through. It is therefore equivalent to the OPL paragraph in Fig. 15.10, which
has 10 OPL sentences. This OPL paragraph reflects the redundancy of links in its corresponding OPD.
Though syntactically and semantically correct, the 10-sentnece paragraph is mechanical, repetitive, and
not suitable for human reading.

The application of the distributive law provides for aggregating the ten links into a fork. Using the
expression ARB,, ARB,, ... ARB, <AR(By, B,, ... B,), and substituting A= Danube River, B|=
Germany, B,= Austria, etc., the result is presented in Fig. 15.11, where only one structural link, labeled
passes through, emanates from The Danube River, forking into ten tine. The OPL paragraph of this OPD
shrinks from ten sentences to just one fork OPL sentence—a single perfect and more humanly readable
English sentence. The handle of the fork in Fig. 15.11 is the segment emanating from the handle object
Danube River, while each of the 10 tines is the line segment with the arrowhead reaching to a tine object
(a country box in this example) and the segment connecting this line segment to the handle.

The participation constraints on the various tines may be different from the default, 1, for each tine
object separately. Since the handle is common to all the tines, its participation constraint is also common.
If a different participation constraint is required on the handle side for some link, then this link needs to
be separated from the fork.

208 Participation Constraints and Forks

Germany || Austria Slovakia || Hungary || Croatia Serbia Bulgaria || Romania || Moldova || Ukraine

Danube River passes through Moldova. Danube River passes through Germany.
Danube River passes through Romania. Danube River passes through Hungary.
Danube River passes through Serbia. Danube River passes through Austria.
Danube River passes through Slovakia. Danube River passes through Bulgaria.
Danube River passes through Ukraine. Danube River passes through Croatia.

Fig. 15.10 The 10 countries through which the Danube River passes through

Danube
River

passes through

Germany | | Austria Slovakia Hungary || Croatia Serbia Bulgaria || Romania Moldova Ukraine

Danube River passes through Germany, Austria, Slovakia, Hungary, Croatia, Serbia, Bulgaria, Romania,
Moldova, and Ukraine.

Fig. 15.11 The 10 “passes through” tagged links in Fig. 15.10 are replaced by a single fork with the same tag

Site Securing

Site Securing

entails

Patrolling @

Site Securing entails Patrolling, Watching, and
Deterring.

Patrolling Deterring

Site Securing entails Patrolling.
Site Securing entails Watching.
Site Securing entails Deterring.

Fig. 15.12 An example of a fork with processes

Dori — Model-Based Systems Engineering with OPM and SysML 209

Figure 15.12 is an example of a fork in which all the linked things are processes, demonstrating that
all the things connected by a fork are of the same persistence: either all are object or all are processes.
This is so because structural relations are between things of the same persistence, i.e., between two
objects or between two processes. Therefore, if the handle thing is an object, the tine things are all objects
too, and vice versa.

15.8 The Tine Thing Set

A set is an abstract collection of things (also called elements or members). Each thing in the set is unique.

|T he tine thing set of a fork is the set of all the things linked to the tines of the fork. ‘

The tine object set of a fork is the set of all the objects linked to the tines of the fork, while the tine
process set of a fork is the set of all the processes linked to the tines of the fork.

The tine object set of the fork labeled employs in the OPD in Fig. 15.9 includes the two types of
occupations that the Firm employs. The tine object set of the fork labeled employs in the OPD in Fig. 15.9
is {Graphic Designer, Systems Engineer}. The tine object set of the fork labeled passes through in the
OPD Fig. 15.11 is {Germany, Austria, Slovakia, Hungary, Croatia, Serbia, Bulgaria, Romania, Moldova,
Ukraine}.

Frequently, showing all the fork things overloads the OPD both graphically and mentally, as is the
case in Fig. 15.11. If the tine object set is significantly greater than 2, as in Fig. 15.11, it may be
convenient to omit some of the objects in the tine object set that are not relevant for what that particular
OPD is designed to convey. Indeed, recall that the model fact representation OPM principle stipulates that
an OPM model fact needs to appear in at least one OPD in order for it to be represented in the model;
objects that are not relevant in a particular OPD do not need to be shown in it. Following this principle,
not each OPD in a system’s OPD set that contains the handle thing must contain all the things in the tine
thing set. Suffice it that each one of the tine things appears once in a relation R to the handle thing in
order for it to be part of the set of tine things. We exemplify and elaborate on this when we define and
discuss the fork degree and comprehensiveness properties next. One OPD may contain one subset of the
tine thing set, while in other OPDs that belong to the same OPD set, other subsets of things connected to
tines can be hidden to alleviate cognitive load and enhance the diagram readability.

Three fork properties help refine the OPM model: degree, comprehensiveness, and orderability. These
are discussed next in this section.

15.8.1 Fork Degree

The size (number of elements) of the tine object set is equal to the fork degree.

Fork degree is a property of fork whose value is the size of the tine object set.

210 Participation Constraints and Forks

For example, the degree of the fork in Fig. 15.9 whose handle is Firm is 2.The degree of the fork from
Danube River in Fig. 15.11 is 10, as the tine object set of the fork labeled passes through in the OPD in
Fig. 15.11 includes all ten countries through which the Danube River passes.”

The tine thing set of a fork is the union of the tine sets emanating from the same
handle and having the same tag in all the OPDs in the OPD set.

For example, suppose another OPD in the OPM model to which the OPD in Fig. 15.9 belongs has the
following tine object set of size 4: {Systems Engineer, Programmer, Software Engineer, Project Leader}.
Suppose also that these are the only two OPDs in the OPD set of that OPM model where the object Firm
appears with the tagged structural link labeled employs. The tine object set of the fork labeled employs
would then be: Tine-object-set (Firm employs) = {Graphic Designer, Systems Engineer} U {Systems
Engineer, Programmer, Software Engineer, Project Leader} = {Graphic Designer, Systems Engineer,
Programmer, Software Engineer, Project Leader}. The fork degree of the OPD that shows all the
occupations that the firm employs is 5—the size of the tine object set.

15.8.2 Fork Comprehensiveness

While omission of irrelevant tine things helps eliminate the excess clutter frequently caused in OPDs of
real life systems, it may also mislead the reader of an individual OPD into thinking that the tine thing set
presented in that particular OPD is comprehensive, i.e., all the tine things that can be linked to the handle
thing are indeed linked. To avoid such confusion, it is important to indicate whether all the things in the
tine thing set that can be linked to the handle are indeed linked. To this end, we define the fork’s
comprehensiveness property value as follows.

Fork comprehensiveness is a Boolean property of a fork which is positive if all the

things in the tine thing set are attached to the fork’s handle and negative otherwise.

Being a Boolean property, Comprehensiveness has two values: positive, if the fork is comprehensive,
i.e., all the things in the tine thing set are attached to the fork’s handle, and negative otherwise. Using the
fork’s comprehensiveness property, one can indicate whether the structure implied by the fork is
comprehensive or non-comprehensive. The importance of fork comprehensiveness is that it tells the
diagram reader whether all the tine things that can potentially be linked to the handle object are indeed
linked. A non-comprehensive fork is marked by a short bar perpendicular to the fork near the handle thing.

Continuing the example in Fig. 15.11, suppose in some OPD we wish to show only those countries or
areas that were historically “behind the iron curtain”. Examining the OPD in Fig. 15.13, we see that
Germany and Austria were removed. Graphically, the non-comprehensiveness of this fork is marked by
the non-comprehensive fork symbol—the short bar perpendicular to the fork near the handle object. This
non-comprehensive fork symbol expresses the fact that not all the countries through which the Danube
River passes are represented in this OPD. The OPL reserved phrase that expresses the fact that the fork is
non-comprehensive is “and more”, which is appended at the end of the list of fork objects, as the OPL
sentence in Fig. 15.13 demonstrates.

“For trivia lovers: The Danube river passes across the most national borders (askville.amazon.com).

Dori — Model-Based Systems Engineering with OPM and SysML 211

Danube
River

passes through

v

Slovakia Hungary Croatia Serbia Bulgaria Romania Moldova Ukraine

Danube River passes through Slovakia, Hungary, Croatia, Serbia, Bulgaria, Romania, Moldova, Ukraine, and at
least one more.

Fig. 15.13 A non-comprehensive fork is marked by the short bar perpendicular to the fork near the handle object

The default value of the fork’s Comprehensiveness property is positive, meaning that the fork is
comprehensive and indicating that all the objects in the tine set of the fork are attached to the fork’s
handle. In this default case the handle will not be marked with the non-comprehensive fork symbol. The
other value of Comprehensiveness is negative, so the fork is non-comprehensive, implying that the tine
set is incomplete, as at least one tine thing is missing. The OPL reserved phrase “and at least one more” at
the end of the OPL sentence in Fig. 15.13 expresses this. A non-comprehensive fork can be made
comprehensive by completing the missing things in the forks’ tine thing set while removing the non-
comprehensive fork symbol, thereby changing its Comprehensiveness state from negative to positive.

15.8.3 Fork Orderability

The elements of a set in general, and the things in the tine thing set of a fork in particular, can be ordered
or unordered. This is determined by the fork’s orderability property.

Orderability is a Boolean property of a fork’s thing tine set, which is positive if the
things in the tine thing set are ordered and negative otherwise.

Like Comprehensiveness, Orderability is a Boolean attribute of the Tine Set of a Fork, whose values
are positive and negative. A Tine Set with negative Orderability is an Unordered Tine Set, and this is the
default, so it requires no special indication.

For a thing tine set with positive orderability, there often (but not always) exists some logical relation
R of the things in the tine thing set {7} ... T} such that TO R 79D for each 79 in {T“),T(Z),..,T(N)}. For
example, if 7;; 1 <i <N is a set of N natural numbers, and R is the < inequality symbol, then the
orderability of the tine thing set is positive. If the tine thing set is the parts of a scientific paper {header,
body, footer} there is no R that determines this order.

A Tine Set with positive Orderability is an Ordered Tine Set. To denote that a fork’s tine set is
ordered, the word ordered appears next to the handle of the fork, as demonstrated in the OPD in Fig.
15.14. The word ordered is a graphic symbol rather than a reserved OPL phrase, because it is part of the
OPD just like the non-comprehensiveness fork symbol.

212 Participation Constraints and Forks

As Fig. 15.14 shows, the OPL reserved phrase for denoting that a tine thing set is ordered, is “in this
order”, which is added after a comma at the end of the sentence. For a non-comprehensive and ordered
fork, the OPL phrase is “and at least one more, in that sequence”.

Danube
River

ordered
passes through

| I A T N N A

Germany Austria Slovakia Hungary Croatia Serbia Bulgaria Romania Moldova Ukraine

Danube River passes through Germany, Austria, Slovakia, Hungary, Croatia, Serbia, Bulgaria, Romania,
Moldova, and Ukraine, in that sequence.

Fig. 15.14 An ordered tine set of a fork relation is marked by the word “ordered” next to the fork’s handle

To express the order graphically, the things in the tine thing set must be arranged either horizontally
from left to right, as in Fig. 15.15, or vertically, from top to bottom. The object boxes may not be ordered
nicely even though the orderability of the tine thing set is positive.

To resolve this potential ambiguity, the ordering algorithm is to arrange the objects by the left-to-right
order of their leftmost side of the object box (increasing x coordinate), and for those with the same left
side coordinate, arrange by top-to-bottom order of the topmost side of the object box (decreasing y
coordinate, or increasing if we consider the coordinates of pixels in a monitor). The same applies to
processes, where the box is the one that encloses the process ellipse.

15.8.4 Tine Thing Set Order Rule

The order of the things in the tine thing set can be based on some rule.

Order rule is a property of an ordered tine thing set, which specifies textually in the
OPD the rule or criterion according to which the things in the tine thing set are

ordered.

The Order Rule can be null, which is the default, or any other phrase written in lower-case letters.
Order Rule whose value is null means that there is no order criterion, and nothing (if there is no order) or
“ordered” (if there is order but the rule is trivial, such as the order of the days of the week) is written next
to the handle.

If there is an ordering rule that needs to be specified, the phrase “ordered by” rather than “ordered” is
used in the OPD next to the fork, and recorded below it is the order criterion itself. For example, the
OPD in Fig. 15.15 indicates an ordered tine set with the order rule “river flow”, implying that the countries
are ordered by following the flow of the Danube River.

Dori — Model-Based Systems Engineering with OPM and SysML 213

Danube
River

ordered by
river flow

passes through

IR I R N A

Germany Austria Slovakia Hungary Croatia Serbia Bulgaria Romania Moldova Ukraine

Danube River passes through Germany, Austria, Slovakia, Hungary, Croatia, Serbia, Bulgaria, Romania,
Moldova, and Ukraine, ordered by river flow.

Fig. 15.15 Order criterion marked by the phrase “ordered by”, followed by the order criterion “river flow” below it

15.9 Summary

e A participation constraint is a number or a mathematical expression recorded along a link next
to an object, which denotes the multiplicity (number of repetitions) of that object in that relation.

o A structural participation constraint is a participation constraint recorded along a structural
link.

e A procedural participation constraint is a participation constraint recorded along a procedural
link.

e The default participation constraint is 1, and it is implicit.

e A parameterized participation constraint is a participation constraint which is a mathematical
expression with one or more parameters.

e A range participation constraint is a participation constraint with lower and upper bounds, each
possibly an expression, on the number of possible objects that can take part in the relation.

e Source participation constraint is the participation constraint on the source side of the
(structural or procedural) link.

o Destination participation constraint is the participation constraint on the destination side of the
(structural or procedural) link.

e Cardinality is a property of a link whose value depends on the combination of the source and
destination participation constraints of the structural link.

o The distributive law of structural relations: If A, B, and C are all objects or are all processes,
and ‘R is a structural relation, then AR B, ARC & AR (B, C).

e A fork is a combination of two or more structural links with the same semantics expressed by the
same tag.

e Handle is the joint origin-side edge of the fork.
e Tine is the split destination-side edge of the fork.
e Handle thing is the thing linked to the handle of the fork link

214

Participation Constraints and Forks

Tine thing is a thing linked to a tine of the fork link.

Object fork is a set of objects connected by a fork.

Process fork is a set of processes connected by a fork.

The tine thing set of a fork is the set of all the things linked to the tines of the fork.
Fork degree is a fork property that specifies the size of the tine object set.

Fork comprehensiveness is a Boolean fork property which is positive if all the things in the tine
thing set are attached to the fork’s handle and negative otherwise.

Orderability is a Boolean fork property which is positive if the things in the tine thing set are
ordered and negative otherwise.

Order criterion is a property of an ordered tine thing set, which specifies textually in the OPD
the criterion according to which the things in the tine thing set are ordered.

15.10 Problems

10.

11.
12.

13.

Model a system in which three cranes are used to lift an elevator to the top of a new building.
Change the objects, the tag in the tagged structural relations, and the participation constraints in
each of the four OPDs in in Fig. 15.5 such that meaningful sentences are obtained.

Select from Table 15.2 3 of the 16 cardinality types. For each, create and OPD that demonstrates
it.

Model a library comprised of n shelves, each of which can hold up to 20 books.

For the library in the previous question, model a process Maximal Number of Books Computing
that does what its name says.

Model two object forks with objects and two process forks, and write their OPL paragraphs.

For each fork in the previous problem, draw an OPD assuming that the distributive law of
structural relations does not exist. Which option is more compact? Why?

Specify the tine thing set and the fork degree for each one of the four forks in the previous
problem.

For one object fork or one process fork from the previous question add a new fork whose tine
thing set has a non-empty intersection with the old fork.

Add a non-comprehensiveness fork symbol where appropriate in the forks of the previous
question.

Draw the comprehensive fork of the two forks from the previous question.

Is there any potential order criterion in any one of the four forks from the first question? If so,
pick one and add to it is orderability criterion. If not—design a new ordered fork and specify its
order criterion.

Write the OPL sentences for all the OPDs in your answers to the questions in this chapter.

Chapter 16
Fundamental Structural Relations

Four structural relations are most prevalent and play an especially important role in specifying and
understanding systems. Termed the fundamental structural relations, these relations are:

e Aggregation-participation, which denotes the relation between a whole and its parts,

e Exhibition-characterization, which denotes the relation between an exhibitor—a thing exhibiting a
one or more features (attributes and/or operations) and the things that characterize the exhibitor,

e Generalization-specialization, which denotes the relation between a general thing and its
specializations, giving rise to inheritance, and

o Classification-instantiation, which denotes the relation between a class of things and an instance of
that class.
This chapter is devoted to discussing these structural relations, while subsequent chapters deal with

each of them separately.

16.1 Relation Symbols and Participants

Due to the prevalence of the fundamental structural relations, in order to avoid writing their tags over and
over again and make them readily graphically identifiable, each one of the four fundamental structural
relations is assigned with a unique triangular symbol. Table 16.1 lists the fundamental structural relations
with their respective triangular symbols as they appear linked in an OPD, and the OPL sentence that
corresponds to each OPD. While all the OPD examples are of objects linked to objects (except for
Operation B), being structural relations, the four fundamental structural relations exist between processes
and can be depicted also linking processes. To begin, we next define refineable and refinee.

Refineable is a thing amenable to refinement via a fundamental structural relation.

Each Refineable is the ancestor (parent) of the two-level hierarchy induced by the fundamental
structural relation. Hence, as Table 16.1 presents in brackets in the leftmost column, a Refineable can be a
Whole, an Exhibitor, a General, or a Class. Each of the four refineables corresponds to one of the four
fundamental structural relation.

Refinee is a thing that refines a refineable.

Each Refinee is the descendant (child) of the two-level hierarchy induced by the fundamental
structural relation. Table 16.1 presents in brackets in the second-from-left column the four Refinees
corresponding to the refineables in the structural relations: a Part, a Feature, a Specialization, and an
Instance. As we discuss later, Feature, in turn, specializes into Attribute (a structural feature) and
Operation (a procedural feature).

© Springer Science+Business Media New York 2016 215
D. Dori, Model-Based Systems Engineering with OPM and SysML, DOI 10.1007/978-1-4939-3295-5 16

216 Fundamental Structural Relations

Table 16.1 The fundamental structural relation names, OPD symbols, and OPL sentences

Structural Relation Name
[Participant Name] Graphic Symbol

Forward | Backward with OPD usage
[Refineable] | [Refinee]

OPL Sentence(s)

Forward Backward

Whole consists of
Part A and Part B.

Aggregation | Participation
[Whole] | [Part]

Characterization
Exhibition | [Feature:
[Exhibitor] | Attribute or

Exhibitor exhibits
Attribute A as
well as Operation

Operation] B.
Specialization A
. . C g . Thing and
Gener(z;llzatloln Sé)ema.hzratl(;r.l Specialization B
[General] | [Specialization] ’Specuallzahon ’Specuallzatlon‘ are General
Things.
Instance A and
Classification | Instantiation Instance B are
[Class] | [Instance] instances of
Instance A Instance B Class.

16.2 Relation Names and OPL Sentences

The name of each fundamental structural relation consists of a pair of dash-separated words.! As Table
16.1 presents, the first word in each such pair is the forward relation name, i.e., the name of the relation
as seen from the viewpoint of the thing up in the hierarchy—the ancestor, or parent—while looking down
the hierarchy. The second word is the backward (or reverse) relation name, i.e., the name of the relation
as seen from the viewpoint of the thing down in the hierarchy—the descendant, or child—of that relation
while looking up the hierarchy.

The first fundamental structural relation, aggregation-participation, denotes the relation between a
whole thing and its parts. Exhibition-characterization denotes the relation between a thing and its features
(attributes and operations). Generalization-specialization denotes the relation between a general thing and
its specializations. Finally, classification-instantiation denotes the relation between a class of things and
the instances of that class.

Since the full names of these relations are rather long, each has a short version, which is either the
forward or backward structural relation name only. The short name, denoted in Table 16.1 by bold letters,

'The pair of words “dash-separated” is a pair of dash-separated words (pun intended).

Dori — Model-Based Systems Engineering with OPM and SysML 217

is selected to be the more meaningful of the two: Aggregation, Characterization, Generalization, and
Classification.

As Table 16.1 shows, all the four fundamental structural relation symbols are equilateral triangles
linked via orthonormal polylines, i.e., lines whose segments are parallel to either one of the diagram axes
(also called Manhattan lines). The tip of the triangle is linked through an orthonormal polyline to the root
of the hierarchy tree—the aggregate or whole in our case (Whole, in the first row of Table 16.1, for
example). The triangle’s base is linked through other orthonormal polylines to each one of the parts of the
aggregate (Part A and Part B in our example). The fact that the links of the fundamental structural
relations run horizontally or vertically but not diagonally (like all the procedural links) helps differentiate
them visually from procedural links. Using different colors for different links that cross each other (which
should be avoided as much as possible) is also helpful in crowded OPDs.

The OPL sentences of the fundamental structural relations are also either in the forward or the
backward direction. The direction was similarly determined by how natural the sentence sounds in plain
English. The forward direction is used for aggregation and characterization:

Whole consists of Part A and Part B.
Exhibitor exhibits Attribute A, as well as Operation B.

The backward direction is used for generalization and classification:

Specialization A and Specialization B are General Things.
Instance A and Instance B are instances of Class.

As usual, the multiple versions of these two OPL sentences, which include three or more refinees, are:

Specialization A, Specialization B, and Specialization C are General Things.
Instance A, Instance B, and Instance C are instances of Class.

16.3 Structural Hierarchies, Transitivity, User-Defined Symbols

The special graphic symbols assigned to the four fundamental structural relations due to their prevalence
and usefulness do not make them particularly special; diagramming convenience, avoiding multiple tags,
and ease of diagram reading have motivated the introduction of these symbols. Yet, the first three of these
four relations do have in common the hierarchy and transitivity they induce (examples are given in the
relevant chapters that follow, discussing each relation separately):

In Aggregation, a part can be the whole of yet smaller parts, creating an aggregation-participation
hierarchy. This hierarchy is transitive: If A consists of B (and other parts) and B consists of C (and other
parts), then A (indirectly) consists of C (and other parts).

In Characterization, a feature (attribute or operation) can be the exhibitor of lower-level features,
creating an exhibition-characterization hierarchy. This hierarchy is transitive: If A exhibits B and B
exhibits C, then A (indirectly) exhibits C.

In Generalization, a specialization can generalize lower-level specializations, creating a
generalization-specialization hierarchy. This hierarchy is transitive: If A generalizes B (and possibly other
specializations) and B consists of C (and possibly other specializations), then A (indirectly) generalizes C
(and possibly other specializations). With respect to Classification, as explained in Chap. 20, an instance

218 Fundamental Structural Relations

can only be a leaf in a generalization-specialization hierarchy. Therefore, the classification-instantiation
relation cannot be transitive.

Complex hierarchies can be created by mixing combinations of the four relations. Following this idea
of denoting a frequently used relation by a special symbol, it is possible to add a symbol for one or more
structural relations that are widely used within a specialized domain. Consider an example from the
domain of chemical laboratory testing of industrial lots. In this domain, the phrase “is a sample of” is a
very prevalent and useful structural relation between a sample and the lot from which it was taken. A
dedicated graphic symbol and a corresponding reserved phrase “is a sample of” can be introduced in this
domain to enable quicker and easier modeling. The symbol selected in a real case in work done at ISCAR
Ltd—an enterprise operating in the domain of metal cutting tool manufacturing by sintering
technology—was a piece cut out of a cake, symbolizing that the taste of the piece of cake—the sample—
is the same of the entire cake—the lot from which the sample was taken. The four fundamental structural
relations are so central to conceptual modeling that the next chapters are devoted to discussing each one
of them.

16.4 Summary

o Four structural relations are fundamental and therefore are assigned graphic symbols.

= Refineable is a thing amenable to refinement via a fundamental structural relation.
* Refinee is a thing that refines a refineable.

e The four fundamental structural relations are:
= Aggregation-participation;
= Exhibition-characterization;
= Generalization-specialization; and
= (Classification-instantiation.

e Each fundamental structural relation has a unique triangular symbol.

e The symbol replaces the tag, making the OPD more graphic and more quickly comprehensible.
e Each fundamental structural relation induces a hierarchy.

e Complex hierarchies can be created by mixing the four relations.

In certain domains, additional structural relations might be fundamental and user-defined dedicated
symbols can be allocated for them.

16.5 Problems

1. For each thing in Table 16.1 indicate whether it is a refineable or a refinee.
For each OPD in Table 16.1 draw an alternative OPD without using a fundamental relation.

3. For each OPL sentence in Sect. 16.2 provide a concrete OPL example and its corresponding
OPD.

Part |11

re and Behavior:

»n
‘I%_
-
2
=
-

Diving In

Having laid down in Part II the fundamentals and foundations of model-based systems engineering in
both OPM and SysML, Part III goes to the heart of conceptual modeling. In the first four chapters of this
Part, we delve into the details and usage of each one of the four fundamental structural relations. Chapters
17 and 18 discuss aggregation-participation and exhibition-characterization, respectively. Chapter 19 is
about states and values, concepts that are needed for the two remaining fundamental structural relations—
generalization-specialization and classification-instantiation, both elaborated on in Chap. 20. Chapter 21
concerns complexity management. It defines and describes the four refinement and abstraction
mechanisms of OPM while also discussing complexity management in SysML. Chapter 22 is about OPM
operational semantics and control links—the way control is managed during execution of the system. In
Chap. 23 we specify how to model logical operators and probabilities. Finally, Chap. 24 is an overview of
ISO 19450 Publically Available Specification (PAS)—Automation Systems and Integration—Object-
Process Methodology, adopted by the International organization for Standardization in 2014.

Chapter 17
Aggregation-Participation

The whole is more than the sum of its parts.
Aristotle, Metaphysica

This large four-wheel chariot ... consists of a number of parts

joined together by leather straps and wooden nails. ... Each of
the four large wheels has 34 spokes ...

Description of a wood and leather

Chariot, Eastern Altai, Russia (The

State Hermitage Museum, 2001)

This chapter discusses the first fundamental structural relation, possibly the most important one:
aggregation-participation—the relationship between the whole and its parts. Any interesting system can
be described as a whole decomposed into parts. The system as a whole and any one of its parts can then
be described separately using natural language adjectives to assign attribute values to objects and adverbs
to assign attribute values to processes. Without the ability to mentally take things apart and examine their
features, our ability to study systems would be greatly hindered. Aggregation-participation is also known
as whole-part (Coad and Yourdon 1991), composition (Kilov and Simmonds 1996), or the part-of
relationship (Fowler 1996).

17.1 Underlying Concepts

Aggregation-participation is a fundamental structural relation which denotes the fact that a refineable—a
relatively high-level, ancestor, parent thing (object or process) aggregates (i.e., consists of, composed of,
contains, or comprises) one or more refinees—lower-level, descendant, child things. The higher-level
thing is called the whole, or aggregate, while the lower-level things that comprise it are the parts. This
relationship is very central in conceptual modeling, and at least at a superficial level, is relatively easy to
comprehend. Aggregation-participation is a means to describe the composition of every non-trivial thing
by enumerating its parts in the whole-part hierarchy.

17.1.1 Gestalt Theory

Relating to the famous saying attributed to Aristotle quoted above that “The whole is more than the sum
of its parts”, Koffka (1935, p. 176) rephrased this observation as follows: “the whole is something else
than the sum of its parts”, arguing that the operation of summing up is often meaningless, but what is
always meaningful in a whole is its relationships with its parts.

© Springer Science+Business Media New York 2016 221
D. Dori, Model-Based Systems Engineering with OPM and SysML, DOI 10.1007/978-1-4939-3295-5 17

222 Aggregation-Participation

In 1924, Wertheimer and Reizler (1944) introduced the gestalt theory, which basically claims that
“what is happening in the whole cannot be deduced from the characteristics of the separate pieces” and
that what happens to parts of the whole is determined by laws relating to the structure of that whole. A
configuration or pattern of elements in any domain is unified as a whole so much that its properties
cannot be derived from a simple summation of its parts. In psychology, Rescher and Oppenheim (1995)
have provided a conceptual framework for the precise explication of the gestalt concept of “whole” and
summarized the intuitive requirements or conditions of talking about a whole and its parts:

The whole must possess some attribute in virtue of its status as a whole, an attribute peculiar to it
and characteristic of it as a whole. The parts of the whole must stand in some special and
characteristic relation of dependence with one another; they must satisfy some special condition in
virtue of their status as parts of a whole.

17.1.2 Holism and Emergence

To specify the concept of part, it is necessary at the very outset to state the conditions under which some
object is to be considered part of another whole thing. The specification of a particular part-whole relation
thus determines for a given thing, the whole, which things are its parts. (Latimer and Stevens 1997). From
a system’s viewpoint, the “special condition” that things must fulfil as parts of a whole is holism. Holism,
in turn, is the condition for emergence—the emerging function of a system that stems from the particular
whole-part relations and the way the parts are aggregated, which none of the parts alone exhibits.

We tend to think of aggregation as a relation between a whole object and its object parts. Indeed, this
is the usual context. However, unlike most trains of though, which attribute holism to object parts and the
whole to the aggregate object, in OPM the same relation is used with analogous semantics for processes
as it is for objects: A process can consist of parts, which are the subprocesses of that whole process, and
the outcome of the aggregate process is not a mere sum of the outcomes of its subprocess parts, but a
process with an emergent transformation of an object, which none of its subprocesses alone, nor their
simple “arithmetic” sum could have delivered.

Thus, an OPM object may consist of other, lower-level objects (and exhibit, but not consist of,
processes, which are its operations, as we discuss in Chap. 18). Analogously, an OPM process may
consist of other, lower-level processes (and exhibit, but not consist of, objects, which are its attributes, as
we discuss in Chap. 18). We elaborate on this idea while discussing refinement in Chap. 21.

17.1.3 Decomposition Depth

A question that arises frequently during modeling is: How far should the decomposition go? How deep
down should it continue? Naturally, most things can be decomposed further than the deepest
decomposition specified in a model of the system. In particular, physical objects can be decomposed all
the way down to the molecular and atomic or even sub-atomic levels. However, the specification of yet
deeper participation hierarchy levels always should stop at a point that is deemed sufficient by the system
modeler, architect, engineer, or analyst for the purpose of specifying the system under development or
study. That level of detail shall be sufficient to explain the function, structure, and behavior of the system
under study (as is typical in science) or prescribe how to go about its detailed design (typically in
engineering).

Dori — Model-Based Systems Engineering with OPM and SysML 223

17.1.4 Why Use “consists of” and not “has a’?

Some early object-oriented (OO) methods referred to the aggregation-participation relation as the “has-a”
relation (as opposed to the “is-a” relation for the generalization-specialization relation, which is the
subject of Chap. 20). It may indeed seem natural to use some form of the verb “to have” to denote the
relation between the whole and its parts, as in “A car has a body, an engine, and four wheels.” However,
we avoid the use of this verb to denote aggregation because it is overloaded and may have' various
interpretations. To see this, suffice it to look at the sentence examples “Dave has a step mother.”, “Jack
has a yellow motorcycle.”, “We are having a discussion.” “I am having hard time understanding.” “The
patient has cold.” and “The object has an attribute.” OPM’s choice of the reserved phrase consists of for
denoting the aggregation-participation relation is explained below.

17.2 Aggregation-Participation as a Fork

Like all structural relations, aggregation-participation is a pair of forward and backward structural
relations. Aggregation is the forward structural relation—the relation as seen from the aspect of the
aggregate, the whole, or the ancestor, when it refers to its parts—the descendants. The backward
structural relation, i.e., the relation as seen from the aspect of each part, is participation.

Aggregation and participation are inverse relations: Aggregating can be thought of as the process of
creating a whole from its parts, while participating is being one of the parts that comprise the aggregate.
However, as we have noted in the discussion on structural relations in Sect. 14.3, aggregating is a state-
preserving process. Its semantics is of parts being held together to create the whole, with time having little
or no relevance to this relation.

The forward (or hierarchically downward) direction of the aggregation-participation relation, from the
whole to its parts, is the aggregation direction. The reserved phrase used to express the forward direction
of the relation is “consists of.” The backward, (or upward, or reverse) direction, from each part to the
whole, is the participation direction. The phrase used to express the backward direction of the relation is
“is part of”, but this is not an OPL reserved phrase.

The two OPDs in Fig. 17.1 exemplify how the aggregation-participation relation replaces the tagged
structural relation. In the OPD on the left, the relations between Lamp and its three parts are expressed
using three bidirectional tagged structural link, as we have been using so far. All three forward tags are
“consists of”’, with the source object Lamp being the whole and the destination objects—Base, Light
Bulb, and Electric Chord—the parts. The tag in the backward direction for each one of these three links is
“is part of””. Thus we get six OPL sentences—one forward and one backward for each of the three links.

The phrase “consists of” in the OPL paragraph on the left hand side of Fig. 17.1 is bolded since it is
not reserved—it comes from a user-defined tag, put on a bidirectional tagged structural link, rather than
from a dedicated aggregation symbol. The opposite is true for the reserved phrase “consists of” in OPL

'Already in this sentence, as well as in this footnote, we have a built-in example that shows the multiple uses of
“have.”

224 Aggregation-Participation

paragraph on the right hand side of Fig. 17.1, in which one OPL sentence, “Lamp consists of Light Bulb,
Base, and Electric Cord.” replaces six OPL sentence on the left.

Lamp Lamp
is screwed to asses through . . is screwed to passes through El ;
Light Bulb Base [< Fleatric Light Bulb Base oo
in contact in contact
Lamp consists of Light Bulb.
Light Bulb is part of Lamp.
'ézrs":’i;m;sr'tsﬁ I‘_’;‘:ase' Lamp consists of Light Bulb, Base, and Electric Cord.
Lam copnsists of Elr:ctric Cord Light Bulb is screwed to Base.
EIec:Jric Cord is part of Lam . Electric Cord passes through Base.
P p- Light Bulb and Electric Cord are in contact.

Light Bulb is screwed to Base.
Electric Cord passes through Base.
Light Bulb and Electric Cord are in contact.

Fig. 17.1 Aggregation expressed by three tagged structural links (left) and the aggregation-participation symbol (right)

The solid black triangle &—the aggregation-participation relation symbol—replaces the pair of
forward and backward textual tags of the bidirectional structural link that express textually the
aggregation-participation relation. Like the rest of the fundamental structural relation symbols, the
aggregation-participation relation symbol is a helpful shorthand graphic notation convention for this
important and widely used structural relation. The symbol helps identify the relation easily in the OPD,
saving graphic clutter and excessive text typing and reading.

Being a structural relation, the aggregation-participation relation abides by the distributive law, two or
more structural links can be represented as a fork. In the OPD at the right of Fig. 17.1, the relations
between Lamp and its three parts are expressed using the specific symbol designated for the aggregation-
participation relation, a solid black equilateral triangle, &, whose base is horizontal. The whole is linked
to the top of the triangle and the parts—to its base. This enables replacing the first six OPL sentences on
the left with a single one—the first on the right. Unlike the tag “consists of” in Fig. 17.1, which, being
user-defined, is bold, the phrase “consists of”” in Fig. 17.1 is a reserved OPL phrase and therefore it is not

bold.

17.3 A Semantic Web Example

RDF, the Resource Description Framework (W3C Consortium 2014), integrates a variety of applications
from library catalogs and world-wide directories to syndication and aggregation of news, software, and
content to personal collections of music, photos, and events using XML as interchange syntax. The RDF
specifications provide a lightweight ontology system to support the exchange of knowledge on the Web.

Dori — Model-Based Systems Engineering with OPM and SysML 225

An example of the use of the aggregation-participation fundamental structural relation can be found in the
following excerpt taken from Sect. 2.2 of the RDF Primer (Manola and Miller 2004):
“...each statement consists of a subject, a predicate, and an object.”

The use of the phrase “consists of” is a clear indication of the existence of a whole-part, or
aggregation-participation relation between the whole and its part. Indeed, as we have seen, OPM uses this
as a reserved phrase to denote this relation. The OPD that is equivalent to this OPL sentence (and should
be generated from it by any OPM-supporting tool such as OPCAT) is depicted in Fig. 17.2. Indeed, this
OPL sentence is almost identical to the original one above.

r RDF Statement

| I I

Subject Predicate Object

RDF Statement consists of Subject, Predicate, and Object.
Fig. 17.2 OPD of the sentence “RDF Statement consists of Subject, Predicate, and Object”

The black triangle, which denotes the aggregation-participation fundamental structural relation, has its
tip is linked to the aggregate (the whole, which is the object RDF Statement), while its (always horizontal)
base is linked to its three parts: Subject, Predicate, and Object. This is a fork, in which RDF Statement is
the handle object, and the set {Subject, Predicate, Object} is the tine object set. If forks did not exist, the
OPD would have required three separate aggregation links, each with its own black triangle symbol. As
we will soon see in Fig. 17.4, since UML and SysML do not have the notion of fork, we would indeed
need three separate aggregation (diamond symbols) to express the same three model facts.

17.3.1 Different Phrases, Same Semantics

In the case of the RDF Statement analyzed above, we were lucky to find out that the phrase in the natural
language sentence “...each statement consists of a subject, a predicate, and an object,” contained the
reserved OPL phrase consists of. This made it easy to deduce that a whole-part relationship exists
between an object RDF Statement and a set of other objects. There are, however, many other syntactical
expressions with the same whole-part semantics. These include “has parts,” “comprised of,” “is made of,”
and “comprises.” Other expressions, such as “is divided into,” “make up,” or “contains,” may, under some
interpretation, also be considered as having the same whole-part relation semantics, while in a different
context they may convey a somewhat different meaning. Consider, for example, the following definition
of an RDF triple, found in Sect. 3.1 of the W3C Proposed Recommendation Resource Description
Framework (RDF): Concepts and Abstract Syntax (Klyne et al. 2004):

“Each triple has three parts: a subject, an object, and a predicate (also called a property) that
denotes a relationship.”

29 ¢

In Sect. 6.1 of the same document, we find that:

226 Aggregation-Participation

“An RDF triple contains three components: the subject, which is an RDF URI reference or a
blank node, the predicate, which is an RDF URI reference, and the object, which is an RDF URI
reference, a literal or a blank node.”

Comparing these two excerpts from the same document, we must deduce that “has three parts” has
the exact same meaning as “contains three components,” as both relate to the composition or structure of
an RDF triple. Moreover, if we accept that the semantics of the verbs “contains” and “has parts” in this
context is the same as “consists of,” then we can summarize the two citations above in the following OPL
sentence:

RDF Triple consists of Subject, Predicate, and Object.

The problem of multiple words, idioms, or phrases that have the same or almost the same semantics,
which is demonstrated here, is a major issue in natural language processing (NLP) and understanding.
Using their natural human intelligence, human beings normally have no problem assigning the same
semantics to such different syntactic entities, and grasp subtle differences when they exist and are
relevant. The example above shows that even in highly formal documents, such as one defining the
semantic Web, in which semantics is the issue of discourse, free use is made of equivalent idioms and
phrases, justifiably counting on the human intelligence to resolve it.

Indeed, people interpret meaningful sentences effortlessly all the time without even paying attention to
the fact that other words and a totally different syntax was used to express the same semantics. When
NLP techniques are considered, this issue becomes of prime importance, and has to be dealt with
meticulously. OPL solves this problem by being a subset of English that is defined formally via a context-
free grammar. Future developments in automated sematic sentence understanding can be key to model
evolution of ground-truth, humanly validated kernel OPM models, such as the one developed by Somekh
et al. (2014) for the mRNA lifecycle.

17.4 Aggregate Naming

Frequently during the analysis, we encounter situations in which we need to name an aggregate, which
has no single word in natural language. To illustrate the point of aggregate naming and the importance of
appropriate phrase generation, consider a transportation, civil, and systems engineering development
team, whose assignment is to improve the traffic in a city. After some thought and discussion, the team
agrees that an essential object in the system is the composition of a car and the person that drives it in the
city streets. This object is much more central to the system than a car alone or a driver alone.

The role a car without a driver plays is restricted to parking issues, while the driver without the car
should be considered a pedestrian. Nonetheless, having agreed that the car along with its driver is a major
object that needs to be accounted for in the system, our team still lacks an elegant way of referring to it.
Since there is no single word in English (and most likely in any other natural language) for this object, the
team has come up with the name Car-Driver Complex, as illustrated in Fig. 17.3. As we will see, these
situations are not unique to aggregates; they are also encountered in a variety of other circumstances, such

http://www.w3.org/TR/rdf-concepts/%23dfn-blank-node
http://www.w3.org/TR/rdf-concepts/%23dfn-literal
http://www.w3.org/TR/rdf-concepts/%23dfn-URI-reference
http://www.w3.org/TR/rdf-concepts/%23dfn-URI-reference
http://www.w3.org/TR/rdf-concepts/%23dfn-blank-node
http://www.w3.org/TR/rdf-concepts/%23dfn-URI-reference
http://www.w3.org/TR/rdf-concepts/%23dfn-URI-reference

Dori — Model-Based Systems Engineering with OPM and SysML 227

as naming an attribute when only the names of its values are explicit.” In cases like these, we must
exercise our creativity to generate an appropriate phrase that best captures the essence of what we wish to
express.

The capability of inventing meaningful names, or generating expressive phrases, is a very important
component of the analysis process. It provides us with the power to abstract into a whole a collection of
things that would otherwise be very difficult to think about and relate to as a unity. Recall that indeed the
first OPM principle—the Function-as-a-Seed OPM Principle—calls for starting the process of modeling a
system by defining, naming, and depicting the function of the system. The name of the function shall
express what the system is designed to do, and what value its beneficiaries will gain from using it.

Car-Driver
Complex

Car Driver

Car-Driver Complex consists of Car and Driver.
Driver handles Driving.

Driving requires Car.

Driving affects Car-Driver Complex.

Fig. 17.3 Naming an aggregate which has no single word in natural language

17.5 Composite and Shared Aggregation in UML and SysML

SysML adopted from UML 2 all the definitions related to class diagram (and several other diagram kinds)
“as is.” SysML block diagram inherits the same semantics as UML 2 class diagram. Hence, in UML 2
and SysML class diagrams there are two types of aggregation: composite aggregation and shared
aggregation (Object Management Group 2010, p. 39).

e Composite aggregation, depicted as a black diamond next to the whole end of the link, (see Fig.
17.4) “indicates that the composite object has responsibility for the existence and storage of the
composed objects (parts).” Composite aggregation, also referred to as strong aggregation, or the
composition relationship, or standard composite aggregation, or non-shared association, is
considered a “strong” form of containment or aggregation: A part can belong to just one aggregate,
and if the aggregate is consumed, all its parts are consumed along with it. Originally defined for
UML, responsibility and storage in the composite aggregation definition are software-related
concepts. SysML, which is supposed to accommodate systems of any kind, not just software, has
inherited this definition, as is the case with many other definitions.

’For example, what is the name of the attribute the values of which are wide and narrow? Width? Narrowness?
Something in-between? Such a neutral word does not exist. Section 18.7 contains a detailed discussion on this topic.

228 Aggregation-Participation

e Shared aggregation, also called simply aggregation, denoted as a white (blank) diamond next to
the whole end of the link, is a loose, “weak” type of whole-part relationship. Unlike composite
aggregation, in shared aggregation, the part has “life of its own,” and it can be part of more than one
whole. According to Object Management Group (2010, p. 39), “precise semantics of shared
aggregation varies by application area and modeler.” While usually, in shared aggregation each
part can exist independently of the whole, leaving the semantics of a relation vague is not a good
idea to begin with. The tagged structural relation in OPM is user-defined, and this would be a better
way to express specific semantics by application area or modeler, rather than leaving the semantics
of a language symbol open to a variety of interpretations by various modelers even in the same
domain and even if all of them relate to the same system model.

The connecting lines of the aggregation relation in UML need not be orthonormal and are usually
diagonally straight, as Fig. 17.4 demonstrates. UML and SysML do not have the fork construct, so as Fig.
17.4 shows, each part in a UML (and SysML) class diagram needs to be connected with a dedicated
aggregation symbol.

Composition is stronger than aggregation in that the whole is “responsible” for its parts, so when the
whole is consumed so are all the objects of which it is composed. Hence, the part cannot be owned by
more than one whole. Here is what the UML 2.0 Superstructure document v 2.2 (2005) says about
composite aggregation (p. 41):

“An association may represent a composite aggregation (i.e., a whole/part relationship). ...

Composite aggregation is a strong form of aggregation that requires a part instance [to] be

included in at most one composite at a time. If a composite is deleted, all of its parts are normally

deleted with it. Note that a part can (where allowed) be removed from a composite before the
composite is deleted, and thus not be deleted as part of the composite.”

+scrollbar >)
title 1 +body 1

Slider

Header Panel

Fig. 17.4 The symbol of composite aggregation in UML and SysML

In OPM the distinction between composite and shared aggregation is not necessary, since one can
model exactly what part or parts are consumed when the whole is consumed and what parts remain, as the
OPM model in Fig. 17.5 demonstrates: After Crashing, the whole Car and its Chassis are gone, but the
Powertrain remains (and can be reused).

Dori — Model-Based Systems Engineering with OPM and SysML 229

Car
2
Car consists of Chassis and Power Train.
- Crashing consumes Car and Chassis.
Chassis
Power Train

Fig. 17.5 OPM model demonstrating how UML/SysML shared and composite aggregation can be modeled in tandem

17.6 Expressing Parts Order

Sometimes, the order of the parts that comprise the whole is significant. Sets are abstract collections of
things that consist of elements or members. A set may therefore be thought of as an aggregate (whole) and
its elements—as parts. Each element in the set is unique. Since aggregation-participation is a structural
relation, everything that applies to a fork is true for aggregation-participation, including the way
orderability is indicated. Being a fork, the Aggregation-Participation relation exhibits the Boolean
Orderability property, which denotes whether or not the set of parts is ordered. The two values of
Orderability are ordered and unordered, with the default value being unordered. Let us again consider the
RDF triple case (Klyne et al. 2004):

An RDF triple is conventionally written in the order subject, predicate, object.

RDF Statement
ordered
RDF Statement
lordered Subject
I [|
Subject Predicate Object Predicate
Object

RDF Triple consists of Subject, Predicate, and Object, in that sequence.
Fig. 17.6 The OPD label “ordered” and the OPL reserved phrase “in that sequence” indicate the order of the parts of
RDF Triple from left to right (in the OPD on the left) or top-down (in the OPD on the right)

We model graphically the fact that the three elements of an RDF triple are ordered by adding the label
ordered next to the black triangle symbolizing the aggregation-participation relation, as shown in the OPD
in Fig. 17.6. The parts can be ordered with no sematic difference either from left to right, as the OPD on

230 Aggregation-Participation

the left shows, or top-down, as the OPD on the right shows. The corresponding OPL phrase is “in that
sequence”, which follows a comma after the name of the last part in the ordered list.

The OPD in Fig. 17.7 is an example of an aggregation hierarchy, which specifies the reading order of
a scientific paper, i.e., the order in which the parts of the paper should be read, with participation
constraints, which are discussed in Chap. 15.

When dealing with processes, orderability is intimately related to the top-to-bottom timeline within an
in-zoomed process, which dictates the process execution order. We elaborate on this in Chap. 21 while
discussing complexity management.

17.7 Aggregation and Tagged Structural Relations

In the next example, we illustrate an OPM model that combines aggregation-participation with tagged
structural relations. Consider the sentence extracted from the RDF Primer (Manola and Miller 2003):

RDF models statements as nodes and arcs in a graph.

Scientific Article
ordered
r Header r‘ Body r Footer
Y et ordered
. + s
Title Section 2| Acknowledgement
+
Author y i
9 Figure Reference
—| Abstract
. . ?
Keyword Table Appendix

Scientific Paper consists of Header, Body, and Footer, in that sequence.

Header consists of Title, at least one Author, an optional Abstract, and optional Keywords, in that sequence.
Body consists of at least one Section, optional Figures, and optional Tables.

Footer consists of an optional Acknowledgement, at least one Reference, and an optional Appendix, in that
sequence.

Fig. 17.7 The ordered aggregation hierarchy of a scientific paper with participation constraints
In order to model this sentence in OPM, using our prior knowledge about graphs and assuming that a
graph has at least two nodes and one arc (which is the case with RDF graphs), we break the sentence
above into the following three simpler, more explicit sentences:

Dori — Model-Based Systems Engineering with OPM and SysML 231

1. A graph consists of at least two nodes and one arc.
2. RDF graph is a graph.
3. An RDF graph models at least one RDF statement.

Sentence (1) above is modeled in Fig. 17.8. As in the previous example, the black triangle denotes
aggregation, where the object Graph is the whole, while Node and Arc are the parts. The plus (+) symbol
above Arc denotes the “at least one” (+) participation constraint, while the “2.*” symbol above Node
denotes the participation constraint “2 to many”.

The fact that has been added in the second OPL sentence is that an RDF Graph is a (specialization of)
Graph. As such, it inherits the structure of Graph. To express the fact that an RDF Graph models at least
one RDF Statement, a unidirectional tagged structural relation is used, and the tag reads “models”.

We ended up with two similar OPL sentences, obtained from two W3C proposed recommendations:

“RDF Statement consists of Subject, Predicate, and Object.” (Manola and Miller 2003), and

“RDF Triple consists of Subject, Predicate, and Object.” (Klyne et al. 2004)

Graph
+ models
RDF Statement RDF Graph
2.F +
Node Arc

Graph consists of at least one Arc and 2 to many Nodes.
RDF Graph is a Graph.
RDF Graph models at least one RDF Statement.

Fig. 17.8 The OPM model of a graph consisting of at least one node and optional arcs

Under the assumption that if two things consist of exactly the same set of parts, or components, they
are equivalent (if not the same), one can deduce that RDF Triple and RDF Statement are equivalent. This
statement is expressed in the OPM model depicted in Fig. 17.9 by the (vertical) null tag bidirectional
structural link between these two objects, which combines model facts from Figs. 17.6 and 17.8. This
OPD also expresses that Subject and Object in an RDF Graph are Nodes in a general Graph, and that
Predicate in an RDF Graph is an Arc in a Graph.

Another example for the use of the null tag bidirectional structural relation is when we model the
sentence from Sect. 6.1 of (Klyne et al. 2004)

The predicate is also known as the property of the triple.

This is expressed in the OPD of Fig. 17.9, where Property is linked to Predicate with a null tag

bidirectional structural link to indicate that they are equivalent, assuming that the null tag default is
“equivalent”. This translates to the OPL sentence “RDF Triple and RDF Statement are equivalent.”

232 Aggregation-Participation

Graph

RDF Statement models

Graph consists of 2 to many Nodes and at least one
Arc.

RDF Graph is a Graph.

2 + RDF Graph consists of at least one RDF Triple.
iode 1] s RDF Graph models at least one RDF Statement.
Property and Predicate are equivalent.

RDF Triple consists of Subject, Predicate, and
Zk Object.

Subject and Object are Nodes.

Predicate is an Arc.

RDF Triple and RDF Statement are equivalent.

RDF Graph

RDF Triple

Subject

Predicate

Object

Fig. 17.9 An OPM model demonstrating a bidirectional tagged structural link with one tag

17.8 Non-Comprehensive Aggregation

Being a specialization of fork, aggregation inherits the Boolean Comprehensiveness property just as it
inherits the Boolean Orderability property. The default aggregation Comprehensiveness value is
comprehensive: we assume that if nothing is indicated, then all the parts are specified in the model. If we
wish to denote that the aggregation is non-comprehensive, we add the non-comprehensiveness symbol—
a short horizontal bar below the aggregation black triangle symbol, as shown in Figs. 17.10 and 17.11.
The corresponding OPL phrase is “and at least one other part”, used in the last OPL sentence in Fig. 17.10.

If an aggregation symbol is both ordered and non-comprehensive, the OPL phrase for non-
comprehensiveness precedes that for the orderability. For example, if in Fig. 17.10 the aggregation
symbol attached to Body, which is non-comprehensive, would also be ordered, the resulting OPL
sentence would be:

Body consists of at least one Section, optional Figures, and at least one other part, in that sequence.

17.8.1 Partial Aggregation Consumption

When we wish to specify that the whole and a specific subset of its part are consumed, we can model this
succinctly using partial aggregation consumption, as exemplified in Fig. 17.12. In the OPM model on the
left of Fig. 17.12, the Consuming process consumes Whole along with its Part B and Part D, while Part A
and Part C remain intact as separate objects. This is similar to the car crashing example in Fig. 17.5. In the
OPM model on the right of Fig. 17.12, the terse version using partial aggregation shows that the
Consuming process consumes Whole and only Part B and Part D, while all the other parts of Whole,
which are not shown in the partial aggregation, remain as distinct, unchanged objects.

Dori — Model-Based Systems Engineering with OPM and SysML 233

Scientific Article

ordered

Eaadas Body Scientific Papt_er consists of Header, Body, and at least
‘ one other part, in that sequence.
- Header consists of Title, at least one Author, an optional

dered : :
e Title | e Abstract, and optional Keywords, in that sequence.
Body consists of at least one Section, optional Figures,
i and at least one other part.
Author
Ei
i igure
Abstract
Keyword

Fig. 17.10 The non-comprehensive aggregation symbol is a short vertical line below the aggregation triangle expressing

that not all the parts are shown

[I I I I

Subject Predicate Object Subject Predicate

Resource Description

Resource Description
Framework Statement

Framework Statement

Resource Description Framework Statement consists Resource Description Framework Statement consists
of Subject, Predicate, and Object. of Subject, Predicate, and at least one other part.

Fig. 17.11 Application of non-comprehensive aggregation in the Resource Description Framework Statement

I Whole
Whole
Part A
— @
PartD

Whole consists of Part A, Part B, Part C, and Part D. Whole consists of Part A, Part D, and at least one other part.
Consuming consumes Whole, Part B, and Part D. Consuming consumes Whole, Part B, and Part D.

PartB

PartC

PartD

Fig. 17.12 Partial aggregation consumption exemplified

234 Aggregation-Participation

Process Test Noun
A Process Test Noun
Object Transformation

Criterion

N

Time Association
Criterion
L—1

Verb Association
Criterion

) [

Object Transformation
Criterion

Time Association
Criterion

Noun As Process
Defining

Noun As Process
Defining

Process Test consists of Object Transformation Criterion, Process Test consists of Object Transformation Criterion,

Time Association Criterion, and Verb Association Time Association Criterion, and at least one other part.
Criterion. Noun exhibits Object Transformation Criterion, Time
Noun exhibits Object Transformation Criterion, Time Association Criterion, and at least one other feature.

Association Criterion, and Verb Association Criterion

Fig. 17.13 The non-comprehensivemness symbol demonstrated for aggregation and characterization. Left: Original
Process Test model. Right: Updated model after removing Verb Association Criterion

Being a fork property, the non-comprehensiveness symbol can be used not only for aggregation, but
also for each of the other three fundamental structural relations—exhibition, specialization, and
classification. To correctly use the non-comprehensive symbol, an OPM modeling tool must keep track of
the set of refinees for each refineable and adjust the symbol and corresponding OPL sentences as the
modeler changes the collection of refinees. This is demonstrated in Fig. 17.13, where we reuse the OPM
Model of the Process Test from Fig. 10.6, this time providing only the two relevant OPL sentence. On the
left is the original model, while on the right the object Verb Association Criterion, which is both a part of
Process Test and an attribute of Noun, has been removed, causing an automatic update of the OPD to
include the non-comprehensive symbol for both the aggregation and the exhibition. The OPL sentences
were updated as well.

As we can see, the OPL phrase for non-comprehensive exhibition-characterization is “and at least one
other feature”. We use feature rather than attribute because, as we discussed in Chap. 16 and will elaborate
in Chap. 18, feature can be an attribute (object) or an operation (process), both of which can be attached
to the base of the same exhibition symbol, A\. Similarly, the OPL phrase for non-comprehensive
generalization-specialization is “and at least one other specialization”, and the OPL phrase for non-
comprehensive classification-instantiation is “and at least one other instance”.

Dori — Model-Based Systems Engineering with OPM and SysML 235

17.9 The Parameterized Participation Constraints Mini-
Language

The use of participation constraints in the aggregation-participation relation is similar to their use in a
general tagged structural relation. A different participation constraint can be attached to each one of the
parts in the tine set of the whole. As with the general tagged structural relation, the implicit default for the
number of parts of a whole is 1. A participation constraint other than 1 is recorded outside the part next to
the point connecting the part with the orthonormal line from the solid triangle’s base.

Airplane
E;E>=1,;
E = B+2*W,
Bin {0, 1},
| 2 |0 <=\W<=3
are attached to B
Wing Body Engine

W
are attached to

Airplane consists of Body, 2 Wings, and E Engines, where E>=1, E = B+2*W, B in {0, 1}, and 0<=W<=3.
B Engines are attached to Body.
W Engines are attached to Wing.

Fig. 17.14 Parameterized participation constraints applied to aggregation-participation links

The OPD in Fig. 17.14 and the OPL that follows it exemplify this. Since an Airplane consists of two
Wings, the participation constraint 2 is recorded next to the object Wing. Airplane also consists of a
certain number of Engines, the exact number of which is determined by a couple of parameters. The
example in Fig. 17.14 uses three parameters, E, B, and W, to express the number of Engines in an
Airplane, the number of Engines attached to the Body, and the number of Engines attached to a Wing,
respectively.

As exemplified in Fig. 17.14, there is a specific syntax of parameterized participation constraints as
they are recorded in an OPD. This syntax defines a small-syntax language, called Parameterized
Participation Constraints (PPC) mini-language. It draws from, and is similar to, the syntax of arithmetics
and set notation in conventional third-generation and OO programming languages, such as C, C++ and
Java. This syntax, specified informally next using this example, must not be confused with the much more
complex syntax of OPL, which is presented formally in EBNF in the OPM ISO 19450 PAS (see Chap.
24). The PPC mini-language must also not be confused with UML’s OCL, which is also designed as an
add-on to UML to specify constraints that cannot be expressed graphically in UML, as Sect. 22.10
discusses briefly.

To demonstrate the PPC mini-language syntax, let us follow the example in Fig. 17.14. The set of four
constraints, each expressed in a line of text in Fig. 17.14 above the object Engine are the E parameter
constraint set—the set of four constraints for E, where E is the parameter for the number of Engines in
the Airplane. The parameter (E in our case) appears first, followed by semicolon, followed by zero or

236 Aggregation-Participation

more (four in our case) constraints separated by semicolons. Each constraint is an equality or inequality,
or a set membership notation. The left hand side is the parameter name, the right hand side is a
mathematical expression, and the two sides are separated by one of the equality or inequality symbols =,
(or != when only the ASCII character set is available), <, >, < (or <=), > (or >=), or by the membership
notations € (or “in”), or & (or “not in”).

As noted, the symbols and syntax used in the constraint expressions are based on common
conventions of programming languages. For example, multiplication is denoted by an asterisk, as in E =
B+2*W. The reserved phrase in is the set-theoretic symbol €, so “b in {0, 1}” is the same as “b e {0, 1}”. In
our example, the first constraint, E >= 1, constrains the number of Engines in the Airplane to be at least
one. The second constraint, E = B+2*W, is the total number of Engines, which is equal to the number of
Engines in the Body (which can be 0 or 1), and W is the number of Engines in each Wing (which can be 0,
1,2, or 3).

Airplane
E;E>=1;
2 | E=Bs2w:
are attached to
Wing Body Engine

Bi BO 1
in {0, 1}; W
are attached to 0<=W<=3

Airplane consists of Body, 2 Wings, and E Engines, where E>=1 and E = B+2*W.
B Engines are attached to Body, where B in {0, 1}.
W Engines are attached to Wing, where 0<=W<=3.

Fig. 17.15 The parameterized participation constraints from Fig. 17.14 expressed differently

As this example shows, the OPL syntax for the parameterized constraints set is such that the main
parameter precedes the name of the object to which it relates, followed by a comma and the reserved
phrase where, followed by a comma-separated list of constraints with the reserved phrase and preceding
the last constraint.

Figure 17.15 presents another way to specify the parameterized participation constraints, which is
different than that in Fig. 17.14, but it uses the same parameterized constraint syntax and has the same
semantics. The PPC mini-language is compared in Sect. 22.10 with Object Constraints Language (OCL)
that augments UML.

17.10 Summary

e Aggregation-participation is a fundamental structural relation which denotes the fact that a
refineable—the whole—aggregates one or more refineables—the parts.

e Aggregation-participation is a pair of forward and backward structural relations.

Dori — Model-Based Systems Engineering with OPM and SysML 237

e The solid black triangle, &, is the aggregation-participation relation symbol. It replaces the pair
of forward and backward textual tags of the aggregation-participation relation.

e Aggregating is the process of creating a whole from its parts, while participating is enumerating
the parts that comprise the aggregate.

e In UML 2 and SysML, there are two types of aggregation in class diagrams: shared—weak
aggregation, marked as a white diamond, and composite—strong aggregation, marked as a black
diamond.

e In OPM the distinction between composite and shared aggregation is not necessary, since one
can model exactly what part or parts are consumed when the whole is consumed and what parts
remain.

e Orderability is a Boolean property of the aggregation relation, inherited from fork.

e To denote that the aggregation is ordered, we add the symbol ordered next to the aggregation
triangle.

e Comprehensiveness is another Boolean property of the aggregation relation, inherited from fork.

e To denote that the aggregation is non-comprehensive, we add a short horizontal bar below the
aggregation triangle.

e The Parameterized Participation Constraints (PPC) mini-language has a small syntax that
determines how to phrase a set of constraints for a parameter in a participation constraint.

17.11 Problems

1. Draw two OPDs of a two-story house and its major parts, one without and one with the
aggregation participation link.

Which OPD was easier to draw? Why?

3. Use the second OPD from the first problem to demonstrate the use of orderability in terms of
vertical location of the parts of the house, the highest one being the first. Add parts as needed.

4. Demonstrate non-comprehensiveness by removing one or more parts from the OPD in the
previous question.

Add at least two participation constraints to an OPD from one of the previous question.

6. Draw OPDs describing two objects for which the parts are ordered and two for which they are
not.

7. Draw two OPDs for an object consisting of at least eight different parts at the first participation
level, with non-comprehensive aggregation. A subset of the parts should appear in one OPD and
another subset in the other OPD such that the union of the subsets is comprehensive.

8. According to Figs. 17.13 and 17.14 what are the possible numbers of engines in an Airplane?

238

Aggregation-Participation

Use parameterized participation constraints to create the aggregation hierarchy of a high rise
building. The building has a certain number of floors, each having two types of apartments,
standard and luxury. In each floor from floor 4 and above there are three standard and two
luxury apartments. In the first three floors, there is one small and two large offices. Decide how
many floors there are and how many faucets are required for each unit, and create the
appropriate OPD with participation constraints. Complete details as you see fit. Using your
OPD, compute the number of faucets the contractor needs to order for a 22 story building.

Chapter 18
Exhibition-Characterization

1 must be able to attribute properties to the objects.
Kant (1787)

To define and describe things in the world, natural languages use adjectives and adverbs. Without these
types of words, which describe objects and are also interchangeably called attributes, features, qualities,
characteristics, or properties, neither objects nor processes can be adequately distinguished and
understood. Exhibition-characterization is the fundamental structural relation that binds a refineable
(object or process)—the exhibitor, with a refinee—another object or process, called feature, which
characterizes the exhibitor.

18.1 Feature and Exhibitor

Exhibition-characterization is a fundamental structural relation. Like any binary structural relation, it
involves two things: the exhibitor and the feature.

Feature is a refinee that characterizes (describes) a thing.
Exhibitor is a refineable that exhibits (is characterized by) a feature.

Exhibition-Characterization is a fundamental structural relation which denotes the
\fact that a feature characterizes an exhibitor (and conversely, the exhibitor exhibits
the feature).

To be consistent with the naming convention of the fundamental structural relations, the first word in
the exhibition-characterization relation pair describes the forward direction of the relation, from the
exhibitor to the feature, while the inverse direction goes from the exhibitor to the feature.

The relationship between feature and exhibitor in the exhibition-characterization relation is analogous
to that between a part and a whole in the aggregation-participation relation: Part is a refinee that
comprises a refineable—the whole, which aggregates the parts. Like aggregation-participation,
exhibition-characterization is transitive, giving rise to an exhibition hierarchy. The forward direction,
then, is also the downward direction: from a thing higher in the hierarchy—the exhibitor—to one or more
things lower in the hierarchy—the features.

© Springer Science+Business Media New York 2016 239
D. Dori, Model-Based Systems Engineering with OPM and SysML, DOI 10.1007/978-1-4939-3295-5 18

240 Exhibition-Characterization

The forward (downward) direction of the exhibition-characterization relation, from the exhibitor to its
features, is the exhibition direction, while the reverse (upward) direction, from each feature to the
exhibitor, is the characterization direction. The above definition assumes the forward direction of the
exhibition-characterization relation. Viewed in the backward direction, the feature is said to characterize
the exhibitor. Figure 18.1 expresses on the left the exhibition-characterization relation as a bidirectional
tagged structural link, yielding two OPL sentences, while on the right, the relation’s designated symbol is
used, resulting in a single OPL sentence with the (non-bold) reserved OPL word exhibits.

Person

exhibi
Person e

characterizes First Name First Name

Person exhibits First Name.

First Name characterizes Person. Person'exhibit: Flrst Namb.

Fig. 18.1 The exhibition-characterization relation expressed as a bidirectional tagged structural link (left) and with the
relation’s designated symbol (right)

The word for the backward relation, characterization, is much more commonly used in the context of
the relation than its forward counterpart, exhibition. Characterization is therefore the short name of the
relation. Based on this, we may occasionally drop the “exhibition” part of the name of this fundamental
structural relation and abbreviate it to characterization, bearing in mind that this is the direction up the
hierarchy level.'

18.1.1 Primary and Secondary Qualities

Many philosophers who discussed epistemology and metaphysics, including Galileo, Descartes, and
Locke, have made the conceptual distinction between primary and secondary qualities (or properties, or
attributes). Primary qualities are “independent” properties of objects, such as shape or mass, which
convey facts about the thing and do not rely on subjective judgments. Secondary qualities are properties
such as color, taste, smell, and sound, which depend on and produce sensations in observers and do not
provide objective facts about things.

As Galileo (1623) wrote in The Assayer, “... tastes, odors, colors, and so on are no more than mere
names so far as the object in which we locate them are concerned, and that they reside in consciousness.”
Further, Descartes (1647) wrote about secondary qualities that “we are not aware of their being anything
other than various arrangements of the size, figure, and motions of the parts of these objects which make
it possible for our nerves to move in various ways, and to excite in our soul all the various feelings which

'This concession exemplifies the kind of design tradeoff decisions that need to be made while conceiving OPM names. On one
hand, consistency and orderliness are imperative, but on the other hand, clarity and expressive power are enhanced when the
language is as natural and as terse as possible. Since English, like all natural languages, has its idiosyncrasies, compromises such as
this must often be made after weighing the pros and cons of each alternative. It may also be somewhat odd that we spend so much
intellectual effort in choosing good names for abstract ideas. However, a meaningful name can make the great difference between a
well-understood and appropriately used concept, and one that misses the point due to a term that while being formally correct, is
poorly understood.

Dori — Model-Based Systems Engineering with OPM and SysML 241

they produce there.” Similar observations were made by Newton (in Opftica, 1721) about the color of
rays, and by Leibnitz (in Discourse on Metaphysics, 1686) about size, figure and motion.

This distinction was criticized by Berkeley (1710) in his “immaterialism” theory, which denied the
existence of material substance altogether. According to Berkeley, familiar objects, like a table, are only
ideas in the human perceiver’s mind, and cannot exist without being perceived. The ideas created by
sensations are all that people can know for sure. When an object is stripped of all its secondary qualities,
the idea that there is some object has no support, since without qualities one cannot give any content to
the idea of the object existence. Kant (1783) also went against this distinction, claiming that both primary
and secondary, qualities are subjective, as they are located in the brain of a knowing observer. This
discussion complements our previous treatment in Sect. 10.3 of object identity.

18.2 Attribute and Operation: The Two Kinds of Feature

Perseverance is a thing’s property with two values: static and dynamic. Perseverance is the property that
enables distinction between an object and a process. It determines that the thing is an object when the
perseverance value is persistent (static), and a process—when the perseverance value is transient
(dynamic). A feature—a thing that characterizes a thing—is also classified into two types based on
whether its perseverance value is static or dynamic.

An attribute is a feature whose perseverance value is static.

An operation is a feature whose perseverance value is dynamic.

An attribute is a static feature—an object that characterizes a thing, while operation is a dynamic
feature—a process that characterizes a thing. Being an object, the perseverance value of attribute is
persistent (static). Being a process, the perseverance value of operation is transient (dynamic).

The OPL sentence that relates an Exhibitor to two features, Feature 1 and Feature 2, is:

Exhibitor exhibits Feature 1 and Feature 2.

The OPL sentence that relates an Exhibitor to three features, Feature 1, Feature 2, and Feature 3, is:
Exhibitor exhibits Feature 1, Feature 2, and Feature 3.

All the features on the list must be of the same perseverance, i.c., all are attributes (object features) or
all are operations (process features). If some of the features are attributes while others are operations, we
divide the features into two lists, one of attributes and the other—of operations. If the exhibitor is an
object, then the first list of features is of (one, two, or more) attributes, and the second—of operations.
The list of attributes is connected to the list of operations by the reserved OPL phrase as well as. As an
example, the following OPL sentence specifies an Object exhibitor with three attributes and two operations:

Object exhibits Attribute 1, Attribute 2, and Attribute 3, as well as Operation 1 and Operation 2.
If the exhibiting thing is Process, the list of operations precedes the list of attributes:

Process exhibits Operation 1 and Operation 2, as well as Attribute 1, Attribute 2, and Attribute 3.

242 Exhibition-Characterization

18.3 Features in UML and SysML Versus OPM

Attributes and operations are concepts that exist also in the object-oriented (OO) approach. In OO
terminology, an attribute is also referred to as a data member, while an operation is also referred to as a
method or a service. All these words are meant to express “something that the object can do” or “a way in
which the object behaves.” In traditional procedural third generation programming languages, operation
is also referred to as a function, a procedure, or a routine. Table 18.1 summarizes the definitions of
attribute and operation as specializations of feature along with similar concepts in OO and traditional
programming languages.
Table 18.1 The specializations of thing and feature by perseverance and similar concepts in OO and traditional
programming languages

Perseverance value Thing Feature OO similar concepts Traditional similar concepts

persistent (static) Object Attribute Data member Variable, Parameter

Procedure, Routine,

transient (dynamic) Process Operation Method, Service Subroutine, Function,

OPM treats features as things that have their own right of existence, regardless of the fact they may
also characterize higher-level things. While aggregation-participation and generalization-specialization
are recognized relations in SysML (as in UML) and have their own symbols (black or white diamond for
the former, white triangle for the latter), exhibition-characterization is not an explicit relation and does not
have a symbol. Rather, an attribute is recognized as such in UML by its location in the second of the three
vertically-arranged compartments that comprise the UML object class symbol. In SysML there can be an
arbitrary number of compartments in a block, so each compartment must be labeled. For example, in Fig.
18.2, the label is “values”.

Paradoxically, although OPM does not attempt to be “purely” object-oriented, it is more object-
oriented in its treatment of characterization than the OO paradigm. In OO, attributes and methods are
encapsulated, or embedded, within objects. Are attributes not objects, but rather “different animals™ that
reside within the object? If an attribute is not an object, then what is it? Does the world consist not only of
objects but also of attributes (and methods)? OPM does not encounter this dilemma, since it defines
feature generically as a thing that describes a thing and as one that specializes into an attribute—an
object—and an operation—a process.

To demonstrate the problem caused by not treating attributes as objects, consider a “classical”
example of Name and Address as attributes of the object class Person, and Moving as an operation of
Person.” As Fig. 18.2 shows on the left, in SysML this is done by assigning a title to each compartment.
The top compartment has the «Block» stereotype title, which is analogous to Object in UML and OPM,
with the name of the block, Person, underneath it. Below this top compartment are the “values”
(attributes) compartment, with Name and Address as the values, and at the bottom is the operations

*We assume here that Person is capable of Moving without the need for external objects, such that Moving can be
considered an operation of Person.

Dori — Model-Based Systems Engineering with OPM and SysML 243

compartment, with Moving as the listed operation. In UML and many of its predecessors, such as Object
Modeling Technique, OMT (Rumbaugh et al. 1991) the attributes and operations are listed always in the
second and third class box compartments, respectively, so no titles are needed.

On the right hand side, Fig. 18.5 shows the corresponding OPM notation: Name and Address are
separate objects, and Moving is a process. Since Name and Address are linked to Person with the
exhibition-characterization symbol, they are also attributes of Person. For the same reason, Moving is an
operation of Person. A side benefit of this notation is that we can connect Moving to Address with an
effect link to denote the fact that Moving has an effect on the Address of Person, already combining
structure and behavior in this simple OPD.

<<Block>>
Person

Person

values

Name
Address | |

operations Name @ <¢3>| Address

Moving

Person exhibits Name and Address, as well as Moving.
Moving affects Address.

Fig. 18.2 Expressing attributes (values) and operations in SysML (left) and in OPM (right)

Outside the context of Person, both Name and Address are bona fide objects in their own right.
Moreover, as shown in Fig. 18.3, each one of them consists of parts: Name consists of First Name
followed by Last Name; Address consists of Street, City, Zip Code, State and Country, in that sequence.

18.4 OPM Thing and Feature Name Uniqueness

Different things in an OPM model must have different names in order for them to be distinguishable and
to avoid confusion. However, when it comes to features, which are things that describe things, it becomes
difficult to come up with a different name for each feature. For example, in Fig. 18.3, there is an attribute
of Person called Name, but Street and City might, in turn, also have an attribute called Name. Hence,
features of things are allowed to have the same name as features of other things.

The uniqueness of features is maintained by adding “of Exhibitor”, where of is a reserved OPL phrase
(word in this case) and Exhibitor is the name of the thing that exhibits the feature. Thus, a feature of a
feature shall have two “of” reserved OPL words, as in Length of Name of Person. The following name
uniqueness OPM principle summarizes this.

244 Exhibition-Characterization

<<PE:;I:)SC:: ? Person
values
First Name [I
LastN
StarZet i i Name @ <&—>> Address
City
Zip Code ordered
Sip ; ordered
Country First Name
operations Last Name
Moving ‘ Zip Code
| o |
L[couny |

Person exhibits Name and Address, as well as Moving.

Moving of Person affects Address of Person.

Name of Person consists of First Name and Last Name, in that sequence.

Address of Person consists of Street, City, Zip Code, State, and Country, in that sequence.

Fig. 18.3 Expressing parts of attributes in SysML (left) and in OPM (right)

The Thing Name Uniqueness OPM Principle

Different things in an OPM model which are not features must have different names. Features are
distinguishable by appending to them the reserved word “of” and the name of their exhibitor.

18.5 The Four Thing-Feature Combinations

Exhibition-characterization is unique among the structural relations in that it is the only one that allows
relating objects to processes and processes to objects. All the other structural relations, including in
particular the remaining three fundamental structural relations, allow linking things with the same
perseverance value only: objects (things whose perseverance value is persistent, or static) can be linked
only to objects and processes—(things whose perseverance value is transient, or dynamic) only to
processes. Thus, objects can be parts or specializations or instances only of objects, and processes can be
parts or specializations or instances only of processes. However, when it comes to exhibition-
characterization, all the four object-process (exhibitor-feature) combinations are possible. In other words,
as shown also in Fig. 18.4, since both thing and its feature can be an object or a process, the 2x2 Cartesian
product yields a state-space of four different combinations of a thing and the feature that characterizes it,
namely, from left to right and from top to bottom in Fig. 18.4: (1) an attribute of an object, (2) an
operation of an object, (3) an attribute of a process, and (4) an operation of a process.

Dori — Model-Based Systems Engineering with OPM and SysML 245

Object Exhibitor Object Exhibitor
Attribute
Attribute of an object Operation of an object
Process Exhibitor Process Exhibitor

Attribute
Attribute of a process Operation of a process

Fig. 18.4 The four thing-feature combinations

As an example of an object-attribute combination, Address is an object in its own right, but it is also
an attribute of Person, as it is one of the things that characterize it. As an example of an object-operation
combination, Printing is a process, which is also an operation of Printer, as it is a thing that characterizes
what a Printer is capable of—what its function is. All four combinations are discussed and further
demonstrated in this section. In the following subsections we elaborate on each one of these
combinations.

18.5.1 The Object-Attribute Combination

The first thing-feature combination—object and its attribute—is the customary attribute of classical OO
approaches. Here we refer to an object B,—the attribute—that characterizes (describes) a higher level
object B;. Conversely, we say that B, exhibits B,. A few examples for such pairs of objects and their
attributes are Material—Specific Weight, Person—Age, Chemical Element—Atomic Weight, Laptop—
Manufacturer, Book—Author, Officer—Rank, and Dog—Breed. The first four of these examples are
depicted in the four OPM models in Fig. 18.5.

. Material Person Chemical Element Laptop
A A

Specific Weight Age Atomic Weight Manufacturer
Material exhibits Specific Person exhibits Chemical Element exhibits Laptop exhibits
Weight. Age. Atomic Weight. Manufacture

Fig. 18.5 Examples of attributes of objects

246 Exhibition-Characterization

18.5.2 The Object-Operation Combination

The second thing-feature combination is object and its operation. As noted, in OO approaches an
operation is also called method or service (see Table 18.1). Here we refer to a process P,—the
operation—that characterizes a higher level object B;. Conversely, we say that B; exhibits the operation P;.

Airplane Person Printer Dog

/A\ A\ /a\ /A\

Airplane exhibits Person exhibits Printer exhibits Dog exhibits
Flying. Walking. Printing. Watching.

Fig. 18.6 Examples of operations of objects

An operation of an object is a process that is internal to the object: it can be performed by the object or
its part(s) and affects only objects that are parts, features, or specializations of that object. In other words,
an operation of an object By has no side effect on, nor does it require any object that is outside of B;.
Under this condition, the operation can be identified as being “owned” by B;. The OO approach, and
consequently UML and SysML, view all processes as operations that are encapsulated within and owned
by objects. This encapsulation is a major source of confusion and an impediment to faithful system
modeling. In OPM, encapsulation is valid only when the process is internal to the object. In cases like
this, the process is defined as an operation of the encapsulating object.

A few examples of pairs of an object and its operation are Airplane—Flight, Person—Walking,
Printer—Printing, Officer—Commanding, and Dog—Watching. Figure 18.6 presents four OPM models
that correspond to these pairs. As these examples show, an operation is a specialization of a process. As
such, a name given to an operation should be a gerund, i.e., a verb form ending with the “ing” suffix.

Many objects, in particular physical and artificial ones, exhibit a major operation that expresses the
main function that the object is designed to perform; the service it is expected to provide. Such objects are
systems. A system (which is artificial) provides value to the system’s beneficiary. For example, the
function that the object Printer supplies is Printing, the function of Airplane is Flying, the function of
Crane is Lifting, and the function of Dryer is Drying. This is in line with our definition of an artificial
system as an object that carries out a function.

18.5.3 The Process-Attribute Combination

Like objects, processes require adequate representation in the model of any system. Just like objects,
processes might require attributes—objects that describe them. The idea of attributes for processes is a
natural extension to attributes for objects and poses no special conceptual difficulty.

So far, we have seen that the first and second thing-feature combinations—an object describing an
object and a process describing an object—are the corresponding object-oriented concepts for attribute
and operation (or service, or method). However, the third thing-feature combination—an object

Dori — Model-Based Systems Engineering with OPM and SysML 247

describing a process—is not explicitly defined in the OO approach. Here we refer to an object B;—the
attribute—that characterizes a higher level process P;. Conversely, we say that the process P, exhibits the
attribute B;. Few examples of pairs of a process and its attribute are Diving—Depth, Commanding—
Language, Printing—Quality, Striking—Duration, Manufacturing—Quantity, Watching—Effectiveness,
Singing—Volume, Skiing—Location, and Flying—Speed.

) () (o) (o)
/A\ /A\

/A\ /A\

Depth Language Printer Duration
Diving exhibits Commanding Printing exhibits ~ Striking exhibits
Depth. exhibits Language. Quality. Duration.

Fig. 18.7 Examples of attributes of processes

Figure 18.7 presents OPM models that correspond to the first four process-attribute pairs. Each of
these process-attribute pairs can be embedded in a natural language sentence. Here are possible examples,
where the processes are bold and their attributes are italicized:

(1) Diving at a depth of 30 meters or more requires the diver to make decompression stops.
(2) The language the office was using for commanding was foreign and strange.
(3) The printing of this device is of poor quality.
(4) The employees have been striking for duration of over two weeks.
While all the processes in these examples are nouns having the gerund form, they can be easily
converted into sentences where the processes are verbs, with the same semantics as before:

(1) A diver who dives at a depth of 30 meters or more is required to make decompression stops.
(2) The officer commands in a foreign language.

(3) This device prints with poor quality.

(4) The employees strike, and this has been lasting for a duration of over two weeks.

As these examples show, this OPM extension of the OO, UML and SysML attribute and operation
concepts is a direct consequence of recognizing processes as bona fide independent kind of things
besides, rather than being necessarily subordinates of objects, or second-class citizens that are owned
objects.

18.5.4 The Process-Operation Combination

The fourth and last thing-feature combination—process and its operation—is the second one that is not
explicitly defined in the object-oriented (OO), UML and SysML approaches. It is the least prevalent
combination and may be somewhat difficult to grasp. Here we refer to a process P,—the operation—that
characterizes a higher level process P,. Conversely, we say that the process P, exhibits the operation P,.
Following OPM definition of a process, only a process can change a thing. In other words, the process is
the thing, which is “responsible” for this change. That process can be an operation. An operation of an

248 Exhibition-Characterization

object changes the object that exhibits (“owns” in OO terms) that operation. Likewise, an operation of a
process changes the exhibiting process—the process that exhibits that operation.

In daily life we do not think so much about operations of processes. The best way to understand the
meaning of an operation of a process is to look at time. A change of an object along the timeline means
that the state of an object (or its value, in case that object is an attribute) inspected at time ¢ is different
from its state at a later time ¢ + At. Extending this idea from objects to processes, if we sample a process
at two different points in time, we may notice a change in that process, manifested as a difference in the
value of one of the attributes of that process, which is caused by an operation of that process.

Delaying @

Moving exhibits Fluctuating exhibits Transmitting Communicating
Accelerating. Stabilizing. exhibits Delaying exhibits Interfering.

Fig. 18.8 Examples of operations of processes

Figure 18.8 contains four partial OPM models, each showing a process and its operation. In the model
on the left, Accelerating is an operation that changes the value of the attribute Velocity of the Moving
process. Similarly, the operation Stabilizing of the Fluctuating process changes the value of the Amplitude
attribute of Fluctuating. Next, Delaying is an operation of Transmitting that changes its Duration attribute.
Finally, Interfering is an operation of the Communicating process, which changes the value of the Signal-
to-Noise Ratio attribute of the Communicating process.

In mathematical terms, a change of an object along the timeline is a first derivative of some quantity
(which is an attribute value of that object) with respect to time. In an analogous manner, since a process is
a pattern of transformation (responsible for transforming an object), an operation of a process is a
transformation of a transformation, or a change of a change. In mathematical terms, this is a second
derivative (derivative of the derivative) of some quantity with respect to time. Indeed, the examples of
pairs of a process and its operation shown in Fig. 18.8 have the notion of changing a process and can be
quantified mathematically using second order derivatives. For example, in the OPM model on the left of
Fig. 18.8, if we denote the attribute Velocity of the process Moving of an object as a function of time by
v(t), then we know that v(¢) is the first derivative of the attribute Position s of the object as a function of
time: v(f) = s'(f). Denoting by a(f) the attribute Acceleration of the Accelerating process, we have a(t) =
V'(t) = s"(t), where a(?) is the first derivative of Velocity and the second derivative of Position.

18.6 Fundamental Structural Hierarchies

Feature is a relative term. A thing is a feature if it describes another thing. This feature itself can have
parts or be further described by another, lower level feature. Since both exhibition-characterization and

Dori — Model-Based Systems Engineering with OPM and SysML 249

aggregation-participation are fork relations, structural hierarchies of these relations (as well as
generalization-specialization, discussed in a couple of chapters) can be formed.

Consider the object City, whose feature hierarchy is depicted in Fig. 18.9. Three important attributes
of City, in addition to its Name, are Location, Population, and Climate. Besides being attributes of City,
Location, Population and Climate are objects in their own right, so each may have its own set of features
or parts. Location has the attributes of the Continent, Country, Region, and Coordinate Set. Population
exhibits the attributes Size and Demographics and the operations Aging and Earning. Demographics, in
turn, consists of Average Age and Average Income. Aging and Earning are two operations that
respectively affect the two parts of Demographics, and Precipitating is an operation of Climate that
affects Average Precipitation.

18.7 The Attribute Naming Problem

Natural languages often provide us with a definite noun for naming the attribute. For example, the
attribute whose two extremes are the adjectives “short” and “long” is called Length. The attribute whose
two extreme adjectives are “narrow” and “wide” is called Width, and the attribute whose two extremes are
“heavy” and “light” is called Weight. Sometimes, the attribute name (the noun) is from the same radical
(root word) as one of the (often extreme) values (the adjective) along the spectrum of possible values for
that attribute. Examples for such attribute-value (noun-adjective) pairs are Length—long, Width—wide,
Readiness—ready, and Beauty—beautiful. Of these pairs, the radical (root) may be either the name of the
attribute—the noun (e.g., Beauty) or the name of one of the values of that attribute—the adjective (e.g.,
ready).

City exhibits Location, Name,
Climate, and Population.
A\ City Location of City consists of
Continent, Country, Region, and
1 I I 1 Coordinate Set.

Location Climate Name Population Climate of City consists of Average
Temperature and Average
I 2‘; Precipitation.
Continent Average L1 size Average Precipitation exhibits
Temperature Precipitating.
Precipitating affects Average
oty Average |_) Precipitatiog.
Precipitation Demographics Population of City exhibits Size and
Region Demographics, as well as Aging
4 and Earning.
Coiordinate St fvemge e Demographics of Population
Precipitating consists of Average Age and

Average Income Average Income.
Aging affects Average Age.

Earning affects Average Income.

Fig. 18.9 A structural hierarchy example of City

The names of some attributes are neutral nouns, while others are taken from one of the extreme values
of the attribute and are biased towards it. The attribute Shape, for example, is a neutral noun. Its values

250 Exhibition-Characterization

may be the adjectives round, square, elliptic, etc. There is no bias in Shape toward any of its values.
Conversely, Length is biased towards the long extreme of the short—long value spectrum. Picking up
Shortness instead would tilt the bias to the other extreme. Hence, a sentence such as “The shape of the
house is square.” makes perfect sense, whereas “The length of the stick is long,” while syntactically
correct, is semantically awkward. Skipping the name of the attribute, we would rather say “The stick is
long.” In this case, the attribute Length is implicit in the sentence. We could also skip the attribute name
of the attribute Shape in the sentence “The shape of the house is square.” and say “The house is square.”
We call such an attribute implicit. Implicit attribute sentences are usually used when the attribute name is
taken from one of its extreme values. Examples are Length, taken form the pair long—short, Beauty, taken
from the pair beautiful-ugly, and Width, taken from the pair wide—narrow. Interestingly, the choice of
which of the extremes is chosen as the name of the attribute tends to favor the one that is considered
better or larger. Thus, it is much less natural to respectively name these attributes Shortness, Ugliness,
and Narrowness, although these words are legal nouns.

The use of implicit attribute sentences in natural language is the rule rather than the exception.
Skipping the name of the attribute to which the value belongs and make direct reference to the object that
exhibits the value is most prevalent. Implicit attributes are so widespread, that in many cases the natural
language does not have a dedicated noun for the attribute itself, while the adjectives, which are the values
or states of that attribute, do have widely recognized and used names.

As an example, consider the implicit attribute sentence “This book is interesting.” The adjective
interesting refers to an attribute of this book, whose possible values may be “interesting” and “boring.”
There is no single noun for an attribute whose values are interesting and boring. Plausible names of this
attribute may be either Interest Level or Boredom Level. However, each is biased toward one of the
extremes of the spectrum or the other. Ideally, we would like a word that is neutral and not biased toward
any one of the possible attribute values.

In other cases, it is obvious that the name of the attribute was invented after the value was already in
use. For example, Laziness is a name of an attribute which has lazy as one of its values (and energetic or
industrious or hardworking as another), and the suffix “ness” hints to its later introduction into the
language. Obviously, if we attach to a Person an attribute called Laziness, we would expect the value of
this attribute to be lazy rather than hardworking. More simply and more naturally, we would like to say
that “Person is lazy.” This sentence is much shorter, clearer, and straightforward compared with the two
OPL sentences “Person exhibits Laziness.” and “Laziness of Person is lazy.” Indeed, as discussed Sect.
18.8 OPM has the option of implicit attribute, where lazy and hardworking are directly modeled as states
of Person rather than values of its Laziness attribute, which, in this case, becomes redundant.

However, in the general case, in OPM, where modeling is formal, we often have to explicitly model
the attribute before we can model its states or values, and if there is no word for the attribute, we have to
invent it. Indeed, in OPM there is the problem of finding adequate names for properties (metamodel
attributes) of Thing. The name of the property of Thing whose values are natural and artificial is Origin.
We have also called Essence the property of Thing whose values are physical and informatical.
Perseverance has been chosen as the name for the property whose values are persistent (in which case
the thing is an object) and transient (in which case the thing is a process). The choice of these property
names points to the difficulty in finding the right word to name an attribute (or property) whose values are
prevalent. For example, transient and persistent, which are the values of the property Perseverance, are

Dori — Model-Based Systems Engineering with OPM and SysML 251

widely used, while Perseverance is not recognized in conjunction with these adjectives. Origin and
Essence are neutral. Perseverance is less neutral; the American Heritage Dictionary (1996) defines
perseverance as “steady persistence in adhering to a course of action, a belief, or a purpose;
steadfastness.” Steady persistence inclines toward the notion of Object, since its Perseverance value is
indeed persistent. However, course of action has the notion of a process...

18.8 Properties of Features and Links

Features and Links have several properties (metamodel-level attributes), which are discussed in this
section. These include Explicitness, Mode, Touch, and Emergence. Some of these properties are relevant
to Feature in general, i.e., to both Attribute and Operation, while others—just to Attribute.

18.8.1 Explicitness

OPM caters to the natural language tendency to skip attributes and jump directly to their values, as Sect.
18.7 discusses, by providing the option to model attributes implicitly, as Fig. 18.10 demonstrates.

An attribute is implicit if its values are assigned as states directly to the exhibitor with
no specification of the attribute name.

An attribute is explicit if it is a separate object that is linked to the exhibitor with an
exhibition-characterization relation.

Explicitness is an attribute of an attribute whose values are explicit (the default) and
implicit.

D [

I 1
Weight Length Length Weight

Stick exhibits Weight and Length. Stick can be light or heavy. Stick can be short or long.
Weight can be light or heavy. Length Stick exhibits Length. Stick exhibits Weight.
can be short or long. Length can be short orlong. Weight can be light or heavy.

Fig. 18.10 Explicit and implicit attribute modeling

It is easy to identify an implicit attribute: If an object has states that are placed directly inside its
rectangle rather than in its attribute, then the attribute whose values are within the object is implicit. By
default, an attribute is explicit—its Explicitness value is explicit. It often makes sense to use an implicit
attribute, as this circumvents the attribute naming problem discussed in the previous section—the need to
invent a name for the attribute. We saw the example of Laziness in the previous section. As another

252 Exhibition-Characterization

example, Lamp can be on or off. It would be cumbersome to define a dedicated explicit attribute for these
states and difficult to find a good name for it: “Onness”? “Offness”? “Operational Status”? None of these
makes sense.

It is not possible to have more than one implicit attribute for the same thing, because this would mix
values of different attributes in the same sentence without affiliating them with the proper “owning”
attributes. For example, examining Fig. 18.10, we observe that sentences such as “Stick can be light,
heavy, short, or long” do not make sense, because values of the Weight and Length of Stick are mixed.
We can have either Weight or Length as implicit attributes, but not both. In the OPM model on the left of
Fig. 18.10, both Weight and Length are explicit attributes of Stick. In the middle, Length is an explicit
attribute, with values long and short, while Weight is implicit, with states light and heavy. Finally, in the
OPM model on the right, the opposite is true: Weight is an explicit attribute, with values light and heavy,
while Length is implicit.

18.8.2 Mode

Some attributes are qualitative while others are quantitative. We have seen the example of the attribute
Shape of House, where possible values can be round, square, and rectangular. These values cannot be
quantified by a numeric value. They are just qualitatively different from each other. We say therefore that
Shape is a qualitative attribute. Other examples of qualitative attributes include Mood, with states happy,
sad, angry, etc., Health, with states healthy and sick, and Marital Status, with states single, married,
divorced, etc. Examples of quantitative attributes are Weight [Kg] and Height [m]. As these examples show,
quantitative attributes need to be followed by the unit of measurement in brackets, as discussed in Chap.
22. Since an attribute can be qualitative or quantitative, qualitative and quantitative are values of a
property of Attribute called Mode.

An attribute is quantitative if its values are numerical or parametric.
An attribute is qualitative if its values are non-numerical.

An operation is quantitative if it transforms a quantitative attribute, otherwise it is
quantitative.

Mode is a property of a feature that determines whether it is qualitative (the default)

or quantitative.

The definition of numerical here includes parametric—a parameter is a symbol that stands for some
numerical value. We could assign numeric values, or “codes” to values of a qualitative attribute, for
example, single = 1; married = 2. Indeed, this was a common practice in early information processing
systems and is still often the practice, especially when data has to be analyzed statistically. However,
semantically this does not render a qualitative attribute quantitative.

An example of quantitative operations is Height Measuring, which creates a value for the quantitative
attribute Height. Another example is Weighing, which creates a value for the quantitative attribute Weight.
Section 13.10 discusses how to model setting or updating values using value-specified procedural links.

Dori — Model-Based Systems Engineering with OPM and SysML 253

18.8.3 Touch: A Property of a Quantitative Attribute

A quantitative attribute can be hard or soft, depending on whether it can be computed from other
attributes or not. For example, Date of Birth of a Person is a hard attribute, while Age of Person is a soft
attribute. By knowing the Date of Birth of a Person and the current value of Date, Age of Person can be
computed. As another example, the Weight of each part of Airplane is a hard attribute, while the total
Weight of Airplane is a soft attribute since it can be computed by summing the weights of the individual
parts. The name of the property of Attribute whose values are hard and soft is Touch.

A quantitative attribute is hard if its value cannot be deduced or computed from other
attributes.

A quantitative attribute is soft if its value can be deduced or computed from other
attributes.

Touch is a property of a quantitative attribute which determines whether it is hard
(the default) or soft.

Deciding whether a soft attribute should be pre-computed has practical implications during the
detailed design stage of an information system. Pre-computed values can be stored for quick response
time at the cost of storage space. Alternatively, soft attributes can be computed on demand, saving space
but also delaying the response time of the information system. This is a common tradeoff in databases,
where the need for high response speed is weighed against storage overhead.

18.8.4 Emergence

Depending on whether a feature is exhibited only by the object as a whole or only by one or more (but not
all) of its parts, a Feature (an Attribute or an Operation) can be inherent or emergent.

A feature of an object is inherent if a least one of the object’s parts exhibits it.
A feature of an object is emergent if no one of the object’s parts alone exhibits it.

Emergence is a property of an object whose values are inherent (the default) and
emergent.

To understand the difference between emergent and inherent features, consider Airplane’s attribute
Weight and its operation Flying. Weight of Airplane is the sum of the individual Weight values of each one
of the parts that make up the Airplane. Flying, on the other hand, was not an operation that any part of
Airplane could exhibit on its own. Rather, this feature emerges from the unique ensemble of the parts of
Airplane that endows Airplane with the ability to carry out the Flying operation. Hence, Flying is an
emergent feature (operation in this case) of Airplane, while Weight is an inherent feature (attribute in this
case) of the Airplane.

In systems, operations are frequently emergent, because systems are built with the intent of achieving
some function that is not localized in or achievable by any part of the system alone. Flying of Airplane is
an excellent example. Bar-Yam (1997) distinguishes between simple and complex systems and claims

254 Exhibition-Characterization

that complexity can emerge from a collection of simple parts that comprise a system. The converse can be
true as well: a system composed of complex parts may exhibit simple behavior at a larger scale. For
example, planet Earth is a highly complex system, but when viewed from the perspective of its movement
around the sun, it is relatively simple, pointing to the relativity of the term complexity.

18.8.5 The Link Homogeneity Property

The property that specifies whether a link connects things with the same Perseverance—static
(persistent, defining an object) or dynamic (transient, defining a process) is called Homogeneity. The
values of Homogeneity are homogeneous, which applies if the two things that the link connects exhibit
the same Perseverance (cither both are objects or both are processes), and non-homogeneous otherwise
(one is an object and the other—a process). Since most structural links are between two objects or
between two processes, the Homogeneity value homogeneous is the default for structural links.
Conversely, since most procedural links are between an object and a process, the Homogeneity value non-
homogeneous is the default for procedural links.

A link is homogeneous if it connects two things that exhibit the same perseverance
value.

A link is non-homogeneous if it connects two things that exhibit opposite
perseverance values.

Homogeneity is a property of a link whose values are homogeneous (the default for

structural links) and non-homogeneous (the default for procedural links).

Almost all the structural links are only homogeneous: they either connect two objects or two
processes. The only exceptional structural link that is Exhibition-Characterization, which can be both
homogeneous (in case it connects an object with an attribute or a process with an operation) or non-
homogeneous (in case it connects an object with an operation or a process with an attribute). All the
other structural links, and in particular the remaining three fundamental structural relations, are
homogeneous. Analogously, almost all the procedural links are non-homogeneous, as they connect an
object to a process. The only procedural links that are homogeneous are the invocation link discussed in
Sect. 10.10.3 and the overtime and undertime exception links discussed in Chap. 22.

18.9 Summary

o Exhibition-characterization is a relation between a thing and the features that characterize it.
e The shorthand name of this relation is characterization and its symbol is /..

e Characterization is the only fundamental structural relation for which all four combinations of an
object and a process, as an exhibitor and a feature, are possible.

o A feature which is an object, is called an attribute, while a feature which is a process is an
operation.

Dori — Model-Based Systems Engineering with OPM and SysML 255

e An attribute is implicit if its values are assigned directly to the exhibitor with no specification of
the attribute name.

e An attribute is explicit if it is a separate object that is linked to the exhibitor with an exhibition-
characterization relation.

o Explicitness is an attribute of an attribute whose values are explicit (the default) and implicit.

e An attribute is qualitative if its values are non-numerical.

e An attribute is quantitative if its values are numerical.

e An operation is quantitative if it transforms a quantitative attribute, otherwise it is quantitative.

e Mode is a property of a feature that determines whether it is qualitative (the default) or
quantitative.

e A quantitative attribute is hard if its value cannot be deduced or computed from other attributes.
e A quantitative attribute is soft if its value can be deduced or computed from other attributes.

e Touch is an attribute of a quantitative attribute which determines whether it is hard (the default)
or soft.

e A feature of an object is inherent if a least one of the object’s parts exhibits it.

e A feature of an object is emergent if no one of the object’s parts alone exhibits it.

o Emergence is a property of an object whose values are inherent (the default) and emergent.

o A link is homogeneous if it connects two things that exhibit the same perseverance value.

e A link is non-homogeneous if it connects two things that exhibit opposite perseverance values.

o Homogeneity is a property of a link whose values are homogeneous (the default for structural
links) and non-homogeneous (the default for procedural links).

18.10 Problems

1. For each one of the four exhibitor-feature combinations, draw an OPD that is not provided as an
example in this chapter.

2. “The quick brown fox jumps over the lazy dog” is an English-language sentence called
pangram—a phrase that contains all of the letters of the alphabet. Create an OPM model of this
sentence in which Jumping is an operation of Fox.

3. In the model you created in the previous question change each explicit attribute to an implicit
one and vice versa.

4. Provide two examples of inherent features and two of emergent features.

Create an OPM model of the structure—parts and features—of the Pazyryk burial mounds
chariot in the Hermitage Museum in St. Petersburg according to the following description
(image available in URL).

This large four-wheel chariot is one of the striking finds of the Pazyryk burial mounds. It consists of a number of

parts joined together by leather straps and wooden nails. The trunk is made of two frames joined by means of short
carved poles and leather straps. The frames constitute the basis for the canopy. Each of the four large wheels has 34

http://www.hermitagemuseum.org/wps/portal/hermitage/digital-collection/25.+Archaeological+Artifacts/879866/?lng=en

256 Exhibition-Characterization

spokes. The axles do not have a rotary device, and the distance between the back and front wheels is only 5 cm, which
meant that the chariot could only be used on flat ground. It could, however, be easily disassembled and transported
on horses. Thanks to the permafrost, the chariot is in an excellent state of preservation.

Chapter 19
States and Values

The Caterpillar ... got down off the mushroom and crawled away into the grass
merely remarking as it went, “One side will make you grow taller, and the other side
will make you grow shorter.”

Alice in Wonderland. Lewis Carroll, 1899

To be able to talk explicitly about a change in an object over time, we assign to it a number of possible,
“legal” states. Hence, a state is a situation an object can be at. States and values add expressiveness to
OPM. A value is a state of an attribute. As such, it is a specialization of state: Whereas objects can have
states, only states of attributes, which are objects that describe other object, are called values. States and
values enable modeling change in an object while that object retains its identity. We have been using the
terms states and values quite intuitively since the early chapters of this book. If objects and processes are
the building blocks of OPM, and links are the mortar, states can be considered as the finish of the house:
the paint job, the furniture, and architectural elements. At any time in the life of the object, when no
process is acting on it, that object is at one of its states. Cause and effect are tightly linked with the
concepts of change of state over time. This chapter formalizes the concepts of states and values, and
shows how they can be used to enhance model expressiveness.

19.1 State Defined

To be able to talk explicitly about a change in an object, we assign to it a number of mutually exclusive
situations, positions, or values, which we refer to as states.

A State is a situation or position at which an object can exist for some period of time

during its existence.

19.1.1 State Enumeration

An example of valid states of a Planet is visible and invisible, and the OPL sentence specifying it is
“Planet can be visible or invisible.” A Planet can change its invisible state to a visible state by rising above
the horizon and when there are no clouds. A state enumeration OPL sentence such as “Planet can be
visible or invisible.” enumerates all the states that the object can be at. It starts with the object name,
followed by the reserved phrase “can be” (or “is” in the case of just one state) followed by a list of states,
which are comma-separated in the case of three or more states, and ending with the reserved phrase “or”
between the last and second to last states. An object cannot be at more than one state at a time. Therefore,
the semantics of the state enumeration sentence is that of the logical exclusive OR, called XOR for short.
The default capitalization of a state name is lower-case letter.

© Springer Science+Business Media New York 2016 257
D. Dori, Model-Based Systems Engineering with OPM and SysML, DOI 10.1007/978-1-4939-3295-5 19

258

States and Values

19.1.2 Initial, Final, and Default States

It is often convenient or desirable to specify what the initial state, the final state, and the default state of

an object are.

is not specified.

The initial state of an object B is the state at which B is upon its generation or as the

system starts executing.

The final state of an object B is the state at which B is upon its consumption or as the

system finishes executing.

The default state of an object B is the state at which B is expected to be when its state

Frog is physical.

Frog can be spawn (cell mass), egg, tadpole, legged tadpole, froglet, or

adult.

Splitting

legged
tadpole

Water-to-Land
Migrating

Frog is initially spawn and finally Adult.

State adult of Frog is default.
Mating & Fertilizing (Amplexus) changes Frog from adult to spawn (cell

mass).

Splitting changes Frog from spawn (cell mass) to egg.

adapted from www tooterakids.com/Frogs/lifecycle |

Hatching changes Frog from egg to
tadpole.

Legs Growing changes Frog from tadpole
to legged tadpole.

Maturing changes Frog from froglet to
adult.

Water-to-Land Migrating changes Frog
from legged tadpole to froglet.

Fig. 19.1 Initial, final, and default states demonstrated in the lifecycle of a Frog with simulation. The initial state is spawn
(bold frame) and adult is both the final state (double frame) and the default state (the open arrow pointing at adult). The
simulation emphasizes closing the lifecycle

Dori — Model-Based Systems Engineering with OPM and SysML 259

An object can have zero or more initial states, zero or more final states, and at most one default states.
The same state can be any combination of initial, final and/or default. The initial and final states are
especially useful for objects that exhibit a lifecycle pattern, such as a product, a system, or our familiar
frog from Chap. 13. The default state is useful for specifying the state at which an object is when no state
is specified. The symbols for initial, final, and default states are a bold state frame, a double state frame,
and a state frame pointed to by an open arrow, respectively. These are demonstrated in the simulated
lifecycle of Frog in Fig. 19.1: The initial state of Frog is spawn (cell mass), denoted by the bold state
frame. The state adult is both the final state, denoted by the double frame, and the default state—the open
arrow pointing at the adult state frame.

The conceptual simulation in Fig. 19.1 shows the process Mating & Fertilizing (Amplexus)—the
highlighted solid ellipse—operating on Frog to change it from the state adult to the state spawn (cell
mass). The corresponding OPL sentence is:

Mating & Fertilizing (Amplexus) changes Frog from adult to spawn (cell mass).

This state transition emphasizes the cyclical nature of Frog, as the final (and default) state of Frog,
adult, yiclds Frog in the initial state, spawn (cell mass), through the Mating & Fertilizing (Amplexus)
process.

19.2 State Suppression and Expression

The elimination of the state symbols from the object is termed state suppression. State suppression is one
of several abstracting options. Abstracting is a means to simplify the OPD at the cost of hiding details
related to things in the OPD. Expectedly, as both the OPDs and in their equivalent OPL sentences
demonstrate, state suppression eliminates the information about how exactly the process affects the
object. This information can be provided in lower-level OPDs, where the states of the process are made
explicit.

The reverse of state suppression is state expression: refining the OPD by adding relevant states. As
Fig. 19.2 shows, whereas state expression is accompanied by splitting the effect link into its input link
and output link components, state suppression is accompanied by merging the input-output link pair into a
single effect link.

Car-Driver Complex .
P Car-Driver Complex
[Nc—w YorAJ [Boston]
A A A

N V

Moving changes Car-Driver
Complex from New York to Boston.

Moving affects Car-Driver Complex.

Fig. 19.2 State suppression example

260 States and Values

19.2.1 State Specializations and Their Participation Constraints

Figure 19.3 is a metamodel of Object showing the specializations of State—lInitial State, Final State, and
Default State, and their participation constraints. This is also specified in the OPL to the right of the OPD.

Object

r State Set

| State

Object exhibits State Set.

State Set consists of optional States, optional Initial States, an
optional Default State, and optional Final States.

Initial State, Default State, and Final State are States.

. Initial State

- Default State

— Final State

Fig. 19.3 A metamodel of Object showing the specializations of State: Initial State, Final State, and Default State,
with their participation constraints

In the metamodel in Fig. 19.3, State and its three specialization—Initial State, Default State, and Final
State—are all objects. This metamodel specifies the participation constraints for the three State
specializations. The OPL on the right states that State Set can consist of “optional Initial States” and
“optional Final States”, i.¢., zero, one, or more than one initial states and zero, one, or more than one final
states. Indeed, while usually an object has at most one initial state, it can have more than one. For
example, some process can create the object in one initial state while another process can create the same
object in a different initial state. Alternatively, as we show below, the same process can create an object
stochastically at one of two or more initial states. An object may also have more than one final state, from
which it cannot exit. However, State Set can consist of “an optional Default State”, i.c., there may be at
most one default state.

19.3 Value: A Specialization of State

| Value is a state of an attribute.

Since value is a state of an attribute, it is a specialization of state. The nuance in semantics between state
and value is demonstrated in Fig. 19.4, where in the OPD on the left, off and on are states of the object
Lantern, while on the right, off and on are values of the attribute Operational Status of the object Lantern.

Dori — Model-Based Systems Engineering with OPM and SysML 261

Lantern
Lantern g

[1
off
Sy Mt
@ [off] [on] [beam] {alert]
A\ e
A

Lantern exhibits Operational Status and Mode.

The values of Operational Status can be off or on.

The values of Mode can be beam or alert.

Lighting changes the value of Operational Status of Lantern from
off to on.

Lantern can be off or on.
Lighting changes Lantern from off to on.

Fig. 19.4 Example of the difference between state and value. Left: off and on are states of the object Lantern. Right: off
and on are values of the attribute Operational Status of the object Lantern

19.4 State Transition: When a Process Is Active

At any point in time, an object can be in at most one of its states. We say “at most”, because the object
can also be in transition between two states—the input state and the output state of the affectee with
respect to the process currently affecting that affectee. During the time at which the process affecting the
object takes place, the object has already left its input state, but it has not yet entered its output state. This
is an unstable situation of an object which occurs when a process is changing the object from being at its
input state—the state at which the object was before the process started, to being at its output state—the
state where it is going to be once the process is over. During this time the object undergoes state
transition.

State transition is an unstable period of time for an object, which takes place when a

\process acts on it to change its state.

Consider the following car painting example. When a white Car is painted red, its input state (the
value of its Color attribute when it enters the body shop for painting) is white. This is shown in the top left
OPD in Fig. 19.5 by the state white of Color highlighted. The output state of Car (the value of its Color
attribute when it leaves the body shop) is red. This is shown in the bottom right OPD in Fig. 19.5 by the
state red of Color highlighted. In-between these two stable states, Painting takes place. During this time
interval, when the Car is being painted, i.e., throughout the Painting process, which may be a couple of
days, the value of its Color attribute is not completely white any more, but it is not yet red either. Indeed,
while the Car is being painted, it is in transition between two Car states. We say that while undergoing the
Painting process, the Color of Car is unstable. This is shown in the top right and bottom left OPDs in Fig.
19.5, where the highlighting of the red and white states gradually change from red and white. The

262 States and Values

duration of the transition, the time when Car is neither completely red nor white, is equal to the duration
of the painting process.

EEEE

Fig. 19.5 The Car Painting system in action: The Car starts as white (top left) and ends as red (bottom right). The
diagrams at the bottom of each OPD are the lifespan diagrams

As the car painting example demonstrates, objects and processes in the system have history, which is
accumulated as the system performs its function. The history of an object begins at the time when it is
created and becomes an identifiable entity, and it ends at the time when it is consumed so it is no longer
the same identifiable entity. The history includes a time record of when the object was created, by what
process, the state changes the object went through while it maintained its identity, when the object was
consumed, and by what process.

History is meaningful only with respect to a particular system execution, i.e., the system at the
operational level, or instance level, but not the conceptual level, or class level, because only when a
system executes its function, it is possible to track and record what process instance started and ended

Dori — Model-Based Systems Engineering with OPM and SysML 263

when, and what object instance was transformed, whether it was created or consumed, or whether its state
was changed.

The history of a process includes, for each execution of each process in the system, the time at which
it started and ended. A particular process execution constitutes a process instance. The history also
includes the transformee and enabler instances in the involved object set. A useful tool to view, trace, and
analyze the history of objects and their states, and of processes in a system is the /ifespan diagram, which
OPCAT indeed includes.

A lifespan diagram is a diagram which, for any point in time during the life of the
system, shows what objects exists in the system, what state each object is at, and what

processes are active.

The four lifespan diagrams shown at the bottom of each one of the four OPDs in Fig. 19.5 record the
history of the car painting system as time progresses. In the diagram below the OPD in the top-left, only
the first time period is displayed. Painting is not active, and the Car is white. In the second diagram, the
first three time periods are displayed. In the third period, Painting is active, and the Car is no longer white.
The same happens in the fourth period, as shown in the third diagram. Finally, in the fifth period, shown
in the bottom diagram, Painting is no longer active, and the Car is red.

Machine
Operator

Raw Metal Bar

\

“ 2 pre-tested
' o

i Cuting

= Coolant \ /

Testing ,l
Raw Metal Bar can be pre-cut or cut.
Raw Metal Bar is initially pre-cut and finally cut. Cutting changes Raw Metal Bar from pre-cut to cut.
Machining requires Coolant. Machining consumes Raw Metal Bar.
Machine Operator handles Machining. Machining yields pre-tested Part.
Part can be pre-tested or tested. Testing changes Part from pre-tested to tested.

Part is initially pre- tested and finally tested.
Fig. 19.6 Raw Metal Bar and Part are objects that can be in transition between states

As another example, in the OPD in Fig. 19.6, Cutting takes Raw Metal Bar from its pre-cut to its cut
state. As long as Cutting is active, the state of Raw Metal Bar is in transition and bound to the Cutting
process: Cutting takes it out of its pre-cut state but has not yet brought it to its cut state with process
completion. During Cutting, the state of Raw Metal Bar is unstable and therefore indeterminate: it could

264 States and Values

be partly cut and reusable or mostly cut and unusable. In either case, it is not available for Machining,
since it is not in its cut state. Likewise, during Testing, Part is already not pre-tested, yet it is still not
tested.

If an active affecting process stops prematurely or takes too long, the state of any affectee remains
indeterminate, unless exception handling resolves the object to one of its permissible states. This can be
done using overtime or undertime exception link, discussed in the chapter on OPM operational semantics.

19.5 Path Labels and Flip-Flop

When two or more procedural links exit from the same process, it is not possible to know what link to
follow unless the links are labeled.

Tomato h
Lhore Salad
ot
Cucumber S
Stew
Meat
Steak

Following path carnivore, Food Preparing consumes Meat.

Following path carnivore, Food Preparing yields Stew and Steak.

Following path herbivore, Food Preparing consumes Cucumber and Tomato.
Following path herbivore, Food Preparing yields Salad.

Fig. 19.7 Path labels demonstrated on consumption and result links

Figure 19.7 demonstrates the problem and the use of path labels on consumption and result links
which solves this problem. If Tomato, Cucumber and Meat all exist, then the result is the generation of
Salad, Stew, and Steak. However, we cannot tell what ingredients went into what dish. And what if we
want to model that for vegetarians we wish to prepare only Salad and for meat eaters only Stew and
Steak?

This is solved by using the path labels carnivore and herbivore, recorded along the procedural links, as
shown in Fig. 19.7 and expressed by the OPL. Path labels uniquely determine which link to follow on
exiting the process: The link to be followed is the one having the same label as the one with which we
entered the process. Using path labels, it is possible to follow a specific scenario in the model that span
multiple consecutive procedural links. As this example demonstrates, path labels remove the logical AND
requirement from the objects in the preprocess object set. Here, only all the objects in the preprocess
object set whose links have the same label must exist in order for the precondition to be met. Thus,
Tomato and Cucumber alone, or Meat alone, meet the precondition for Food Preparing, and the outcome
is dictated by the path label.

A path label is a label on a procedural link which specifies that the link to be followed

is the one with the same label as the one with which the process was entered.

Dori — Model-Based Systems Engineering with OPM and SysML 265

Path labels remove the ambiguity arising from multiple outgoing procedural links, and they can also
be used for state-specified links. For example, in Fig. 19.8 there are two output links: one from Heating to
the state liquid of Water and the other to state gas. Entering this process from state ice, it is not clear
whether the flow of control should go to state liquid or to state gas, unless we use path labels. An
alternative would be to have two separate processes, one called “Ice-to-Liquid Heating” and the other—
“Liquid-to-Gas Heating”. A similar solution can be applied to Fig. 19.7. Without path labels, every pair of
incoming and outgoing procedural links must have its own process.

Water

(e) Come) (o)

Ice-to-ig

Water can be ice, liquid, or gas.
Following path ice-to-liq, Heating changes Water from ice to liquid.
Following path lig-to-gas, Heating changes Water from liquid to gas.

Fig. 19.8 Path labels demonstrated on an in-out link pair

Path labels provide a memory mechanism, which is required for state machines, where the next state
transition depends on the state of the system and on the previous move. When the process precondition
involves an object or state connected via a path-labeled procedural link, and the postprocess object set has
more than one possibility for destination object or state, the appropriate postprocess object set destination
shall be the one obtained following the link with the same path label as the link connecting one or more
objects and/or states from the preprocess object set.

From a metamodel perspective, Path Label is an (optional) property of Procedural Link. The memory
mechanism dictates that if the scenario unfolded through a path with some path label, then it must
proceed to the next step following the direction marked with same path label.

Fig. 19.9 presents an animated simulation of a simple Push Button, which when pushed shuts off a
lamp that is turned on and turns it on if it is shut off. The Push Button “remembers” its state, so whenever
it is pushed, it switches states. We can use the same idea to model a “flip-flop”, a two-state device which
offer basic memory for sequential logic operations and used for digital data storage of binary numerical
data. This OPM model mechanism can also be used to achieve the “NOT” logical operator, as discussed

in Sect. 23.2.

http://hyperphysics.phy-astr.gsu.edu/hbase/electronic/flipflop.html

266 States and Values

Push Button ' 'Push Button

< utton Pushing/

<Bui:ushing

Push Button can be off or on.
Following path off-to-on, Button Pushing changes Push Button from off to on.
Following path on-to-off, Button Pushing changes Push Button from on to off.

Fig. 19.9 A simple Push Button with memory based on the flip-flop mechanism

19.6 A Model of the Brain’s “Self-Organized Criticality”

As Ouellette (2014) wrote, based on Bak et al. (1987), in 1999, Bak proclaimed that perhaps the brain
functions properly in a critical state between too much order and total disorder. This “self-organized
criticality” works based on the same fundamental principles as a simple sand pile, in which avalanches of
various sizes help keep the entire system stable. For example, if the brain is deprived of sleep, its
organization gets off the “sweet spot” that is at or near the self-organized criticality, and therefore cannot
function properly.

Brain Activity :
Environment 1

b x strongly
i illuminated

maintains critical level of

Brain
Self-Organized Criticality
System

o Brain Self-
. eep +—3> Organization
', Depriving s gLeveI

-

Brain
Self-Organized Criticality
Maintaining

-
Stemaman”

Fig. 19.10 Top-level OPD (SD) of the Brain Self-Organized Criticality System

Dori — Model-Based Systems Engineering with OPM and SysML 267

Figure 19.10 is SD, the top-level OPD of the Brain Self-Organized Criticality System. It demonstrates
a feedback loop: A noisy or strongly illuminated Brain Activity Environment invokes Sleep Depriving.
Moving on to Fig. 19.11, SD1, where Brain Self-Organized Criticality Maintaining is in-zoomed, we see
an animated simulation of the system model. What has happened until this frozen moment in the
simulation is that Brain Self-Organization Level, initially at state critical, changed to too chaotic, and the
process Brain Self-Organized Criticality Maintaining was initiated, starting with the first subprocess —
Order Level Monitoring. Since (following path chaotic) the observation is that the Brain Self-Organization
Level is too chaotic, the value of Observed Brain Organization Level changes to too chaotic. Note that
Brain Self-Organization Level is an attribute of the process Brain Self-Organized Criticality Maintaining

since it is an object within the scope of that process that needs to be maintained within a nominal value
range or within a certain tolerance.

. Brain
Self-Organized Criticality
Maintaining

ordered :
too Order Level chaotic
ordered Monitoring
o <4
- e
B Organization
critical ; Level. toa
Decreasing ordered

critical

too
chaotic

‘-_— l"-ﬁ
. ~

A i Self-Organization
0O, Level Information
b Dissipating

~
.

R - s> esettiing
- ~ (@
J Nl

' Sleep 3
. Depriving
.

Fig. 19.11 SD1—Brain Self-Organized Criticality Maintaining in-zoomed

For example, the Human Body needs to maintain a temperature within a narrow range of 36.4-37.0
degrees Celsius. Similarly, an air conditioning system needs to maintain the Room Air temperature of 69-

268 States and Values

72 degree Fahrenheit. The Temperature Maintaining process starts with the subprocess Temperature
Monitoring, which can be too low, within range, or too high. If the Observed Temperature it is too low,
Heating occurs (in a Human Body this can be done by Body Fat Burning; in an Air Conditioning System—
by Furnace Igniting), changing the Temperature Level of the Human Body or the Room Air from too low
to within range. If the Observed Temperature is within range, no corrective action is needed, so no
subprocess occurs, and if the Observed Temperature it is too high, Cooling occurs (by Perspiring or
Condensing), again restoring the value of the Temperature Level attribute to within range. As some time
passes by, the Environment, being hot or cold, tends to shift the Temperature value from it desired range
to too high or too low, respectively, and a new cycle of Temperature Marinating occurs.

The similarity between maintaining temperature in a biological system and in an artificial one
demonstrates that complex systems, be they biological or man-made, are subject to the same underlying
feedback principle of taking a corrective action when necessary to maintain a desired attribute value.
What is common to both is the “cyber-physical” control mechanism that involves both physical and
informatical (“cybernetic”) objects and processes: While Temperature is a physical attribute, the
Temperature Monitoring process uses physical means (Thermometer or Skin Nerve Cells) to generate an
informatical object—the value of Observed Temperature. This value is transmitted to the control
mechanism—the “brain” of the system—by a passing through a communication channel. This can be an
electronic signal via a wire in the air conditioning system or an electric signal from the skin to the brain in
the human body. Using the signal value, the control mechanism then determines what physical action
(Heating or Cooling) has to be taken, closing the feedback loop.

All cyber-physical systems have in common this interplay between informatical objects that signify
the state of the world, as sensed by the system, and systemic physical processes to counter the adverse
effect of the environment on the desired value of the attribute to be maintained. Indeed, as the OPM
model shows, the object Observed Brain Organizational Level Fig. 19.11 (which is analogous to the
informatical object Observed Temperature) is informatical—it is without shadow. Although the
implementations in living and inanimate objects are different, the underlying cyber-physical mechanism
is highly similar, if not identical.

19.7 State-Specified Tagged Structural Links

State-specified tagged structural links provide for associating a state of one object with another object or
with a state of another object. A state-object association link enables association between a state of some
object and another object in the model. Consider, for example the OPD in Fig. 19.12, where Oven is both
an object in the system and a state of Product—a possible location of Product. This is expressed
graphically by the open arrow—the same symbol used for a with the null tag unidirectional structural
link, from the state oven of Product to the object Oven. The difference between the unidirectional
structural link and the state-specified tagged structural link is that while the former connects an object to
an object, the latter connects a state to an object or to a state of another object. The state-specified
structural links are presented in Table 19.1.

As another example, in a Check-Based Paying system, described in Fig. 19.13, the Check has an
attribute called Keeper, which describes the entity that keeps the check at a given point in time during its
processing. Keeper has three states: payer, payee, and bank. These three states are respectively associated

Dori — Model-Based Systems Engineering with OPM and SysML

269

with the three objects Payer, Payee, and Bank. This is denoted in the OPD by the three corresponding
links from the state to the associated object.

Table 19.1 State-specified structural relations and links summary

Source/

inati source-and-destination state-

EeHITALEN source state-specified destination state-specified and-d o anEkate
specified

Directionality
A tag-name A tagoame A tag-name d
unidirectional s B . B i ki o]

S A tag-name B. B tag-name s A. Sa A tag-name sb B.

A

f-tag-name

bidirectional [3 }

S Af-tag-name B.
B b-tag-name s A.

b-tag-name B

A B
f4ag-name
i btagname sb

Sa A f-tag-name sb B.
Sb B b-tag-name sa A.

A

recip-tag-name

reciprocal 3 }

B and s A are recip-tag-name.

A B

recip-tag-name
sa ll—-... sb

Sa A and sb B are recip-tag-
name.

Product

Moving &
Heating

R
A Removing

T

\T

—

.
)
.

P

Worker

State oven of Product relates to Oven. (Remaining OPL omitted)

Fig. 19.12 Associating states with objects via the state-object association link exemplified: Oven is both an object in the

Sy

stem and a state of Product

270

States and Values

Payer

financial
Institution

Check-Based
Paying

Check can be blank, signed, endorsed, or cashed & cancelled.

Check exhibits Keeper.

Keeper of Check can be payer, payee, or financial institution.

State payer of Keeper relates to Payer.

State payee of Keeper relates to Payee.
State Financial institution of Keeper relates to Bank. (Remaining OPL omitted)

Check

blank |

signed

e

endorsed

Fig. 19.13 Associating attribute values with objects via state-specified structural link

Water

Phase

Temperature
[Celsius]

liquid

; exists for the range of
solid

exists for the range of

below zero

|

exists for the range of

between
zero and 100

above 100

Water exhibits Phase and Temperature in Celsius.

Phase can be solid, liquid, or gas.

Temperature in Celsius can be below zero, between zero and 100, or above 100.

Solid Phase exists for the range of below zero Temperature in Celsius.

Liquid Phase exists for the range of between zero and 100 Temperature in Celsius.

Gas Phase exists for the range of above 100 Temperature in Celsius.

Fig. 19.14 Source-and-destination state-specified tagged structural link

Dori — Model-Based Systems Engineering with OPM and SysML 271

As an example of a source-and-destination state-specified link, in Fig. 19.14, each one of the three
Phase values of Water is associated with its corresponding Temperature value range via three source-and-
destination state-specified tagged structural links whose tag is “exists for the range of”.

19.8 Compound States and State Space

The examples we have seen so far are of states that are atomic, i.e., states that are not combined of other
states. While the majority of states in OPM models are atomic, compound states may exist as well.

An atomic state is a state that is not combined of other states.

A compound state is a state that combines at least two other states.

As an example, one attribute of Car in Fig. 19.15 is Location, with values New York and Boston.
Another attribute is Car’s Drivability (its ability to move on the road), with values operational and broken.

Car

Location Drivability

Fig. 19.15 The Location-Drivability state space of Car

Since Location and Drivability are orthogonal (independent of each other), Car can be in one of four
compound states: operational in New York, operational in Boston, broken in New York, and broken in
Boston. The 2x2 Cartesian product of Location and Drivability values constitutes the state space of Car.

The state space of an object is the Cartesian product of the sets of states of all the
attributes and parts of the object.

Moving on to a more complex example, Airport in Fig. 19.16 exhibits four attributes with two states
each: Weather Conditions, Tower Services, and Radar Coverage, as well as Pilot Familiarity with three
states. The Cartesian product of the sets of states of each attribute enumerates the object’s state space. For
our Airport example, this Cartesian product is Weather x Tower Service x Radar Coverage x Pilot
Familiarity = {fair, hazardous} x {available, unavailable} x {nonexistent, existent} x {poor, fair,
excellent} Thus, there are 2x2x2x3 = 24 states of Airport.

In general, if an object has » attributes (including an implicit one, if it exists) and stateful parts, each
having v; values, then the size of the state space is:

n
S = Hvi
i=1

272 States and Values

In this context, each attribute can also be referred to as a dimension, analogous to the way that vectors
can serve as dimensions (e.g., the three orthogonal vectors called X, Y, and Z that span a 3-dimensional
Cartesian point space). For example, one of the 24 states of Airport, obtained by listing the first state in
each of the four attributes of Airport above, is:

(Weather = fair, Tower Service = available, Radar Coverage = strong, Pilot Familiarity = poor).

Each such point can be the precondition for some process. Figure 19.16 shows the preconditions for
two alternative subprocesses of Landing Decision Making that Air Traffic Controller makes: Landing
Permission Granting and Landing Permission Denying. The preconditions for these two processes are
expressed in the OPL sentences.

Airport A

Weather

Tower Senvice

available unavailable

Radar|Coverage
1(strong weak
Pilot Familiarity

(o) (o) [om)

Air Traffic
Controller

Landing
Permission
Granting

Landing
Permission
Denying

Incoming
Airplane

Landing Permission

oliemy

Landing Permission Granting occurs if Weather Condition is fair, Tower Service is
available, and Radar Coverage is strong.

Landing Permission Denying occurs if (1) Weather Condition is hazardous, Tower
Service is unavailable, or Radar Coverage is weak, and (2) Pilot Familiarity is poor.

Fig. 19.16 Examples of compound states (points in the state space) of Airport required for Landing Permission Granting
and Landing Permission Denying
This example includes the use of condition links, discussed in the chapter on OPM operational
semantics, and of OR and XOR (X-OR) logical operators, which are discussed in another separate
chapter, dedicated to these operations.

19.8.1 Multiple Condition Clause OPL Sentence

The second OPL sentence in Fig. 19.16, which is a multiple condition clause OPL sentence, shows how
complex conditions can be expressed unequivocally in an OPM model. A multiple clause condition OPL
sentence consists of n > 1 (two or more) X-OR clauses. Each X-OR clause expresses an OR condition or a
XOR condition, and it starts with a parenthesized clause number “(i)”, where i = 1, 2, ... n. The clause
numbers enable OPL to create any number of groups of OR or XOR conditions, all of which are related
by logical AND.

Dori — Model-Based Systems Engineering with OPM and SysML 273

19.8.2 Using Processes to Determine Compound States

Processes can be used to determine compound states. In Fig. 19.17, Table Lamp, which can have the
compound states dark and lit, consists of three parts: Switch, Power Plug, and Light Bulb, each having two
states.

Table Lamp

Switch
Poio
Power Chord

/[plugged m] [disconnected]\

Light Bulb

e ey

Lit State
Determining

Dark State
Determining

Table Lamp can be dark or lit.

Table Lamp consists of Switch, Power Chord, and Light Bulb.
Switch can be off or on.

Power Chord can be plugged in or disconnected.

Light Bulb can be intact or burnt.

Lit State Determining requires on Switch, plugged in Power Chord, and intact Light
Bulb.

Dark State Determining changes Table Lamp to dark Table Lamp.

Lit State Determining changes Table Lamp to lit Table Lamp.

Dark State Determining requires burnt Light Bulb, disconnected Power Chord, or
off Switch.

Lit State Determining yields lit Table Lamp.

Fig. 19.17 Determining the compound states dark and lit of Table Lamp with processes

Some of the points in the object’s state space are not feasible, for example: (Table Lamp = dark, Switch
= on, Power Chord = plugged in, Light Bulb = intact). The processes determine what points in the object state
space are feasible. For two dimensions, this can be also presented in a table, possibly as a two-
dimensional array inside an in-zoomed object. However, a table does not express the reasoning behind the
feasibility or infeasibility of each point.

274

States and Values

19.9

Summary

A State is a situation or position at which an object can exist, or a value an attribute can assume,
for some period of time during its existence.

An initial state of an object B is a state at which B is upon its generation or as the system starts
executing.

A final state of an object B is a state from which B cannot exit.

A default state of an object B is the state which B is expected to be when its state is not
specified.

Value is a state of an attribute, therefore it is a specialization of state.

In addition to being at some state, an object can also be unstable, when it is in transition between
two states—the input state and the output state.

State transition is an unstable period of time for an object, which takes place when a process
acts on it to change its state.

A lifespan diagram is a diagram which, for any point in time during the life of the system,
shows what objects exists in the system, what state each object is at, and what processes are
active.

A state-specified tagged structural link is a tagged structural link that connects a state of an
object to another object or to a state of another object.

An atomic state is a state that is not combined of other states.
A compound state is a state that combines at least two other states.

The state space of an object is the Cartesian product of the sets of states of all the attributes and
parts of the object

19.10 Problems

S

o

A car can be driven if it has fuel, the battery is charged, and the car keys are found. Draw an
OPD with attributes and states that specify these conditions.

Enumerate the state space of the car in the previous question: (1) as a list, (2) in a table.

Draw OPDs and write the OPL sentences of three objects having initial and final states.

Draw OPDs and write the OPL sentences of three objects having a default state.

The Car-Driver Complex requires not only the states of car enumerated in problem 1, but also a
sober, awake, and licensed driver.

Incorporate these requirements in an OPD of the Car-Driver Complex.

Write the OPL paragraph of this OPD.

Suggest an alternative way to display the OPD of (a).

Dori — Model-Based Systems Engineering with OPM and SysML 275

9. An ordered set of values of Size of some object can be Miniature, Tiny, Small, Medium, Big,
Large, Extra Large, Great, Giant, and Colossal. Alternatively, one can have a range of numbers
of some specified measurement unit (e.g., meters for length or kilograms for mass) that indicate
a more accurate and “objective” specification of the same Size attribute. Pick up an object with
two sets of attributes, one qualitative and the other quantitative. Use the textual values of Size
above and map them in an OPD to numeric ranges of your choice.

Chapter 20
Generalization and Instantiation

As this term is most commonly used, a generalization is an “all” statement, to the
effect that all objects of a certain general kind possess a certain property.

Lowe (1983)

While discussing aggregation and exhibition, we talked about entire groups of objects or processes—any
scientific paper, any employee, any running. However, what if we wanted to consider the example of a
specific paper, written by a certain John Doe? Or if we wanted to consider a group of employees, namely
managers, who receive a certain salary out of the range of salaries available for the company? Perhaps we
would like to discuss running in a marathon, as opposed to just any kind of running? We need to be able
to pay particular attention to a specialized group, which belongs to a more general group, or even a
specific instance out of a class of objects. As its name clearly points out, generalization-specialization is
the relation between a general and a special case of a thing. Classification-instantiation is the relation
between a class of things and a unique instance from the class. Since these two concepts are important to
systems modeling, we consider them two of the four fundamental relations; and since they are intimately
related, they are discussed and explained together in this chapter.

20.1 Generalization-Specialization: Introduction

Let us first consider several simple examples to set the stage for discussing generalization-specialization,
or “gen-spec.””

Person Camera
[| []
Man Woman Analog Camera Digital Camera
Man and Women are Persons. Digital Camera and Analog Camera are Cameras.

Fig. 20.1 Generalization-specialization examples

Person in the left OPD of Fig. 20.1 is the general case, while Man and Woman are its special cases.
Other examples are “Dog and Cat are Pets.”, “Pascal, Java, and C++ are Programming Languages.”,

'The shorthand term “gen-spec” is borrowed from Coad and Yourdon (1991).

© Springer Science+Business Media New York 2016 277
D. Dori, Model-Based Systems Engineering with OPM and SysML, DOI 10.1007/978-1-4939-3295-5 20

278 Generalization and Instantiation

“Airplane and Car are Vehicles.”, “Flying and Sailing are Transporting.”, and “Ketchup and Mustard are
Condiments.”

Generalization-specialization is a fundamental structural relation between a general
thing G and one or more things S;, S, ... S,, which are specializations of G.

An alternative way of expressing the OPL sentence might have been “Digital Camera and Analog
Camera specialize Cameras.” However, sticking to the principle of keeping the OPL language as natural
and as simple as possible, OPL uses the clearer and more intuitive reserved phrases “is a” (or “are” for
plural) rather than “specializes” or “specialize” for denoting the gen-spec relation from the reverse, or
bottom-up direction, from the specialized thing—the specialization—to the generalizing thing—the
general. Any number of specializations is possible. The following example is of three specializing
objects.

Cucumber is a Vegetable.

Tomato is a Vegetable.
Carrot is a Vegetable.

We combine the three specialization sentences above into one:

Cucumber, Tomato, and Carrot are Vegetables.

Generalization-specialization is a transitive relation, meaning that if A is a B, and B is a C, then A is a
C. More concretely, consider the following two specialization sentences:

Tomato is a Vegetable.

Vegetable is a Plant.

Since generalization-specialization is transitive, we can deduce that:

Tomato is a Plant.

Generalization-specialization means that a refineable, the general, generalizes two or more refinees,
which are specializations of the general. The generalization-specialization relation binds one or more
specializations with the same perseverance as the general, such that both the general and all its
specializations are objects (in metamodel terms, if the Thing’s Perseverance is persistent) or the general
and all its specializations are processes (if the Thing’s Perseverance is transient).

Graphically, an empty triangle with its apex connecting by a line to the general and the specializations
connecting by lines to the opposite base denotes the generalization-specialization relation link.

UML and SysML use a white (blank) triangle to denote generalization-specialization, (as in OPM),
but in UML and SysML the triangle’s tip is linked directly to the generalizing object, and the white
triangle base is not necessarily horizontal, but rather perpendicular to the line connected to the
specialization. Moreover, similar to the case with aggregation, since there is no fork in UML, each
specialization in a UML class diagram and SysML block definition diagram must have its own symbol.
Since UML and SysML do not have processes in class diagrams, the aggregation and specialization
relations in UML and SysML apply to objects only.

20.1.1 Process Specialization

Not only objects are subject to generalization-specialization. The same relation applies to processes as
well. Figure 20.2 shows two simple examples.

Dori — Model-Based Systems Engineering with OPM and SysML 279

Food
Gathering

Hunting is Food Gathering. Hunting and Fishing are Food Gathering.
Fig. 20.2 Single and plural process specializations

In order to comply with the English grammar, the process specialization sentence is slightly different
than the (object) specialization sentence in that (1) instead of the reserved phrase “is a,” the reserved word
“is” is used, and (2) while the generalizing object is plural, as in Vegetables, in multiple process
specialization sentence it is singular, as in Cooking. Consider the following OPL sentences.

Boiling is Cooking.

Frying is Cooking.

Grilling is Cooking.

The three OPL sentences above become:

Boiling, Frying, and Grilling are Cooking.

Cooking Tool Cooking Food

Pot Boiling Soup

| pan |—9(Frying Omelet
Grill Griling)—>> Steak

Pot, Pan, and Grill are Cooking Tools.
Soup, Omelet, and Steak are Foods.
Boiling, Frying, and Grilling are Cooking.
Boiling requires Pot.

Frying requires Pan.

Grilling requires Grill.

Boiling yields Soup.

Frying yields Pan.

Grilling yields Steak.

Cooking requires Cooking Tool.
Cooking yields Food.

Fig. 20.3 Left: A general pattern of Cooking. Right: The specializations of Cooking Tool, Cooking, and Food, and the
specialized links between these specializations
Specializations of objects and processes can be combined to specify specialized procedural links
between the object and process specializations. Figure 20.3 shows on the left a pattern of Cooking, which
uses Cooking Tool as an instrument and yields Food. On the right are three specializations of Cooking
Tool, Cooking, and Food. Each Cooking Tool specialization is an instrument of a specialization of
Cooking, yielding a specialization of Food.

280 Generalization and Instantiation

20.1.2 Link Under- and Over-Specification

Link under-specification would occur if on the right OPD of Fig. 20.3 we would have left the two links as
in the OPD on the left and not specify the six procedural links on the right. This would mean that any tool
can be used for any cooking. Link over-specification would occur if, in addition to the six procedural
links in the OPD on the right, we would have added the two links as in the OPD on the left. Both should
be avoided. In under-specification, leaving the single instrument link from Cooking Tool to Cooking on
the right means that any Cooking Tool could be considered as instrument of any Cooking process and to
yield any Food. On the other hand, in over-specification, the two generalizing links, left along with the
six specialized links, become redundant. Under- and over-specification can occur also with structural links.

20.2 Inheritance

The most prominent and immediate benefit gained from using the gen-spec relation is the inheritance it
induces.

Inheritance is assignment of OPM elements—things and links—of a general to its
specializations.

In OO design, the meaning of inheritance is that attributes, and to some extent also operations, of the
generalizing object are inherited to the specialized objects. In OPM, the effect of inheritance is stronger,
as, in addition to inheriting features and parts, it includes inheriting structural and procedural links, as
well as states. Through the generalization-specialization relation, each specialization inherits from the
general each of the following four kinds of inheritable elements:

e all the parts of a general from its aggregation-participation link,
all the features of the general from its exhibition-characterization link,
all the tagged structural links to which the general connects, and
all the procedural links to which the general connects.

OPM provides the opportunity for multiple inheritance by allowing a thing to inherit from more than
one general each of the refinees—the four inheritable elements (parts, features, tagged structural links,
and procedural links) that exist for that general.

The modeler may override any of the parts of the general, which are by default inherited by the
specialization, by specifying for any participant inherited from a general, a specialization of that
participant with a different name and a different set of states.

20.2.1 Creating a General from Candidate Specializations

To create a general from one or more candidate specializations, the inheritable elements common to each
of the candidates migrated “upward” to a generalizing thing. The manipulation of inheritable elements
shall be as follows:

e Combine all of the common features and common participants of the specializations into one
newly created general;

Dori — Model-Based Systems Engineering with OPM and SysML 281

e Connect the new general using the generalization-specialization relation link to the
specializations;

e Remove from the specializations all of the common features and common parts that the
specializations now inherit from the new general; and

e Migrate any common tagged structural link and any common procedural link that connects a
thing T to each one of the specializations from the specializations to the general, such that there
will be a single link from T to the general.

20.2.2 Feature Inheritance

A general thing inherits its features—attributes and operation—to each one of its specializations. For
example, Fig. 20.4 is an OPD of a Camera, which has two features: The attribute Optical Zoom and the
operation Image Capturing. This OPD has the following corresponding OPL paragraph, where the last
OPL sentence expresses the unidirectional tagged structural relation.

uses

Camera

Capturing Ima i
| = ge Optical
Medium Analog Camera Digital Camera Foom

Camera exhibits Optical Zoom, as well as Image Capturing.
Digital Camera and Analog Camera are Cameras.
Camera uses Capturing Medium.

Fig. 20.4 Left Camera and its Analog Camera and Digital Camera specializations
Since Digital Camera and Analog Camera are specializations of Camera, we can replace Camera with
its Digital Camera and its Analog Camera specializations. This has indeed been done in Fig. 20.5, which
demonstrates the basic semantics of inheritance: the specialization—the refinee— inherits features
(attributes and operations) from the general—the refineable.

Digital Camera Analog Camera

Image Image
Capturing Capturing

Fig. 20.5 Digital Camera and Analog Camera are specializations of Camera, therefore each can substitute Camera from
Fig. 20.4

In OPM not only features are inherited; links and states are inherited as well. The inheritor can
therefore replace the ancestor. Digital Camera and Analog Camera inherit not only the features of Camera,
which are the attribute Optical Zoom and the operation Image Capturing; they also inherit the tagged

uses
uses

Optical

Optical
Zoom

S o Capturing

Medium

Capturing
Medium

282 Generalization and Instantiation

structural relation uses from Camera to Capturing Medium. Moreover, not only structural relations are
inherited; procedural relations are inherited as well. The inheritor, however, may have more features,
links, or states.

20.2.3 Inheritance of Structural Relations

Consider the OPD in Fig. 20.6, in which we specify the parts of Camera and the specializations of
Capturing Medium.

Camera

| |

Capturin
— Mgdiun-? Analog Camera Digital Camera Clert?)taugr;g

Film

Optical
Zoom

Image Capturing
Mechanism

|| Image Storage

Medium Lens Body

Camera consists of Lens, Body, and Image Capturing Mechanism.
Image Storage Medium and Film are Capturing Mediums.

Digital Camera uses Image Storage Medium.

Analog Camera uses Film. (Other sentences omitted.)

Fig. 20.6 The parts, specializations and features of Camera are specified along with the specializations of Capturing
Medium

This implies that the parts Camera consists of are inherited to the two Camera specializations:

Digital Camera consists of Lens, Body, and Image Capturing Mechanism.

Analog Camera consists of Lens, Body, and Image Capturing Mechanism.

Not only aggregation is inherited. Any tagged structural relation, such as uses, is inherited. Since the
tagged relation uses links Camera to Capturing Medium, when we specify the specializations of both
Camera and Capturing Medium without taking care of the structural relation uses, we introduce link
under-specification. This under-specification, encountered earlier, stems from the fact that the structural
relation uses from Camera to Capturing Medium does not specify which Camera specialization (Analog
Camera or Digital Camera) uses which Capturing Medium specialization (Image Storage Medium or Film).
To set this straight, we specify which Camera specialization uses which Capturing Medium
specialization.

Dori — Model-Based Systems Engineering with OPM and SysML

283

20.2.4 State and Link Inheritance

In OPM, states and links are inherited too. Prior to the Image Capturing process in the Camera example,
the Capturing Medium, which the Camera uses, is blank. After the process Image Capturing occurs,
Capturing Medium is recorded. Hence, blank and recorded are two states of Capturing Medium. The OPD
in Fig. 20.7 has two generalization links, one for Camera and the other for Capturing Medium. These two
relations induce the two OPDs in Fig. 20.8.

A

Camera

Image

Capturing

Analog Camera Digital Camera

Optical
Zoom ‘
Image Capturing Capturing Body
Mechanism Medium
\
Film

Image Storage

Analog Camera and Digital Camera are Cameras.
Capturing Medium can be blank or recorded.
Camera consists of Body, Image Capturing Mechanism, and Capturing Medium.

Film and Image Storage Medium are Capturing Mediums.
Image Capturing requires Image Capturing Mechanism.
Image Capturing changes Capturing Medium from blank to recorded.

Medium

Fig. 20.7 State inheritance: Film and Image Storage Medium inherit the states and the input and output links to and
from Image Capturing

20.3 Specialization Through a Discriminating Attribute

Quite often, a general has specializations that are distinguished from the general in that there is a certain
attribute of the general whose restricted value defines the specialization.

A discriminating attribute is an inherited attribute whose different values define
corresponding specializations.

284 Generalization and Instantiation

Figure 20.10 shows an OPD in which Vehicle exhibits the attribute Travelling Medium with values
ground, air, and water surface. Travelling Medium is the discriminating attribute of Vehicle, because the
three values of Travelling Medium define the three specializations of Vehicle. These are Car, Aircraft, and
Ship, with the corresponding Travelling Medium values ground, air, and water surface.

A general may have more than one discriminating attribute. The maximum number of specializations
with more than one discriminating attribute is the Cartesian product of the number of possible values for
each discriminating attribute, where some combination of attribute values may be invalid. For example,
extending the content of Fig. 20.10, another attribute of Vehicle might be Purpose with the two values
civilian and military. Based on these two values, there are two Vehicle specializations: civilian Vehicle and
military Vehicle. Due to multiple inheritance, the result is an inheritance lattice where the number of the
most detailed specializations would be 3 x 2 = 6 as follows: civilian Car, civilian Aircraft, civilian Ship,
military Car, military Aircraft, and military Ship.

Digital Camera

Optical

Zoom

Optical

Analog Camera

Zoom

|

Image Capturing
Mechanism

A

Image Storage Medium

Image Capturing Film
Body Mechanism Body

Image Storage Medium can be blank or recorded.

Digital Camera consists of Body, Image Storage Medium,

and Image Capturing Mechanism.

Image Capturing requires Image Capturing Mechanism.
Image Capturing changes Image Storage Medium from

blank to recorded.

blank recorded
A

Film can be blank or recorded.

Analog Camera consists of Body, Film, and Image
Capturing Mechanism.

Image Capturing requires Image Capturing Mechanism.
Image Capturing changes Film from blank to recorded.

Fig. 20.8 State inheritance induced by the OPD in Fig. 20.9. Left: Camera is substituted by Digital Camera, and
Capturing Medium—by Image Storage Medium. Right: Camera is substituted by Analog Camera, and Capturing

Medium—by Film

Dori — Model-Based Systems Engineering with OPM and SysML 285

Vehicle

Travelling
Medium

water
[ground] [air J [surface]

| | 1

Car Aircraft Ship
Travelling Travelling Travelling
Medium Medium Medium

surface

Vehicle exhibits Travelling Medium.

Travelling Medium of Vehicle can be ground, air, and water surface.
Car, Aircraft, and Ship are Vehicles.

Travelling Medium of Car is ground.

Travelling Medium of Aircraft is air.

Travelling Medium of Ship is water surface.

Fig. 20.10 The discriminating attribute Travelling Medium and its specializations

20.4 State-Specified Characterization Link

A state-specified characterization link is an exhibition-characterization link from a
specialization to a specific value of a discriminating attribute of its general, which
expresses the fact that the specialization can have only that value for that

discriminating attribute.

Graphically, the state-specified characterization link is the triangular exhibition-characterization
symbol, with its apex connected to the specialization and its base—to the specific value. Using the state-
specified characterization relation link, the OPD in Fig. 20.11 is significantly more compact than its
equivalent OPD in Fig. 20.10. Here, the discriminating attribute Travelling Medium of Vehicle with values
ground, air, and water surface appears only once, as opposed to four times in Fig. 20.10. The model
expresses Car, Aircraft, and Ship as specializations of Vehicle, connecting each specialization with a state-
specified characterization relation link to the corresponding Travelling Medium value of ground, air, and
water surface, respectively.

286 Generalization and Instantiation

Vehicle

[| |
A Car Aircraft Ship

air water

Travelling
Medium

Vehicle exhibits Travelling Medium.

Travelling Medium of Vehicle can be ground, air, and water surface.
Car, Aircraft, and Ship are Vehicles.

Car exhibits ground Travelling Medium.

Aircraft exhibits air Travelling Medium.

Ship exhibits water surface Travelling Medium.

Fig. 20.11 State-specified characterization link example

20.5 Classification-Instantiation

An instance is an actual thing of some class of things, all having the same set of features, same structure,
and same behavior. For example, Lassie and Blackie in Fig. 20.12 are instances of Dog. Dog is the class
of all the dogs, and Lassie is an actual exemplar of that class. The symbol of instantiation is a black
inverted triangle inside a larger white triangle.

In spoken English, the sentence “Lassie is a dog” is more natural, but the phrase “is a” is reserved for
the specialization sentence, so to avoid conflicts and be explicit, the phrase “is an instance of” links an
instance with its class in an OPL sentence that expresses instantiation. The plural version, used for more
than one instance, is “are instances of,” as in “Bach, Beethoven and Brahms are instances of Composers.”

20.5.1 Classes and Instances

The things we have encountered while discussing generalization-specialization are classes of things,
either object classes or process classes. When we talked about objects, we were actually referring to a
typical example of its object class, a pattern of objects from which objects could be generated.

A class is a template of a thing.

An instance of a class is an incarnation of a particular identifiable member of that

class.

Dori — Model-Based Systems Engineering with OPM and SysML 287

The definitions of class and instance are more general than their OO counterparts, as they refer to
things rather than to objects. In metamodel terms, since a Thing is an Object or a Process, Class
specializes into an Object Class and a Process Class. Likewise, Instance specializes into an Object
Instance and a Process Instance: An Object Instance is an incarnation of the pattern specified by the
Object Class and a Process Instance is an incarnation of the pattern specified by the Process Class.

Dog
Dog
E Lassie
Blackie Lassie
Lassie is an instance of Dog. Blackie and Lassie are instances of Dog.

Fig. 20.12 The instantiation symbol links a class (Dog) to one or more of its instances

The template that the class defines includes everything that is inherited. As we have seen, in OPM it
means that not only features, but also structural relations and procedural relations are inherited, and for
object classes states are also inherited. Unlike a specialized class, an instance cannot exhibit any feature
that its class does not exhibit, nor can an instance of an object be at a state that is not a state of its class.
An object instance can be uniquely identified in the system, so at any given point in time it is possible to
observe whether it exists, and if so—what its states and attribute values are.

20.5.2 Instantiation Versus Specialization

Generalization-specialization is a transitive structural relation that gives rise to a hierarchy tree. Each
level in the hierarchy contains specializations of the level above it. The “leaves” of that hierarchy are the
instances of the class. Thus we can say that instantiation is a special case of specialization, which, in the
context of the system under study or development, cannot be specialized further. Figure 20.13 shows a
specialization hierarchy that starts with Car as its top level and presents increasingly specialized object
classes until it gets to Jack’s Car. This is the first object that is physical and unique. It has a VIN (vehicle
identification number) that uniquely identifies it, and at any given moment the values or states of all its
attributes, such as Color, Location, Mileage and Speed, can be specified.

Instance is a leaf in the generalization-specialization hierarchy—it is not possible to have
specializations of an instance. Inheritance of features from a class to its instances is exactly the same as
the inheritance of features from a super-class to its sub-class anywhere along the generalization-
specialization hierarchy. The only differences are that (1) an instance cannot have further specializations,
because it is at the bottom of the hierarchy, and (2) only an instance has concrete values of its attributes,
as Fig. 20.13 demonstrates.

288 Generalization and Instantiation

Car Car exhibits VIN, Mileage in
é Miles, Speed in MPH, Color,
and Location.

Ea l l l I l Ford is a Car.

{S VIN “ﬂ{ﬁggf Rﬁ’gf_ﬁ Color Location Taurus is a Ford.
Taurus Taurus 2015 is a Taurus.

Jack's Car is an instance of
Taurus 2015.
Taurus 2015 VIN of Jack's Car is ABC-
1234.
é Mileage in Miles of Jack's
Car is 7500.
Jack's C
acks =ar ?X Speed of Jack's Car in MPH
is 63.

[I I I L Color of Jack's Car is blue.
VIN Mileage Speed Color Location Location of Jack’s Car is

[l ke [blue] [San Francisco] San Francisco.

Fig. 20.13 The specialization hierarchy of Car all the way to the instance Jack’s Car and its specific attribute values at
the time of observing it

20.6 The Relativity of Instance

Like many other concepts we have encountered, the term instance is relative to the system of discourse.
What for a certain system is considered instance of a class, can for another system be just a sub-class of a
super-class. An instance in one system may be a class that has instances or that further recursively
specializes into more refined classes, which ultimately have instances.

To demonstrate this, let us look at a few examples from the world of cars. We have seen that Taurus
2015 is an object class of all the instances of cars made by Ford of model Taurus manufactured in the year
2015. Suppose that the system we are now concerned with is a system for comparing and evaluating cars
of model year 2015. One of the instances in this system is Taurus 2015, and it is an instance of the object
class Model Year 2015 Car. Physical cars with specific VIN do not exist and have no meaning in this
system. In the gen-spec hierarchy tree, Taurus 2015 is one of the leaves: it has no further specializations
beneath it.

As another example, consider a national highway system, in which the system architects are interested
in the various types of vehicles that use the roads. What matters to them about the vehicles are their size,
weight, average speed, and average annual distance that each type of vehicle travels. The designers of this
system therefore decided to categorize vehicles into three types: cars, trucks and buses. While these three
types are specializations of vehicle, for the system under consideration they are also the three instances of
the object class vehicle. The architects are not interested in each individual car, bus or truck, so the
number of each vehicle type, its average speed, mileage, etc. are attributes of vehicle that are inherited to
its three instances.

Dori — Model-Based Systems Engineering with OPM and SysML 289

Consider now a different system of the Motor Vehicles Taxation Office in some country, which, for
taxation purpose differentiates between Taxation Classes of Motor Vehicles as follows: Commercial Van,
Sedan, Collector Car, Sports Utility Vehicle, and Luxury Car. For this system, cars are differentiated into
these types based on their Market Value and Application. Furthermore, the system maintains and
constantly updates a list of each Vehicle Manufacturer and each Vehicle Model by Year Model, with an
indication of which Vehicle Model belongs to which Taxation Class. Here, the Taxation Class is an
attribute of Vehicle. Commercial Van, Sedan, etc., are values of the Taxation Class attribute of Vehicle.
The instances of the class Vehicle in this system are the various Year Models, because the system is only
concerned with setting tax levels on cars by Taxation Class and does not care about individual cars.

Finally, consider a car dealership. Here, of course, each individual car has its own record, including its
VIN, make, model, year, owner, etc. This is the “classical” case of instance, similar to the one presented
in Fig. 20.13, where each instance is a physical entity with its unique identifier. However, as we have
seen, instances can be informatical, such as car models, vehicle types or records in a file.

20.7 Constraining Attribute Values

A class can be used to constrain the possible range of attribute values. In Fig. 20.14, Adult is a class with
three attributes: Gender, with possible values female and male, Height in cm, with possible values
120..240 (120 through 240), and Weight in Kg, with possible values 40..240. Jack Robinson is an instance
of Adult, with Gender value male, Height value 185 cm, and Weight valuc 88 Kg. As Fig. 20.14
demonstrates, the name of the instance of Adult, Jack Robinson in this case, can be followed by the
semicolon symbol “:” followed by the name of the class. This is useful when only the instance appears in
an OPD without being attached to this class.

Adult

Adult

Jack Robinson :
Adult

| l |

Heigh Weight
Gender {z:,%] t [EISIQI | [|

Cutitee Heigh Weigh
male 185

Adult exhibits Gender, Height in cm, and Weight in Kg. Jack Robinson is an instance of Adult.

Gender of Adult can be female or male. Gender of Jack Robinson is male.
Height of Adult in cm ranges from 120 to 240. Height in cm of Jack Robinson is 185.
Weight of Adult in Kg ranges from 40 to 240. Weight in Kg of Jack Robinson is 88.

Fig. 20.14 The attribute values of the calss Person are constrained with value ranges (class on left and instance on
right)

290 Generalization and Instantiation

The OPD in Fig. 20.15 presents the class Metal Powder Mixture, indicating that its Specific Weight
attribute value can range from 7.545 to 7.537 gricm3. An operational (runtime) instance of Metal Powder
Mixture is Mixture Lot #7545 with Specific Weight attribute value is 7.555 gr/em3. This value is within the

allowable range.
Metal Powder Mixture ﬁ

Mixture Lot #7545 :
Specific Weight Metal Powder Mixture
[gr/cm3]
Specific Weight
[gr/cm3]

7.555

Metal Powder Mixture exhibits Specific Weight in grilcm3.

Specific Weight in gricm3 of Metal Powder Mixture ranges from 7.545 to 7.537.
Mixture Lot #7545 is an instance of Metal Powder Mixture.

Specific Weight in gricm3 of Metal Powder Mixture is 7.555.

Fig. 20.15 Constrsaining attribute value. Left: The class and it attribute value range. Right: the instance and its actual
value, which is in the constrained range

The OPL sentence “Mixture Lot #7545 exhibits Specific Weight in gr/lem3.”, is not present in the OPL of
Fig. 20.15, because that sentence is implicit from the expressed fact “Mixture Lot #7545 is an instance of
Metal Powder Mixture, and therefore Mixture Lot #7545 inherits this attribute from Metal Powder Mixture.

20.8 Process Instances

OPM instantiation applies not just to objects but also to processes. The processes we have encountered so
far are actually process classes: they are patterns of happenings that involve object classes.

A process class is a pattern of happening (the sequence of subprocesses), which
involves object classes that are members of the involved object set of that process

class.

A process occurrence, which follows this pattern and involves particular object instances in its preprocess
and postprocess object sets, is a process instance. Hence, a process instance shall be a particular
occurrence of a process class to which that instance belongs. Any process instance is therefore associated
with a distinct set of preprocess and postprocess object instance sets.

A process instance is a particular occurrence of a process class to which that instance

belongs.

The power of the process class concept is that it enables the modeling of a process as a template or a
protocol for some transformation that a class of objects undergoes. That transformation includes neither
the spatio-temporal framework nor the particular set of object instances with which the process instance is

Dori — Model-Based Systems Engineering with OPM and SysML 291

associated; these can be identified only when we are at the instance level, or operational level of the
system.

Movie

Theatre

Audience

Movie Theatre Audience

o M Allanta Audience :
. e Lowes Grand
Movie Theatre Atlanta :
Showing Theatre
Date & Time Gone With |—
The Wind :
Gone With The Wind Movie
2 Premier Gala

Date & Time Movie Showing

Date & Time
Dec. 15, 1939
B8PM

Lowes Grand Theatre Atlanta is an instance of Theatre.

Gone With The Wind is an instance of Movie.

Atlanta Audience is an instance of Audience.

Gone With The Wind Premier Gala Movie Showing is an instance of
Movie Showing.

Movie Showing exhibits Date &

T"m?' . : . Gone With The Wind Premier Gala Movie Showing exhibits Date &
Movie Showing requires Movie and Time
Theatre. i

Date & Time of Gone With The Wind Premier Gala Movie Showing
is Dec. 15, 1939 8PM.

Gone With The Wind Premier Gala Movie Showing requires Gone

With The Wind and Lowes Grand Theatre Atlanta.

Gone With The Wind Premier Gala Movie Showing affects Atlanta
Audience.

Movie Showing affects Audience.

Fig. 20.16 Movie Showing as an example of a process class (left) and its instace (right)

A process instance is a concrete occurrence of a process class, whose preprocess and postprocess
object sets are sets of object instances. In particular, a process instance has a time stamp, a specific date
and time at which the process started or ended. Figure 20.16 depicts on the left Movie Showing as an
example of a process class, with Movie, and Theatre as instruments of this process class, Date & Time as
its attribute, and Audience as the class’ affectee. In the OPD on the right, Gone With The Wind Premiere
Gala Movie Showing is a process instance of the Movie Showing process class. All the instances are
greyed out to distinguish them from their classes. Gone With The Wind is an instance of Movie, Atlanta
Theatre is an instance of Theatre, Atlanta Audience is an instance of Audience, and Dec. 15 1939 8PM
(Dirks 2015) is the value of Date & Time at which the process instance took place. The same objects
instance can participate in two or more process instances. For example, the same is an instance of Movie,
identified by its name as Gone With The Wind, can participate in all the process instances of Gone With
The Wind Movie Showing (other than the premier gala one), but each Atlanta Audience is a different
instance of Audience, since it is comprised of a different set of movie goers.

292

Generalization and Instantiation

20.9

Summary

Generalization-specialization is the relation between a general thing and a specialization of that
thing.

Classification-instantiation is the relation between a class of things and a unique instance that
belongs that class.

Generalization-specialization gives rise to inheritance from the generalized thing to the
specialized one(s).

Inheritance is of features (attributes and operations), structural relations and procedural relations.
For objects, states are inherited too.

OPM processes specialize in a manner similar to objects.

States of specialized objects can override inherited states.

A class is a template, from which things that instantiate the class can be generated as members of
that class.

Instance is a relative term. A specialization in one system can be an instance in another.

A process instance is a particular occurrence of a process at a given point in time and whose
involved object set is a set of object instances.

20.10 Problems

Provide two examples of object specializations and two of process specializations. Specify them
in OPDs and OPL.

Create a specialization hierarchy of sports games, which would include as a minimum volleyball,
basketball, soccer, football, tennis, and baseball. Apply OPM to show what features are common
and inherited, and what are game-specific.

Repeat the previous problem for a specialization hierarchy of track and field sport types, which
would include at least three types of running, three types of swimming and three types of
throwing.

Considering the inheritance of procedural links, are the effect links redundant? Why or why not?

Draw the OPD expressed in the OPL paragraph below.

Pilot, Sailor, and Driver are Occupations.

Airplane, Vessel, and Truck are Transportation Systems.

Flying, Sailing, and Driving are Transporting.

Complete the OPD from the previous question with the following model facts: (1) Pilot, Sailor,
and Driver handle Flying, Sailing, and Driving, respectively. (2) Flying, Sailing, and Driving
require Airplane, Vessel, and Truck, respectively.

Dori — Model-Based Systems Engineering with OPM and SysML 293

7. Give examples of two systems where instances in the first system are specializations in the
second. Draw the OPD and write the OPL of these systems.

8. The main types of welding are: (1) Gas—Uses gas flame over metals until molten puddle is
formed. Most popular fuels used with oxygen include acetylene and hydrogen. (2) Arc—Two
metals are joined by generating an electric arc between a covered metal electrode and the base
metal. (3) Oxygen and Arc Cutting—Metal cutting in welding is the severing or removal of
metal by a flame or arc. Use OPM to describe these welding types.

9. Specify three instances of electrical appliances at your home. For each one describe its object
class with at least three levels of aggregation-participation hierarchy and the operations it
performs. Use the instantiation symbol to denote your appliance and provide an attribute that
uniquely identifies it.

Chapter 21
Complexity Management:
Refinement and Abstraction

The human mind, after all, can only juggle so many pieces of data at once before
being overwhelmed.

C. Downton (1998)

The very need for systems analysis and design strategies stems from complexity. If systems or problems
were simple enough for humans to be grasped by merely glancing at them, no methodology would have
been required. Due to the need for tackling sizeable, complex problems, a system development
methodology must be equipped with a comprehensive approach, backed by set of reliable and useful
tools, for controlling and managing complexity. OPM provides four refinement-abstraction mechanisms
to manage systems’ inherent complexity: (1) unfolding—folding, (2) in-zooming—out-zooming, (3) state-
expressing—state-suppressing, and (4) view creating. These mechanisms, defined and discussed in this
chapter, make possible the specification of contextualized model segments as separate, yet interconnected
OPDs. Taken together, they provide a complete model of the functional, value providing system. These
mechanisms enable presenting and viewing the modelled system, and the elements it contains, in various
contexts that are interrelated by the common objects, processes and relations. The set of clearly specified
and compatible interconnected Object-Process Diagrams completely specify the entire system to an
appropriate extent of detail and provide a comprehensive representation of that system with a
corresponding textual statement of the model in OPL. This chapter elaborates on complexity management
issues and specifies the various abstracting-refining mechanisms.

21.1 The Need for Complexity Management

Analyzing is the process of gradually increasing the human analyzer’s knowledge about and
understanding of the system’s architecture—the system’s structure and behavior combination, which
enables it to attain its function. This is typical of a scientist’s work, who, in a sense, is engaged in reverse-
engineering nature and systems in it. Analogously, designing—a major engineering task—is the process
of gradually increasing the amount of details about the system being architected. Complexity is inherent
in real-life systems: Soon enough during this architecting process, the sheer amount of details contained
in any real-world system of reasonable size overwhelms the system analyzer or architect, who must be
equipped with a concept and tools to tackle this detail explosion problem. We cannot do much about the
inherent complexity of the system, but by using a simple modeling framework, we can significantly
reduce the system’s complicatedness—how complicated it is perceived by a person looking at the model
that specifies the system. OPM strives to minimize complicatedness through simplicity of the language.

© Springer Science+Business Media New York 2016 295
D. Dori, Model-Based Systems Engineering with OPM and SysML, DOI 10.1007/978-1-4939-3295-5 21

296 Complexity Management: Refinement and Abstraction

Requirements analysis and conceptual design are first steps in the lifecycle of a new system, product
or project. Creating (sometimes unconscious) resistance on the side of the prospective audience—the
various stakeholders—to accept the analysis and design results, because they look too complex and thus
intimidating, may have the adverse effect of jeopardizing the likelihood of success of subsequent phases
of the product development.

The severity and frequency of the detail explosion problem calls for an adequate solution to meet the
needs of the systems modeling and analysis community. A major test of any analysis methodology is
therefore complexity management—the extent to which it provides reasonable tools for managing the
ever-growing complexity of the modeling outcomes in a coherent, clear, and useful manner. Such
complexity management tools are extremely important for organizing the knowledge that the system
architects and designers accumulate and generate during the system architecting and design process.
Equally important is the role of complexity management tools in facilitating the communication of the
analysis and design results to other humans, including customers, beneficiaries, peers, superiors and
system developers down the development cycle road—implementers, testers, operators, etc.

Trying to incorporate the details into one big diagram, the amount of drawn symbols gets very large,
and their interconnections quickly become an entangled web. Because the diagram has become so
cluttered, it is increasingly unwieldy and difficult to comprehend. System architects experience this detail
explosion phenomenon on a daily basis, and anyone who has tried to model a non-toy system of even
modest complexity will sympathize with and endorse this description. This information overload happens
even if the language (such as UML and SysML) advocates using multiple diagram kinds for the various
system aspects. While some of the diagram kinds might be simpler than one kind (as in OPM), combining
them all to obtain a holistic system view is cognitively much more difficult. A system modeling language
must include integral mechanisms for controlling and managing this complexity. This entails being able
to present and view the system at various levels of detail that are consistent with each other.

21.2 The Model Complexity Assertion

The basic principle of OPM complexity management is the following detail hierarchy OPM principle.

The Detail Hierarchy OPM Principle

Whenever an OPD becomes hard to comprehend due to an excessive amount of details, a new,
descendant OPD shall be created.

The creation of the new OPD is done by one of the first two complexity management mechanisms—
in-zooming or unfolding—taking advantage of the model fact representation OPM principle. This
principle states that an OPM model fact needs to appear in at least one OPD in order for it to be
represented in the model. Based on this principle, we can omit from the descendant, newly created OPD,
in which a specific thing was refined, any model fact that already appeared in the ancestor OPD and is not
needed to make some point in the new OPD, without losing that fact from the model. This way, new
OPDs can be kept simple as they need not carry all the “baggage” of their ancestors. This provides for
maintaining any OPD sufficiently simple so it does not overwhelm the limited human cognitive capacity.

Dori — Model-Based Systems Engineering with OPM and SysML 297

The determination of when an OPD becomes too complex due to excessive amount of details is left to
the discretion of the modeler, because it cannot be defined by merely fixing a maximal number of model
elements in the OPD. There are other factors, such as regularity, layout, and link crossings that affect
comprehension Nonetheless, a modeling tool such as OPCAT should limit the size of the canvas on which
a single OPD is drawn. This indirectly limits the number of entities and enforces periodic use of in-
zooming and unfolding.

Since this refinement and detail removal can be done recursively and at any required number of times,
we can tackle highly complex systems and still keep the model humanly accessible and comprehensible.
Hence we can make the following OPM model complexity assertion:

The OPM Model Complexity Assertion

Applying refinement mechanisms of in-zooming and unfolding to stateful objects or processes,
OPM can conceptually model systems at any level of complexity.

21.3 Aspect-Based Versus Detail-Level-Based Decomposition

UML and SysML address the problem of managing systems complexity primarily by aspect
decomposition—dividing the system model into 14 (UML) and 9 (SysML) different diagram types for
modeling various aspects of the system — structure, dynamics, state transitions, timing, etc.

«——> (ifficult transition

UML: aspect-based decomposition
structure behavior states

abstract

;

easy transition

detailed

OPM: detail-based decomposition

concrete

Fig. 21.1 The two orthogonal divide-and-conquer strategies

298 Complexity Management: Refinement and Abstraction

Advocating the integration of the various system aspects into a single model, the approach OPM takes
is orthogonal, detail-based decomposition: Rather than applying a separate model for each system aspect,
OPM handles the inherent system complexity by decomposition of the system into a hierarchy of self-
similar diagrams of the same single kind—OPDs—via its abstracting-refining mechanisms. These enable
presenting and viewing the system, and the things that comprise it, at various detail levels. The entire
system is completely specified through its OPD set—a set of compatible OPDs, each providing a partial
view of the system being investigated or developed, which together provide a full picture of the system.
Each OPD is accompanied by its automatically generated OPL paragraph.

Figure 21.1 shows the two orthogonal complexity management strategies. In the aspect-based
decomposition, two thick, solid, vertical lines separate the structure, behavior and state transition aspects
from each other. The thin bidirectional horizontal arrows across these lines symbolize difficult transition
among the various models. The detail-based decomposition is represented by the two thin, dashed,
horizontal lines that separate the various levels of detail—abstract, detailed and concrete, from each other.
The thick bidirectional vertical arrows symbolize easy transition among the detail levels. The diagram is
schematic; it by no means implies that horizontally there are only three levels of abstraction in OPM. In
fact, this number is not bounded. The diagram should also not be interpreted as if vertically there are only
three diagram types in a multi-diagram-type approach.

21.4 The Completeness-Clarity Trade-off

Like most classical engineering problems, complexity management entails a tradeoff that must be
balanced between two conflicting requirements: completeness and clarity. Completeness means that the
system must be specified to the last relevant, necessary detail. Clarity means that to communicate the
analysis and design outcomes, the documentation, be it textual or diagrammatic, must be legible and
comprehensible. The complexity challenge entails balancing these two forces that pull in opposite
directions and need to be reconciled: On one hand, completeness requires that the system details be
stipulated to the fullest extent possible. On the other hand, the need for clarity imposes an upper limit on
the level of complexity of each individual diagram and does not allow for a diagram that is too cluttered
or loaded.

Figure 21.2 is an OPM model of the parts of Complexity Managing and its effect on the System Model’s
Completeness and Clarity attributes. Complexity management must address and solve this problem of
completeness-clarity tradeoff by striking the right balance between these two contradicting demands.
OPM achieves clarity through abstracting and completeness through refining. Abstracting, the inverse of
refining, saves space and reduces complexity, but it comes at the price of completeness. Conversely,
refining, which contributes to completeness, comes at the price of loss of clarity. There are “no free
meals”; as is typically the case with engineering problems, there is a clear tradeoff between completeness
of details and clarity of their presentation. The solution OPM proposes is to keep each OPD simple
enough, and to distribute the system specification over a set of consistently inter-related and mutually-
aware OPDs that contain things at various detail levels. Abstracting and refining are the analytical tools
that provide for striking the right balance between clarity and completeness.

Dori — Model-Based Systems Engineering with OPM and SysML 299

21.5 State Expression and State Suppression

Explicitly depicting the states of an object in an OPD may result in a diagram that is too crowded or busy,
making it hard to read or comprehend. OPM enables state suppression—hiding the appearance of some or
all the states of an object as represented in a particular OPD when those states are not necessary in that
OPD’s context. In Fig. 21.4, the two states of each one of the two attributes form the OPD in Fig. 21.2
were suppressed, so the input-output link pair changes to an effect link (Fig. 21.3).

Zg System Model

[]

Completeness

Complexity

Modeler [———a@l Managing

In-Zooming & Unfolding State Expressing View
QOut-Zooming & Folding & Suppressing Creating

System Model exhibits Completeness and Clarity.
Completeness of System Model can be partial or full.
Clarity of System Model can be low or high.
Modeler handles Complexity Managing.
Complexity Managing consists of In-Zooming & Out-Zooming, Unfolding & Folding, State Expressing &
Suppressing, and View Creating.
Complexity Managing changes Clarity from low to high and Completeness from partial to full.

Fig. 21.2 The parts of Complexity Managing and its effect on the System Model’s Completeness and Clarity
attributes

ENFENIERNIERRTS el oy

D

A can be s1, s2, s3, s4, or s5. A can be s1, s3, or at least one other state.
P changes A from s1 to s3. P changes A from s1 to s3.

Fig. 21.3 A stateful object with all states expressed (left) and a suppressed version (right)

The inverse operation of state suppression—state expression—exposes one or more hidden object
states. The modeler may suppress any subset of states. The complete set of states of an object is the union

300 Complexity Management: Refinement and Abstraction

of the set of states of that same object appearing in all of the OPDs in the OPD set—the set of OPDs of
the entire OPM model.

Graphically, the annotation indicating that an object presents a proper subset (i.e., at least one but not
all) of its states, shall be a small state suppression symbol in the object’s right bottom corner. This symbol
appears as a small state with an ellipsis label, which signifies the existence of one or more states that the
view is suppressing, The textual equivalence of the state suppression symbol shall be the OPL reserved
phrase “or at least one other state”.

21.6 Unfolding and Folding

Unfolding is a mechanism for refinement, elaboration, or decomposition. Unfolding reveals a set of things
that relate to the unfolded thing—the refineable. The result of unfolding is a hierarchy tree, the root of
which is the refineable. Linked to the root are the refinees—one or more things—parts, specializations,
features, or instances—that adds details about the refineable through one or more of the four fundamental
structural relations. Any refinee can, in turn, be the refineable for the next level of unfolding.

g System Model

Completeness Clarity

Complexity
Modeler ———0

System Model exhibits Completeness and Clarity.
Modeler handles Complexity Managing.
Complexity Managing affects Clarity and Completeness.

Fig. 21.4 The OPD from Fig. 21.2 after state suppression of the two attributes and folding of Complexity Management

Folding is the inverse operation of unfolding. It is a collapsing and abstracting mechanism, which can
be applied to a hierarchy of an unfolded refineable. Folding is applied from the bottom of the hierarchy
upward. Each folding operation hides some or all of the refineables. Folding all the refineables leaves just
the refineable—the root of the tree hierarchy.

Since each of the four fundamental structural relation links may undergo unfolding and folding, the
four kinds of unfolding-folding pairs are the following.

e aggregation unfolding—exposing the parts of a whole, and participation folding—hiding the parts of
the whole,

Dori — Model-Based Systems Engineering with OPM and SysML 301

e exhibition unfolding—exposing the exhibitor’s features, and characterization folding—hiding the
features of the exhibitor,

e generalization unfolding—exposing the specializations of the general, and specialization folding—
hiding specializations of the general, and

e classification unfolding—exposing the class instances, and instantiation folding—hiding the
instances of the class.

21.7 In-Diagram and New-Diagram Unfolding

Unfolding can be done either in the current OPD or in a new OPD.

In-diagram unfolding is unfolding in which the refineable and its refinees appear

unfolded in the same OPD in which the refinee was originally.

Since unfolding uses one of the four the fundamental structural links, in-diagram unfolding is
graphically, syntactically, and semantically equivalent to using the corresponding fundamental structural
links. While in-diagram unfolding increases the load of the diagram, it saves the need to create a new
diagram, but if there are many refinees, or the current OPD is already busy, we will prefer new-diagram
unfolding.

New-diagram unfolding is unfolding in which the refineable and its refinees appear
unfolded in a new OPD.

Both in- and new-diagram unfolding can be applied to both objects and processes. Graphically, in
new-diagram unfolding, the unfolded refineable is denoted by a thick contour in both the more abstract
OPD in which the refineable appears folded, without refinees, and in the new, more detailed OPD, in
which the refineable appears unfolded and connected to its refineces with one or more fundamental
structural link.

The modeler should make a decision as to whether to use in-diagram or new-diagram unfolding based
on clarity considerations: If the current OPD is already crowded and tends to be cluttered, a new OPD
should be created to prevent the current OPD from becoming unwieldy. If in-diagram unfolding had been
applied and later the OPD became too crowded, the modeler can then switch from in-diagram to new-
diagram unfolding, thereby alleviating the complicatedness of the current OPD (at the price of an
additional OPD in the OPD set). Thus, the modeler decision whether to use in-diagram or new-diagram
unfolding should account for the trade-off between the clutter added to the current OPD and the need to
create a new OPD for displaying the refinees and associated links amongst them.

Partial unfolding may be depicted using the non-comprehensiveness symbol for aggregation,
exhibition, and classification. To satisfy a particular contextual relevance for an OPD, a modeler may
choose which refinees appear unfolded.

While unfolding and folding can be applied to both objects and processes, it is more prevalent for
objects, while processes can be refined via in-zooming, discussed next, or via unfolding. Process
unfolding is useful for functional decomposition which is very important in complex systems. Such
systems have many more auxiliary functions, in addition to the core function, that are concurrent or

302 Complexity Management: Refinement and Abstraction

independent of the core function’s flow. There is usually at least one more function—system setup and
management, a set of many services. Service-oriented systems offer several parallel or concurrent
services that cannot be thought of as working serially. Real-time systems perform several functions in
parallel rather than serially, while each component continuously samples its input from the other
components and acts upon it.

21.8 Port Folding

A procedural link from an operation of an object exhibitor to another object is lost during the operation
unfolding, because two objects cannot be directly connected by a procedural link. Similarly, a procedural
link from an attribute of a process exhibitor to another process is lost during the operation unfolding,
because two objects cannot be directly connected by a procedural link. However, it is often desirable to
maintain these links (Fig. 21.5).

Component

Coputing).
& Component | Onput

Onput
oy

Component exhibits Inputting and Outputting. Component exhibits Inputting and Outputting as ports.
Inputting consumes Onput. Inputting consumes Onput.
Outputting yields Onput. Outputting yields Onput.

Fig. 21.5 Port folding. Left: the unfolded model. Right: The port-folded version
Based on Mordecai and Dori (2013), a possible solution is port folding, shown in Fig. 21.6. Port
folding is a specialization of folding, an intermediate state between complete folding and complete
unfolding, in which we shift the process refinee—the operation—to the contour of the object refineable—
the exhibitor. Graphically, this looks similar to a SysML activity diagram port on the folded exhibitor.

Port folding is a useful representation if the modeler wants to use the object rectangles to give an idea
about the physical layout and relative sizes of the various system components. The reserved phrase “as
ports” (or “as a port” for singular) at the end of the exhibition sentence indicates port folding. Port folding
can also be applied to attributes of processes.

21.9 In-Zooming and Out-Zooming

In-zooming is a refinement operation, usually applied to processes, which specifies the subprocesses of
the process being in-zoomed, as well as their (possibly partial) performance or execution order. As an

Dori — Model-Based Systems Engineering with OPM and SysML 303

example, in Fig. 21.6, the process Check-Based Paying from Fig. 19.13 is in-zoomed in the descendant
OPD on the right, showing its four subprocesses, as expressed in the OPL sentence:

Check-Based Paying zooms into Writing & Signing, Delivering & Accepting, Endorsing & Submitting, and
Cashing & Cancelling, in that sequence.

The execution order of these four processes follows the timeline OPM principle, repeated here:

The Timeline OPM Principle

The timeline within an in-zoomed process is directed by default from the top of the in-zoomed
process ellipse to its bottom.

The execution order is expressed in OPL by the reserved phrase in that sequence at the end of the in-
zooming sentence. The exposition of the four subprocesses in the context of the Check-Based Paying
process provides for explicitly specifying how the states of both Check and Keeper change throughout the
lifecycle of check, as also expressed in the OPL sentence to the left of the OPD.

Within the context of the in-zoomed process there may be partial order: overall there is an order
dictated by the timeline, but two or more processes can be performed in parallel. As an example, suppose
a process P zooms into seven subprocesses, SP1, SP2 ... SP7, such that SP1 executes first, then SP2 and
SP3 in parallel, then SP4, and finally SP5, SP6, and SP7 in parallel. Then the OPL sentence will be:

P zooms into SP1, parallel SP2 and SP3, SP4, and parallel SP5, SP6, and SP7, in that sequence.

4

Check

Check-Based
Paying blank Check-Based Paying zooms into
Keeper Ny 2 Writing & Signing, Delivering &
v vgi[;:;g; ‘ Accepting, Endorsing &
i Submitting, and Cashing &
\ — Cancelling, in that sequence.

Writing & Signing changes Check
from blank to signed.

Delivering & Accepting changes
Keeper from payer to payee.
Endorsing & Submitting changes
P> endorsed Check from signed to endorsed.
Cashing & Cancelling changes
Check from endorsed to cashed &

Delivering &
Accepting

1
0
IRGH

payee

Payee

Endorsing &
Submitting

bank

W

‘ Cashing & cancelled and Keeper from bank to
\, Canceliing payer. (Rest of OPL suppressed.)

Bank

Fig. 21.6 The process Check-Based Paying from Fig. 19.13 is in-zoomed, showing the details of the state changes that
Check and Keeper undergo, as well as the agents involved in each subprocess

304 Complexity Management: Refinement and Abstraction

OPM can be considered process-oriented from the aspect of giving priority to modeling processes first
(initially the system’s function, the process that delivers the external value) and recursively zooming into
this function while modeling the objects that are relevant to each process at the corresponding detail level.

21.9.1 In-Diagram and New-Diagram In-Zooming

Like unfolding, in-zooming can be done either in the current OPD or in a new OPD.

In-diagram in-zooming is in-zooming in which no new OPD is created, and the
refineable appear in-zoomed along with its refinees in the same OPD.

New-diagram in-zooming is in-zooming in which the refineable and its refinees

appear in-zoomed in a new OPD.

All the examples so far were of new-diagram in-zooming. Indeed this is the more prevalent way of in-
zooming, since in-zooming requires a lot of “real estate” to specify the internal subprocesses and the
process being in-zoomed, as well as for depicting the additional relevant objects with links to these new
subprocesses, making the current OPD often too crowded. However, as Fig. 21.12 shows, in-diagram in-
zooming is also useful.

21.9.2 In-Zooming and Out-Zooming of Objects

Just like process in-zooming has the aggregation-participation semantics between the in-zoomed process
and its temporally-ordered subprocesses, so does object in-zooming has the aggregation-participation
semantics between the in-zoomed object and its spatially-ordered parts. In other words, the spatial order
according to the top-down or left-to-right layout of the parts determines their order. This is demonstrated
in the metamodel in Fig. 21.7: Whole from SD zooms in SD1 into Part A and Part B, in that vertical sequence.

SD1

Whole
i PartA
Whole
=
Out-zooming Part B
SD is refined by in-zooming Whole in SD1.

Whole from SD zooms in SD1 into Part A and Part B, in that vertical sequence.

SD

Fig. 21.7 A metamodel of in-zooming and out-zooming of objects
If Part A and Part B in Fig. 21.7 would be arranged horizontally, the OPL sentence would be: Whole
from SD zooms in SD1 into Part A and Part B, in that horizontal sequence. The ability to define order within
objects opens the way to modeling tables and matrices of any dimension. For example, we can rename
Whole in Fig. 21.7 to be Table, and Part A and Part B can be called Row 1 and Row 2, respectively. In the
next in-zoom level, each row can be in-zoomed to expose its elements, arranged horizontally, e.g., Row 1

Dori — Model-Based Systems Engineering with OPM and SysML 305

zooms into Element (1,1), Element (1,2), and Element 1,3), in that horizontal sequence. Thus, Element (1,2) will be
the second element in the first row of the matrix. A third dimension can be achieved by zooming into
each element, this time vertically, and this can proceed recursively. Each in-zooming operation, applied to
all the elements at the current level, adds one more dimension. Since each element can have a value, we
can use OPM to do matrix operations, such as addition or multiplication, and OPM tables can be used for
relational databases.

Time is one-dimensional and flows only forward, so to determine process execution order—the
timing—we only needed the vertical axis to specify the order of the subprocesses in an in-zoomed
process. Physical objects, however, are three-dimensional, so for object in-zooming we can at least
schematically model the relative layout of object parts in two dimensions, taking advantage of the fact
that the paper or computer screen used for conceptual modeling are two-dimensional. The limitation here
is that objects are rectangular rather than arbitrarily shaped, but we can still get a schematic, albeit rough,
2D layout. Moreover, if the in-zoomed object is an informatical object, such as a table or a matrix,
zooming into it can expose the actual cells of the table or matrix as individual objects.

21.10 Synchronous Versus Asynchronous Process Refinement

Unlike unfolding, which can be applied to each of the four the fundamental structural links, in-
zooming has the semantics of aggregation-participation only: The refineables are parts of the in-zoomed
refinee; they cannot be features, specializations, or instances. However, in addition to the whole part
semantics, the layout of the subprocesses within the in-zoomed process determines their execution order.
Conversely, when processes are unfolded, as are the four subprocesses of Complexity Managing in Fig.
21.2, there is no implied order to them (unless they have positive orderability, which must be denoted by
the ordered symbol next to the aggregation black triangle). The of aggregation unfolding of Complexity
Managing in Fig. 21.2, rather than in-zooming of Complexity Managing, is correct, because there is no
predetermined order of applying the four refinement operations while modeling a system. Rather, the
modeler applies them in an arbitrary order as needed. This is an example of an asynchronous process. On
the other hand, Check-Based Paying, shown in Fig. 21.6, is an example of a synchronous process.

A synchronous process is a process whose subprocesses have a predefined, fixed
order.

An asynchronous process is a process whose subprocesses do not have a predefined,
\fixed order.

Due to the difference between aggregation and in-zooming as far as processes are concerned, in-
zooming is suitable for modeling synchronous processes, while aggregation unfolding—for modeling
asynchronous processes. A system can have a blend of both synchronous and asynchronous processes.
Moreover, if a process has several synchronous subprocesses and others that are not, the same process can
be both in-zoomed, showing its synchronous subprocesses ordered in the in-zoomed process ellipse and
its asynchronous ones—aggregation unfolded, either in the same or in a separate OPD.

306 Complexity Management: Refinement and Abstraction

Since the aggregation-participation fundamental structural relation does not prescribe any partial order
of process performance, the modeling of synchronous process refinement must use in-zooming, in which
order can be defined. The system in Fig. 10.5 is synchronous: there is a fixed, well-defined order of each
subprocess within the in-zoom context of Dish Washing.

To model asynchronous process refinement we use the aggregation-participation fundamental
structural link, either through in-diagram aggregation unfolding or as a new-diagram aggregation
unfolding of the process. Figure 21.8 depicts a portion of a Home Safety System that carries out the
function Home Safety Maintaining, which includes the subprocesses Burglary Handling, Fire Protecting,
and Earthquake Alarming. Since the order of these three subprocesses is unknown, the OPD uses in-
diagram aggregation unfolding with an aggregation-participation link from this function rather than an in-
zoomed version of Home Safety Maintaining. Home Safety Maintaining in-zooms to a recurring systemic
process, Monitoring & Detecting, for which Detection Module is an instrument and Threat Appearing is an
environmental process.

Home Safety

r—1 Detection Module IRC I
Maintaining

Earthquake
Alarming

\ Detected / Threat /
burglary fire earthquake

Home Safety Maintaining consists of Burglary Handling, Fire Protecting, and Earthquake Alarming.
Detection Module exhibits Detection Treat.

Detection Treat can be burglary, fire, or earthquake.

Burglary Detected Threat initiates Burglary Handling, which requires burglary Detected Threat.

Fire Detected Threat initiates Fire Protecting, which requires fire Detected Threat.

Earthquake Detected Threat initiates Earthquake Alarming, which requires earthquake Detected Threat.

Fig. 21.8 Home Safety Maintaining is an asynchronous system

21.11 The Equivalence between In-Zooming and Unfolding

One can express the details of a synchronous process via both in-zooming and unfolding. Figure 21.9
presents a process P in-zoomed, in the OPM model on the left, and its equivalent OPM model on the
right, in which P is unfolded. However, as we can see in Fig. 21.9, in-zooming is preferable as it requires
less symbols and yield a shorter OPL paragraph. Using in-zooming rather than unfolding, we can use
instrument and result links instead of instrument event link and result event link, because the events
within an in-zoomed context are implicit.

Dori — Model-Based Systems Engineering with OPM and SysML 307

Importantly, when a process is in-zoomed, its subprocesses are its parts, while the objects exposed as
a result of this in-zooming are the process’ attributes. Symmetrically, when an object is in-zoomed, its
internal objects are its parts, while its internal processes are its operations. The latter fact provides for
depicting processes as operations of an object by putting them inside the in-zoomed view of that object.

A A

PB1

LG

P zooms into P1 and P2, in that sequence, as P consists of P1 and P2.

well as PB2 and PB1. P exhibits PB1 and PB2.

P1 requires PB1. PB1 initiates P1, which requires PB1.
P1 yields PB2. P1 yields PB2.

P2 consumes PB2. PB2 initiates P2, which consumes PB2.

Fig. 21.9 The egivalence between in-zooming (left) and unfolding (right)’

21.12 The System Map and the Ultimate OPD

There is exactly one System Diagram, SD—the top-level OPD, the level 0 OPD. It often contains one
main, core systemic process, which is the value-delivering function of the system. Recursive new-
diagram process in-zooming iterations result in a set of OPDs that are organized in a (hierarchical) tree
structure, with SD being the root (detail level 0) of the OPD tree, SD1, SD2, etc. being at detail level 1 of
the OPD hierarchy, SD1.1, SD1.2, ... SD 2.1, SD2.2... being at detail level 2 of the OPD hierarchy, and
SO on.

An OPD tree is a directed tree graph whose nodes are OPDs obtained by recursive

refinement (in-zooming and/or unfolding) of processes in the system, starting with the
[function—the process in SD.

The OPD set is the set of all the nodes in the OPD tree.

'The red contour is assigned by OPCAT automatically to a thing that is both in-zoomed and unfolded.

308 Complexity Management: Refinement and Abstraction

Detail level of an OPD is the number of nodes in the OPD tree that need to be
traversed from that OPD to the root, SD, including SD itself.

The OPD tree is a tree of processes—a graph whose nodes are OPDs. The root is SD, the System
Diagram, and the other nodes are the descendant OPDs, marked with their OPD labels, such as SDI,
which is at detail level 1, SD2.3, which is at detail level 2, etc. The directed edges of an OPD tree have
labels with each edge pointing from the parent OPD, which contains the refineable element, to a child
OPD containing refinees, which elaborates a process in the parent OPD via new-diagram in-zooming for
synchronous subprocesses or new-diagram aggregation unfolding for asynchronous subprocesses.

Since in-zooming has the semantics of aggregation-participation, each in-zooming in the hierarchy is
also interpreted as aggregation-participation in order to preserve the tree structure. Figure 21.10 shows at
the top the OPD tree—the hierarchy of the Product Lifecycle Engineering system OPM model (Dori and
Shpitalni 2005). The OPD set of the model in Fig. 21.10 has 11 OPDs spanning 4 levels of detail.

While the OPD tree is presented like a file hierarchy (see Fig. 21.10 top), the system map, shown at
the bottom of Fig. 21.10, is a more elaborate presentation of the OPD tree.

The system map is an elaborate OPD tree, in which each node in the tree is a
miniaturized icon of the OPD, with thick grey arrows pointing from each process in
one OPD to its refined (in-zoomed or unfolded) version in the child OPD.

The system map explicitly depicts the elements (things and links) in each OPD (node). Because the
system map may become very large and unwieldy, mechanisms shall allow access to model content and
the associations among elements. The system map helps navigate in a complex system that may comprise
hundreds of OPDs at many levels of detail. As an example, the executable OPM model of the mRNA
decay model in Somekh et al. (2014) contains hundreds of objects and processes in over 40 OPDs at 9
levels of detail, with hyperlinks from a thing in the model to the paper from which the model fact was
extracted.

Figure 21.11 is a screenshot of a simulated execution of the mRNA Decay OPM model (Somekh et al.
2014), showing it being at an OPD SD2.4.2.2.1.2.4.2 — elF4F Dissociates Cap and Decaysome in-zoomed,
as indicated also by the frame around this process in the OPD tree on the left. This OPD demonstrates the
self-similarity of OPDs: regardless of what detail level an OPD is at, it used only stateful objects,
processes, and relations among them.

Currently, the system in Fig. 21.11 is executing in parallel four subprocesses (in dark blue), after
having completed the subprocess elF4F Dissociates Cap above them. The dissociation is manifested in
each of these four subprocesses by consuming a link, modeled as an object in its own right, between two
objects, e.g., the factor Xrn1 and the protein elF4E at the bottom are dissociated by the process elF4E and
Xrn1 Dissociation. Below the OPD is the lifespan diagram, enabling inspection of each object and process
at each point in time. The browser on the left is open on the relevant paper, one of the 43 papers from
which the model facts in this OPD were taken, obtained by clicking on the in-zoomed process.

This example demonstrates the indispensability of the refinement mechanisms, and in particular in-

zooming. Without it, it would be impossible to comprehensibly show the hundreds of things in the model
and the thousands of links among them in a single OPD or in any other kind of diagram.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC302023/
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0107085
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0107085
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0107085
http://journals.plos.org/plosone/article/asset?unique&id=info.doi/10.1371/journal.pone.0107085.s002

Dori — Model-Based Systems Engineering with OPM and SysML 309

In addition, an OPM tool set should provide a mechanism for creating views, as OPDs with associated
OPL sentences, of objects and processes that meet specific criteria. These views may include the critical
path for minimal system execution duration, or a list of system agents and instruments, or an OPD of
objects and processes involved in a specific kind of link or set of links. For example, an OPD can be
created by (1) refining (unfolding or in-zooming) an object or (2) collecting and presenting in a new OPD

things that appear in various OPDs for expressing assignment of system sub-functions to system-module
objects.

¢ 9 Product Lifecycle Engineering)
¢ &80
L4 SD1 - Product Lifecycle Engineering in-zoomed

[ES] 8D1.1 - Assembly & Testing inzoomed

{4 8D1.2 - Design in-zoomed

) D13 - End Of Life in-zoomed

¢ [8D1.4 - Manufactuimg in-zoomed

¢ [E SD1.41 - Making inzoomed
{9 SD1.4.1.1 - Initial Shaping unfolded
[SD1.4.1.2 - Secondary Shaping unfolded
9 SD1.4.1.3 - Software Module Developing In-zoomed

[ES] 8D1.5 - Commerce in-zoomed

[E5 8D1.4 - Use & Senice inzoomed

[§5) SD1.2 - Design inzoomed

. sssssssssssnnns

ssssssssssssssnssnsan

1.4 - Manufactuimg in-zoomed

essesssensnensned
{83 8D1.1 - Assembly & Testing in-zoomed
Cieasanas . Freee

= 80141 - Maki
wsessasss

.

.
.
.
.

Sesssssssssessssssnnnnat

.
.
fesssassesessssassssssanesssassstrRsasnanann

Fig. 21.10 The tree hierarchy (top) and system map (bottom) of the Product Lifecycle Engineering system OPM
model

310 Complexity Management: Refinement and Abstraction

The ultimate OPD is single flat representation of the OPM system model.

The ultimate OPD is obtained by recursively flattening the OPD tree from the bottom up all the way to
the OPD tree toot, such that the entire model is represented in this single OPD. Except for very small
system models, the ultimate OPD is definitely unfit for use by humans due to our limited cognitive
capacity. However, for computer processing—knowledge management, navigation, querying, etc., the
ultimate OPD is very useful.

[7] 5024.2.2.1.24.3 - off 4§ Dissacintes Cap nnd Decayson in-zoomed. s

nih.gov,

The eukaryotic mRNA decapping protein Dcp! intt
functionaily with the eIF4F transiation initiation cc

. crvs [oy '
Mt Vieruy ‘PI&;’M-M Step by Step, Play speed - Real X {; Timeline = 22250 |

Fig. 21.11 A screenshot of simulated execution of the mMRNA Decay OPM model (Somekh et al. 2014), showing detail
level 8—SD2.4.2.2.1.2.4.2—elF4F Dissociates Cap and Decaysome in-zoomed

21.13 The OPD Object Tree and Forest

Unlike the OPD (process) tree, which results from process refinement and has a single root, there can be
many OPD object trees, at least one from each refineable object, which together constitute a forest.

An OPD object tree is a tree whose root is an object B and whose nodes are things
that result from recursively refining B via unfolding and in-zooming, where each in-

zooming is converted to aggregation-participation.

Each tree stems from a distinct refineable object that unfolds or in-zooms to reveal its details—not
necessarily just parts as in the process in-zooming, but possibly also features, specializations, or
instances. Rather than identifying the possible flow of execution control as in the OPD (process) tree,

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0107085

Dori — Model-Based Systems Engineering with OPM and SysML 311

each OPD object tree encapsulates the information about an object as a hierarchical structure. Since in-
zooming has the semantics of aggregation-participation, like the OPD tree, each in-zooming in the
hierarchy of the OPD process is also interpreted as aggregation-participation in order to preserve the tree
structure. Complete or partial OPD object trees can be presented as views (see Sect. 21.18). The root of
each OPD object tree can be attached as a child of the node in the OPD (process) tree, creating the system
map (see Sect. 21.12).

21.14 Out-Zooming

Out-zooming is the inverse operation of in-zooming. A scenario in which the need for out-zooming arises
is when the modeler observes that the current OPD is already over-crowded, making it necessary to hide
the content of an in-zoomed process in the current OPD. In-diagram out-zooming does not create a new
OPD, which implies removing and losing the subprocesses and objects inside the process being out-
zoomed. Therefore, unless the modeler decides that these subprocesses are too detailed for the purpose at
hand and is ready to delete them, in-diagram out-zooming does not make a lot of sense.

New-diagram in-zooming elaborates a refineable in an existing OPD, say SDn, where n is the current
level of detail, by creating a new OPD, SDn+1, which elaborates the refineable at the next detail level by
adding subprocesses, associated objects, and relevant links. Figure 21.12 is a metamodel of the New-
Diagram In-Zooming and New-Diagram Out-Zooming processes. The OPM model on the right uses in-
diagram in-zooming of the model on the left to elaborate the two processes: New-Diagram In-Zooming, for
creating a new-diagram in-zoomed context, filled in with subprocesses and objects, and New-Diagram
Out-Zooming, for creating a new-diagram out-zoomed (empty) context. New-Diagram In-Zooming begins
with Content Showing, followed by Link Refining. New-Diagram Out-Zooming begins with Link
Abstracting, the inverse process of Link Refining, followed by Content Hiding, the inverse process of
Content Showing.

Semi-Zoomed OPD is an interim object, which is created and subsequently consumed during both New
Diagram In-Zooming and New-Diagram Out-Zooming. This interim object appears only within the contexts
of both New-Diagram In-Zooming and New-Diagram Out-Zooming.

In Fig. 21.13, the metamodel on the left hand side of Fig. 21.12 is elaborated by embedding an actual
OPDs inside its objects SDn, SDn+1, and Semi-Zoomed OPD. In this particular OPM model example,
SDn, presented in Fig. 21.13 at the top middle, includes the process P, which is a refineable about to be
in-zoomed, as well as four objects: the consumee C, the agent A, the instrument D, and the resultee B,
connected to P with the corresponding different procedural links. This OPD inside the meta-object SDn is
instrument for the New-Diagram In-Zooming on the left.

Content Showing is the first of the two New-Diagram In-Zooming subprocesses. During Content
Showing, the boundary of P expands to make room for showing its content—the model subprocesses P1,
P2, and P3, as well as the interim model object BP. The result of Content Showing is presented as the
content of the interim object Semi-Zoomed OPD. This interim object is recognizable only in the context of
New-Diagram In-Zooming. The second subprocess, Link Refining, done by the modeler, consumes it while
creating SDn+1 presented in Fig. 21.13 at the bottom in the middle.

During Link Refining, the procedural links attached to the contour of P migrate to the appropriate
subprocesses as determined by the modeler. Thus, since P1 consumes C, the consumption link arrowhead

312 Complexity Management: Refinement and Abstraction

migrates from P to P1. The agent A handles both P1 and P2, so in SDn+1 two agent links, one to P1 and
the other to P2, replace the single one in SDn from A to P. P3 requires D, so the instrument link migrates
from P to P3. Finally, since BP results from P1, and P3 consumes it, the corresponding result and
consumption links are added, making BP an interim, internal object of P, recognizable only within the
context of P. Likewise, P1, P2, and P3 are internal processes of P, and as such they are recognizable only
within the context of P. The OPD inside the meta-object SDn+1 is instrument for the New-Diagram Out-
Zooming on the right. What happens next is the exact inverse of what we have seen, both in the order of
the subprocesses and what each of them does.

SDn

New-Diagram In-Zooming requires SDn.
New-Diagram In-Zooming yields SDn+1. New-Diagram New-Diagram
New-Diagram Out-Zooming requires SDn+1. In-Zooming Out-Zooming
New-Diagram In-Zooming yields SDn+1.

SDn+1
New-Diagram In-Zooming zooms into SDn
Content Showing and Link Refining, in that A

New-Diagram
In-Zooming

New-Diagram
QOut-Zooming

sequence, as well as Semi-Zoomed OPD.
Content Showing requires SDn.

Content Showing yields Semi-Zoomed
OPD.

Link Refining consumes Semi-Zoomed
OPD.

Link Refining yields SDn+1.

New-Diagram Qut-Zooming zooms into Link
Abstracting and Content Hiding, in that
sequence, as well as Semi-Zoomed OPD.
Link Abstracting requires SDn+1.

Link Abstracting yields Semi-Zoomed OPD.
Content Hiding consumes Semi-Zoomed

OPD.
L———3> SDn+1
Content Hiding yields SDn. w

Content
Showing

Link
Abstracting

Semi-Zoomed

OPD Semi-Zoomed

OPD

Link
Refining

Content
Hiding

Fig. 21.12 A metamodel of new-diagram in-zooming and new-diagram out-zooming

Link Abstracting is the first of the two New-Diagram Out-Zooming subprocesses. During Link
Abstracting, the links connected to subprocesses and interim objects of P migrate to (the boundary, the
ellipse circumference of) P itself, resulting in exactly the same Semi-Zoomed OPD that is depicted inside
New-Diagram In-Zooming. This Semi-Zoomed OPD interim object is consumed by Content Hiding,
creating SDn presented in Fig. 21.13 at the top in the middle. The boundary of P can now shrink, as it is
empty and there is no need for making room to show its content (the model subprocesses P1, P2, and P3,

Dori — Model-Based Systems Engineering with OPM and SysML 313

as well as the interim model object BP), which is now hidden. The result of Content Showing is presented
as the content of the interim object Semi-Zoomed OPD.

21.15 Simplifying an OPD

In-diagram out-zooming—the elimination of an in-zoomed process content—followed by new-diagram
in-zooming can simplify an already-modeled OPD that the modeler deems overly complicated or
overloaded with details. In-diagram out-zooming reduces the cognitive load necessary to understand the
complicated OPD at the expense of adding a new OPD to the OPD set, which is the result of the
subsequent new-diagram in-zooming, which creates a new OPD at an interim level of detail, as explained
next.

Figure 21.14 demonstrates simplifying an OPD by in-diagram out-zooming followed by new-diagram
out-zooming. On the left is the original OPD set with three OPDs: SD, SD1 and SD1.1. Realizing that SD1
is overly complicated, in order to simplify the model, the modeler decides that a set TO (Things to be
Out-zoomed), comprising four things in SD1—P1, P2, and P3, along with BP—shall be replaced by a
single new process P123 via new-diagram out-zooming.

New-Diagram

New-Diagram Out-Zooming

In-Zooming

Hiding

Refining

Fig. 21.13 The metamodel on the left in Fig. 21.12 elaborated with an example of an actual OPM model inside it

In the middle of Fig. 21.14, P123 undergoes new-diagram out-zooming, resulting in SD1.1[new] (in a
real implementation, the new OPDs shall not be marked with [new]; this label only helps the explanation
here).

314 Complexity Management: Refinement and Abstraction

Here is how this is done. The modeler indicates the things in the set TO (things to be out-zoomed) and
the name of the new interim process to be created (P123 in our case). The grey background denotes these
candidate elements. The process-to-be P123 now undergoes new-diagram out-zooming, following the two
subprocesses described earlier: link abstracting and content hiding. As a result of link abstracting, the
links that were connected to subprocesses of the future P123 process migrated to the contour of the now-
created P123, and as a result of content hiding, P123 becomes empty, as shown in SD1[new].

SD[new]

2] P123 (grey background) is the
collection of things considered
[1] Original OPD Set for ouk-zooming
with three OPDs

[3] New OPD Set with four
re-numbered OPDs

Fig. 21.14 Simplifying SD1 of the OPM model on the left by in-diagram out-zooming followed by new-diagram in-
zooming yields a new OPM model on the left, in which SD1[new] and SD1.1[new] replace SD1
In order to preserve the model facts that were eliminated (such as the model facts that A is agent to P1
and P2), a new OPD, SD1.1[new], was created with these facts. Hence, on the right of Fig. 21.14 is the
new OPD set, which now has four OPDs: SD[new], SD1[new], SD1.1[new], and SD1.1.1[new], renumbered
to reflect the new OPD hierarchy, In this augmented hierarchy, the complicated OPD SD1 has been
replaced by two simpler OPDs — SD1[new] and SD1.1[new].

Dori — Model-Based Systems Engineering with OPM and SysML 315

Examining SD1[new], we see that it is indeed less complicated and less crowded than the original SD1,
since it has a net of five fewer elements: three removed processes, P1, P2, and P3, one removed object,
BP, two removed links, and one added process, P123. This new OPD is inserted into the process
hierarchy, pushing the old SD1.1, which remains unchanged, one detail level down, from detail level 2 to
detail level 3. Due to the addition of SD1.1[new], SD1.1is renumbered to be SD1.1.1[new].

21.16 Abstraction Accounts for Procedural Link Precedence

Recall that the procedural link uniqueness OPM principle asserts that at any level of detail, an object and
a process can be connected with at most one procedural link, which uniquely determines the role of the
object with respect to the process at that detail level.

When the modeler performs abstraction via state suppression, folding, or out-zooming, the procedural
links between refinees and other things in the OPD that are not refinees, migrate to the context
(graphically the contour, or circumference) of the refineable. For example, suppressing the states in Fig.
10.4, the pair of input-output links migrates from the two states to Person to become an effect link.
Another example is P123 in Fig. 21.14.

This migration may cause a conflict, in which two or more procedural links of different kinds link an
object and a process. According to the procedural link uniqueness OPM principle an object or an object
state can link to a process only by a single, unique procedural link. Figure 21.15 demonstrates the
problem of procedural link abstraction. In SD1, the result link from P1 to B is more significant, or is
semantically stronger, than the effect link from P2 to B, so when the process P in SD1 is out-zoomed in
SD, the result link prevails.

Out- Sp
@ ooming e E“‘_@

Fig. 21.15 Abstracting different procedural links invokes the link precedence

To sustain this principle, OPM resolves the conflict between candidate links by determining, based on
the links’ semantic strength, which link remains or which new link replaces the candidates in the abstract
OPD. The loss of detail information is consistent with the notion of abstraction. Semantic strength and
link precedence are two concepts to guide the determination of which links to retain and which to hide
when an OPD is out-zoomed or folded.

Semantic strength of a procedural link is the significance of the information that the

link carries.

Information concerning a change in existence, either creation or elimination, is more significant than
information about change to an existing thing. The relative semantic strength of the two conflicting
procedural links determines the link precedence. When two or more procedural links compete to remain

316 Complexity Management: Refinement and Abstraction

represented in an OPD that is being abstracted (out-zoomed, folded, or state-suppressed), the link that
prevails is the one with the highest semantic strength.
21.16.1 Precedence Among Transforming Links

Transforming links include result, effect, and consumption links, and their variants having the event or
condition control modifiers.

Link precedence is an ordered list of procedural links with diminishing sematic

strength.

Table 21.1 Link precedence among the transforming links

The in-zoomed process P
being out-zoomed:

L syuil Ld-g

(8 k>(P) Invalid @
nNo DNG
Invalid B0 Invalid

Table 21.1 shows link precedence among the transforming links: P in the upper left corner is out-
zoomed. The column headings show the three possible transforming links between P1 and B, while the
row headings show the three possible links between P2 and B. The table cells show the prevailing link
between B and P after P is out-zoomed. Cells marked as “Invalid” indicate the impossibility of the
combination. For example, inspecting the center cell, if P1 consumes B, then B no longer exists when P2
later tries to consume it again. Since object creation and consumption are semantically stronger (i.e., they
have higher semantic strength) than affecting the object by changing its state, result and consumption
links have precedence over effect links, as demonstrated in Table 21.1. However, since result and
consumption links are semantically equivalent, when they compete, the prevailing link shall be the effect
link because the effect link allows both creation and elimination as effects.

21.16.2 Precedence Among Transforming and Enabling Links

Transforming links are semantically stronger than enabling links, because the transforming links
denote creation, consumption, or change of the linked object, while the enabling links only denote
enablement. A transforming link therefore has precedence over an enabling link as shown in Fig. 21.16.

Dori — Model-Based Systems Engineering with OPM and SysML 317

Within the enabling links, an agent link has precedence over an instrument link, because in artificial
systems the humans are central to the process, they handle the system and must ensure its proper
operation. In addition, wherever there is human interaction, an interface should exist and this information
should be available to the modeler of a refineable so that they can design the human-system interface
according to the conceptual model specification.

Out- > SR
. ooming TI«'»@

Fig. 21.16 Link precedence among transforming and enabling links

Summarizing the semantic strength of the procedural non-control links, the primary link precedence is
as follows:

Consumption = Result > Effect > Agent > Instrument

Here, the = and > symbols refer to the semantic strength of the links. State-specified links have higher
precedence than basic links that do not specify states.

21.16.3 Precedence Among Same-Kind Non-control Links and Control Links

Each non-control link kind has a corresponding event and condition link that are useful for determining
finer, secondary precedence distinction within each kind of procedural link. A secondary link precedence
exists within each procedural link in the primary link precedence. The event link has higher semantic
strength than its corresponding non-control link, while the condition link has a weaker semantic strength
than its corresponding non-control link. The semantic strength of an event link is stronger than the
semantic strength of its corresponding non-control link, because any event link has semantics of both its
corresponding non-control link plus the event capable of initiating a process. The semantic strength of a
conditional link is weaker than the semantic strength of its corresponding non-control link, because the
condition modifier weakens the precondition satisfaction criteria for the connecting process.

21.16.4 Summary of the Procedural Link Precedence

Summarizing the semantic strength of the procedural links based on the distinction between primary and
secondary precedence, the complete order of precedence is as follows:

1. consumption event > consumption

2. consumption = result

3. result > consumption condition
4. consumption condition > effect event

5. effect event > effect

6. effect > effect condition

7. effect condition > agent event

8. agent event > agent

9. agent > agent condition

318 Complexity Management: Refinement and Abstraction

10. agent condition > instrument event
11. instrument event > instrument
12. instrument > instrument condition

21.17 Link Migration upon In-Zooming

The context (graphically, the outer circumference) of a process P acts as parentheses in algebra that are
used to express the distributive law: Any procedural link attached to P is thus viewed as is it is attached to
each one of P’s subprocesses. An example appears in Fig. 8.2, where crashed Vehicle is instrument to all
the four subprocesses inside Automatic Crash Responding.

As the modeler adds subprocesses, she or he often fails to manually migrate procedural links to the
specific subprocesses, causing them to be implicitly attached to superfluous procedural links that
invalidate the model. To help avoid these situations, as soon as a modeler draws the first subprocess P1
inside and in-zoomed process P, a modeling tool should automatically move to P1 all the procedural and
control links that were attached to P in the parent OPD. An example is Fig. 5.1, which shows the
Automatic Crash Responding process after it was in-zoomed and after its first subprocess, Crash Severity
Measuring, was drawn inside it near the top of the enclosing ellipse of the Automatic Crash Responding
process. The links that were attached to Automatic Crash Responding have migrated to be attached to
Crash Severity Measuring.

It is the modeler’s role to see to it that the various transforming links that are now attached to P1 will
be put back to P or moved to subsequent subprocesses. Similarly, enabling links may need to be migrated
to one or more specific subprocesses, where the linked enabler is really needed. As an alternative to the
automatic link migration, the tool can check the validity of the links after the insertion of each new
subprocess and alert the modeler as needed.

21.18 View Creating: The Fourth Refinement Mechanism

View creating—the fourth refinement mechanism after state expression, in-zooming and unfolding, is
achieved by collecting model facts from various OPDs in the OPD set and putting them together in a new
OPD called View for the purpose of demonstrating a specific aspect. Examples include (1) a process
tree—a complete or partial tree of the process hierarchy of the system, which is a purely procedural view
of the system, (2) an object tree—a complete or partial tree of the object hierarchy of the system, which is
a purely structural view of the system, (3) an allocation view, showing what objects are allocated to
perform what functions (processes) in the system model, and (4) an animated simulation motivated view,
aimed at easing the concurrent inspection of how certain objects and processes from disparate OPDs
interact. In a modeling tool, views shall not be edited to add, remove, or change any model fact. Rather,
this should be done in the non-view OPDs and reflected automatically in the pertinent views. The inverse
of view creating is view deleting.

Dori — Model-Based Systems Engineering with OPM and SysML 319

21.19 Middle-Out as the De-facto Architecting Practice

Ideally, analysis and design start at the top and make their way gradually to the bottom—from the general
to the detailed. In real life, however, analysis typically starts at some arbitrary detail level and is rarely
linear. The design is not linear either. Usually, these are iterative processes, during which knowledge,
followed by understanding, is gradually accumulated and refined. The system architect cannot know in
advance the precise structure and behavior of the very top of the system—this requires analysis and
becomes apparent at some point along the analysis process. Step by step, the analyst builds the system
specification by accumulating and recording facts and observations about things in the system and
relations among them.

Due to the non-linear nature of the analysis and design processes, linear, unidirectional “bottom-up”
or “top-down” approaches, while seeming highly methodical, are rarely applicable to real-world systems.
Rather, it is frequently the case that the system under construction or investigation is so complex and
unexplored, that neither its top nor its bottom is known with certainty from the outset. More commonly,
analysis and design of real-life systems start in an unknown place along the system’s detail level
hierarchy. The analysis proceeds “middle-out” by combining top-down and bottom-up techniques to
obtain a complete comprehension and specification of the system at all the detail levels.

It thus turns out that even though architects usually strive to work in an orderly top-down fashion,
more often than not, the de-facto practice is the middle-out mode of analysis and design. Rather than
trying to fight it, system modeling approaches and tools must provide facilities to handle this middle-out
architecting mode along with support for top-down and bottom up approaches.

21.19.1 OPM Caters to the Mixed Approach

Using OPM, the accumulated knowledge is documented and represented as interconnected model facts
through a set of OPDs and their corresponding OPL paragraphs. If the OPD that is being augmented
becomes too crowded, busy, or unintelligible, a new OPD is created. This descendant OPD repeats one or
more of the things in its ancestor OPD in a refined form. These repeated things establish the link between
the ancestor and descendant OPDs. The descendant OPD does not usually replicate all the details of is
ancestor, as some of them are abstracted, while others are simply not included. This new OPD is therefore
amenable to refinement of new things to be laid out in the space that was saved by not including things
from the ancestor OPD. In other words, there is room in it to insert a certain amount of additional details
before it gets too cluttered. When this happens, a new cycle of refinement takes place, and this goes on
until the entire system has been completely specified. As we have seen in this chapter, OPM caters not
only to this top-down approach, but also to bottom-up and middle-out via abstracting and OPD
simplifying along with the addition of an interim detail level.

21.19.2 When Should a New OPD Be Created?
An OPD set has to be readable and easy to follow and comprehend. The following rules of thumb are
helpful in deciding when a new OPD should be created so OPDs are as easy to read and grasp as possible.

e The OPD should not stretch over more than one page or one average-size monitor screen.
e The OPD should not contain more than 20-25 entities (objects, processes or states).

320 Complexity Management: Refinement and Abstraction

e Things (objects or processes) must not occlude each other. They are either completely contained
within higher-level things, in case of zooming, or have no overlapping area. An exception to
this guideline is when port folding (See Sect. 21.8) is applied.

e The diagram should not contain too many links.

e A link should not cross the area occupied by a thing.

e The number of links crossing each other should be minimized.

21.20 Navigating Within an OPM System Model

Since, as we have seen, an OPM model can be very large navigation inside the model and orientation
becomes an issue.

21.20.1 OPM Diagram Labels and Tree Edge Labels

The OPM system name is the name of the OPM model that specifies the system. An OPD name is the
name that identifies each OPD in the OPD process tree. SD shall contain one and only one systemic
process, which represents the overarching system function that delivers functional value to stakeholders.
It may, in addition, to contain one or more environmental processes. SD is the label of the root OPD in
the OPD tree. The OPD tree root, SD, occupies level (tier) 0 in the OPD tree and it is the single node at
this level. Higher numbered tiers, i.e., those corresponding to successive refinements, may have more
than one OPD.

Not only the nodes in the OPD tree are labeled; the edges are too. Each edge (an arc connecting two
nodes—two OPDs) in the OPD tree has a unique label. The label expresses a refinement relation that
corresponds to the implicit invocation link or unfolding relation. Considering each OPD to be an object
and the entire OPD process tree to be a single OPD, each edge is a unidirectional tagged structural link
with a tag that reads: “is refined by in-zooming <Refineable Name> in 7, or “is refined by unfolding
<Refineable Name> in ”. An OPD refinement OPL sentence is an OPL sentence describing the refinement
relation between a refineable present in a tiery OPD and its refining OPD in tiery.;. The syntax of an in-
zoomed OPD refinement OPL sentence is:

<Tiery OPD label> is refined by in-zooming <Refineable Process Name> in <Tiern.1 OPD Label>.
Similarly, the syntax of an unfolded OPD refinement OPL sentence is:

<Tiery OPD label> is refined by unfolding <Refineable Process Name> in <Tiery.1 OPD Label>.

21.20.2 Whole System OPL Specification

An OPL paragraph is the collection of OPL sentences that together specify in text what the corresponding
OPD specifies graphically. An OPL paragraph name, using the OPD name, may precede the first OPL
sentence of each OPL paragraph.

An OPD model specification is the collection of successive OPDs in the system’s OPD
tree.

Dori — Model-Based Systems Engineering with OPM and SysML 321

An

An OPL model specification is the collection of successive OPL paragraphs
corresponding to the OPDs in the system’s OPD tree, from which duplicate OPL
sentences were removed.

An OPM model specification is a side-by-side presentation of the OPD model
specification and the corresponding OPL paragraph is presented to the right of each
OPD.

example of an OPM model specification is presented in Table 21.2, which contains the entire

OPM model of the Dish Washing system in Fig. 10.5.An OPM model specification of a system begins
with a starting title, as in Dish Washing System OPM model specification.

The left column contains the OPDs in the OPM system’s OPD set in a breadth-first order, but the

modeler may override this default order. The corresponding OPL paragraphs are listed on the right
column, such that each OPL paragraph is to the right of its OPD.

21.21 Summary

Complexity management is essential for taming the complexity of real-world systems, both
man-made and natural.

The OPM Model Complexity Assertion is that applying refinement mechanisms of in-zooming
and unfolding to stateful objects or processes, OPM can conceptually model systems at any level
of complexity.

OPM’s complexity management approach is detail-level-based decomposition, which is in
contrast with UML and SysML approach of aspect-based decomposition.

The completeness-clarity trade-off is the tension between the need to specify the system such
that all the model facts are represented, while maintaining a clear, comprehensible representation
of the system.

The three refinement-abstraction mechanisms are unfolding—folding, in-zooming—out-zooming,
and state-expressing—state-suppressing. A fourth is view-creating—view-deleting.
State-expressing is showing one or more of an object’s states; state-suppression is hiding one or
more of the object’s states.

Each of the four fundamental structural relation links may undergo unfolding and folding, so
there are four kinds of unfolding-folding pairs.

In-diagram unfolding is unfolding in which the refineable and its refinees appear unfolded in
the same OPD in which the refinee was originally.

New-diagram unfolding is unfolding in which the refineable and its refinees appear unfolded in
anew OPD.

322

Complexity Management: Refinement and Abstraction

Unfolding is a mechanism for refinement, elaboration, or decomposition, which reveals a set of
refineables—things that relate to the unfolded thing—the refineable.

A synchronous process is a process whose subprocesses have a predefined, fixed order.

An asynchronous process is a process whose subprocesses do not have a predefined, fixed
order.

New-diagram in-zooming is in-zooming in which the refineable and its refinees appear in-
zoomed in a new OPD.

In-diagram in-zooming is in-zooming in which no new OPD is created, and the refineable
appear in-zoomed along with its refinees in the same OPD.

In-zooming has the semantics of aggregation-participation plus positive orderability.
Process in-zooming determines the (possibly partial) temporal order of its subprocess execution.
Object in-zooming determines the (possibly 2-dimansional) spatial order of its parts.

An OPD tree is a directed nod- and edge-labeled tree graph whose nodes are OPDs obtained by
recursive in-zooming or unfolding of processes in the system, starting with the function—the
process in SD.

An OPD set is the set of all the nodes in the OPD tree.

Detail level of an OPD is the number of nodes in the OPD tree that need to be traversed from
that OPD to the root, SD, including SD itself.

The system map is an elaborate OPD tree, in which each node in the tree is a miniaturized icon
of the OPD, with thick grey arrows pointing from each process in one OPD to its refined (in-
zoomed or unfolded) version in the child OPD.

The ultimate OPD is single flat representation of the OPM system model.

Dori — Model-Based Systems Engineering with OPM and SysML

323

Table 21.2 OPM model specification of Dish Washing System

Dish Washing System OPM model specification

Graphical specification (OPD set)

Textual specification (OPL paragraph set)

SD: Dish Washing System

@)

Household
User

Dish Set

Household User handles Dish Washing.
Dish Washing requires Dishwasher.
Dish Washing consumes Soap.

Dish Washing affects Dish Set.

SD1: Dish Washing in-zoomed

Dishwasher

Soap
Compartment

loaded |K‘

Dish Washing
Dish
Loading

Detergent
Inserting

Dish Cleaning
& Drying

Dish
Unloading

Household
User

Soap

Dish Set

Cleanliness

SD is refined by in-zooming Dish Washing in
SD1.

Dish Washer consists of Soap Compartment
and at least one other part.

Dishwasher can be empty or loaded.
Dishwasher is initially empty and finally empty.
Soap Compartment can be empty or loaded.
Soap Compartment is initially empty and finally
empty.

Dish Set exhibits Cleanliness.

Cleanliness of Dish Set can be dirty or clean.
Cleanliness of Dish Set is initially dirty and
finally clean.

Household User handles Dish Washing.

Dish Washing zooms into Dish Loading,
Detergent Inserting, Dish Cleaning & Drying,
and Dish Unloading, in that sequence.

Dish Loading changes Dishwasher from empty
to loaded.

Detergent Inserting requires Soap.

Detergent Inserting changes Soap
Compartment from empty to loaded.

Dish Cleaning & Drying requires Dishwasher.
Dish Cleaning & Drying consumes Soap.
Dish Cleaning & Drying changes Cleanliness
of Dish Set from dirty to clean.

Dish Unloading changes Dishwasher from
loaded to empty.

End of Dish Washing System OPM model specification

324

Complexity Management: Refinement and Abstraction

Out-zooming provides for incorporating the middle-out approach to conceptual modeling by
simplifying a complicated OPD while adding an interim level of detail.

Semantic strength of a procedural link is the significance of the information that the link carries.
Link precedence is an ordered list of procedural links with diminishing sematic strength.

The primary link precedence is Consumption = Result > Effect > Agent > Instrument.

View creating is collecting model facts from various OPDs in the OPD set and putting them
together in a new OPD called View for the purpose of demonstrating a specific aspect.

An OPD model specification is the collection of successive OPDs in the system’s OPD tree.

An OPL model specification is the collection of successive OPL paragraphs corresponding to
the OPDs in the system’s OPD tree, from which duplicate OPL sentences were removed.

An OPM model specification is a side-by-side presentation of the OPD model specification and
the OPL model specification, where to the right of each OPD the corresponding OPL paragraph
is presented.

21.22 Problems

Based on Fig. 21.1, create an OPM model that explains the two specializations of
decomposition, what they mean, and which kind is used by what language.

Present on object with four states and a process that affects it.

Suppress the states that are not relevant to the model in the previous question and add the
incomplete state symbol.

Model a complex object with three levels of unfolding, including aggregation unfolding and
exhibition unfolding.

Select two subprocesses from Fig. 21.6. For each, apply new-diagram in-zooming and add model
elements as you see fit.

Perform out-zooming from the in-zoomed processes in the two OPDs created in the previous
problem.

What is the ultimate OPD of the system in Fig. 21.6?

Is the process in Fig. 21.6 synchronous or asynchronous? Explain.

Is the process in Fig. 21.17 synchronous or asynchronous? Explain.

Dori — Model-Based Systems Engineering with OPM and SysML 325

10.

1.

12.

13.

Home Safety
Maintaining

—1 Detection Module

Burglary Fire Earthquake
Handling Protecting Alarming
€ ® ©

\ Detected/Threat /
[burg\ary] [fire J[earthquake]

Fig. 21.17 Home Safety Maintaining system—a partial model

Draw an in-zoomed map of part of the Mid-West of the USA with at least six states, where each
state is an object, while maintaining approximate spatial relations among the states.

In Fig. 21.13, change the OPDs inside SDn and SDn+1 such that a need to invoke the procedural
link precedence shall arise.

For the model in the previous problem, create the Semi Zoomed OPD analogous to that in Fig.
21.13.

In Fig. 21.14, define TO as {P3, P4, P5, BK}, perform the out-zooming, and show the resulting
SD[new], SD1[new], SD1.1[new], and SD1.1.1[new].

Chapter 22
OPM Operational Semantics and
Control Links

Control Flow Semantics presents a unified, formal treatment of the semantics of a
wide spectrum of control flow notions as found in sequential, concurrent, logic,
object-oriented, and functional programming languages.

de Bakker and de Vink (1996)

To control the flow of system execution, OPM has precise operational semantics, based on the event-
condition-action paradigm and expressed by modifying the procedural links with control modifiers—
event and condition symbols. This is the focus of this chapter.

22.1 The Event-Condition-Action Control Mechanism

The OPM process activation mechanism is the way OPM deploys the event-condition-action (ECA)
paradigm, mentioned in Dittrich et al. (1995) to structure active rules in event driven architecture and
active database systems. ECA follows the rule “On event if condition then action,” namely, if an event
occurs, and an associated condition is fulfilled at the time of the event occurrence, then the associated
action is triggered. In OPM terminology, action is an OPM process. Such a rule traditionally consisted of
three parts, which are listed below along with their OPM interpretations.

o The event part specifies the object—the trigger, or the object’s state or value that triggers the
process.

e The condition part is a logical test that, if satisfied or evaluates to true, enables the action to be
carried out; in OPM the condition is evaluated on the preprocess object set.

e The action part consists of updates or invocations on the local data; in OPM this amounts to
activating the process, which, upon completion, transforms one or more objects.
The ECA paradigm provide the basis for OPM operational semantics and flow of execution control.
At the point in time of object creation, or appearance of the object from the system’s perspective, or
entrance of an object to a particular state, an event occurs.

An event is a point in time at which something significant to the system execution

happens.

The object or object state involved in the event can be the source of a procedural link. At runtime, i.e.,
at the instance level during the system’s execution, the occurrence of that event initiates evaluation of the

© Springer Science+Business Media New York 2016 327
D. Dori, Model-Based Systems Engineering with OPM and SysML, DOI 10.1007/978-1-4939-3295-5 22

328 OPM Operational Semantics and Control Links

precondition for every process to which the object is a source of the link, and the event ceases to exist. If
and only if the evaluation reveals satisfaction of the precondition, then the process starts executing.
Events can occur also through the end of a subprocess inside an in-zoomed process, as well as through
invocation link and exception link, which occur between processes. Thus, according to the event-
condition-action paradigm, starting the performance of a process (the “action”) has two prerequisites: (1)
an initiating event (the “event”), and (2) satisfaction of a precondition (the “condition”). Events and
preconditions in concert specify OPM flow of execution control for process performance. The flow of
execution control is the consequence of successive event-condition-action sequences that begin with
initiation of the system function by an external event and end when the system function either completes
executing successfully or terminates abnormally.

22.2 Precondition, Preprocess and Postprocess Object Sets

Every process has a preprocess object set with at least one object, possibly in a specified state. The
preprocess object set of a process determines the precondition that must be satisfied before performance
of that process starts. The preprocess object set may simply include the existence of one or more objects,
possibly in specified states, but it can also be complex and include compound logical expressions using
logical AND, OR, and XOR operators. Typical objects in a preprocess object set are transformees—
consumees and/or affectees, and enablers. Some of these objects may have a further stipulation regarding
flow of execution control, expressed as a condition link, which, as explained below, provides for skipping
the process if its precondition is not satisfied.

The postprocess object set determines the process postcondition that the process completion satisfies.
Typical objects in a postprocess object set are resultees and affectees.

The intersection of the preprocess object set and the postprocess object set of the same process
includes the process enablers and affectees. Consumees are only members of the preprocess object set,
while resultees are only members of the postprocess object set.

The involved object set is the union of the preprocess and postprocess object sets. If the involved
object set has only one object, it must be a transformee, otherwise it does not conform to the OPM
definition of process as a thing that transforms at least one object. Therefore, in a complete OPM model,
each process must be linked with at least one transformee, and an OPM modeling tool should check this
as a basic part of its model validation.

22.3 Kinds of Control Links

As part of the event-condition-action paradigm underlying OPM’s operational semantics, an event link, a
condition link, and an exception link express an event, a condition, and a time exception, respectively.
These three link kinds are OPM’s control links. Control links occur either between an object and a
process or between two processes.

Dori — Model-Based Systems Engineering with OPM and SysML 329

Event and condition links do not exist independently. Rather, they are modified versions of the
various procedural links. Each procedural link from an object or a state to a process (i.e., object or state in
the preprocess object state) has a corresponding event link and a corresponding condition link.

A control modifier is one of the two letter symbols e and ¢, added to a procedural link,
which add to the semantics of that link the event and condition semantics, respectively.

A control link is a procedural link with the addition of a control modifier.

There is no result event link or result condition link, since these are outgoing procedural links, relating
to the postprocess object set. When a process completes, it creates the postprocess object set without
further condition. Hence, assuming that the process terminates successfully, creation of resultees and
change of affectees are automatic and unconditional.

22.4 Event Links

A process event semantics is the initiation of that process, which triggers evaluation of|
that process’ precondition.

An event link is a procedural link with the control modifier e, indicating the addition

of event semantics to the link’s destination process.

An event link specifies a source event and a destination process—the process that is initiated upon the
event occurrence. The event occurrence triggers evaluation of the process’ precondition. Satisfying the
precondition allows process performance (execution) to proceed, rendering the process active. If the
process precondition is not satisfied, then process performance shall not occur. Regardless of whether the
evaluation is successful or not, being a point in time, the event is lost. If the process precondition is not
satisfied, process initiation shall not occur until another event activates the process.

22.4.1 Initiating a Non-first Subprocess via an Event Link

If an event link is attached to a process P, and P is in-zoomed, like all the other procedural links attached
to P, the event link migrates automatically to the first (top-most) subprocess—the one that executes first.
The modeler must be very cautious when modeling an event link that is attached to any subprocess other
than the first one, because this is akin to interfering with the inner operation of a black box! While trying
to trigger a non-first subprocess, one or more of that subprocess’ preconditions may not be met because
previous subprocesses were skipped. For example, if in Fig. 6.2 the event link is attached to Message
Creating rather than to Crash Severity Measuring, the latter process is skipped, so Crash Severity remains
none, and therefore Message Creating will be skipped too. Moreover, since there is no Message, Help
Sending is also skipped, leaving Vehicle Occupants Group at their initial possibly injured state, rather
than being helped.

330 OPM Operational Semantics and Control Links

22.4.2 Enabling and Transforming Event Links

There are two kinds of transforming event links (Table 22.1) and two enabling event links (Table 22.2).

Table 22.1. Enabling event link summary

Name Semantics Sample OPD & OPL Source Destination
The agent—a human—both 4
niti Miner f——e® i
Agent initiates and enables the Copper Mining initiating initiated
t link | Process: The agent must be ¢
eventlin present throughout the Miner initiates and handles Copper agen process
process duration. Mining.
The object initiates the e
i Drill —O i
Instrument p rocess as an 1nstrumegt, 50 Copper Mining initiating initiated
event link it does not change, but it instrument rocess
must exist throughout the Drill initiates Copper Mining, which p
process duration. requires Drill.
Table 22.2. Transforming event link summary
Name Semantics Sample OPD & OPL Source Destination
o s
. The object initiates the process, Food > R 1n1t.1ated process,
Consumption S initiating | which consumes
event link which, if performed, consumes consumee | the initiatin
the object. Food initiates Eating, which sum. &
consumes Food. consumee
Copper
raw pure
\
The object initiates the process, e ¥
which, if performed, affects the
object. The event link is the R initiated process,
Effelc.t :Kvent link from the object to the ;I;fgjgég which affects the
m process; the link from the is abstracted as: initiating affectee
process to the object is not an
event link. e
Copper H
Copper initiates Purifying,
which affects Copper.

Dori — Model-Based Systems Engineering with OPM and SysML 331

22.4.3 State-Specified Enabling and Transforming Event Links

Table 22.3 describes the two state-specified enabling event links—one for agent, the other for instrument.
There are four kinds of state-specified transforming event links. These are summarized in Table 22.4.
Table 22.3 State-specified enabling event link summary

Name Semantics Sample OPD & OPL Source Des;:lnatl
Miner
The human agent in the [sick } [healthy]
Sta'te— specified state both initiates the 7
specified | process and acts as its agent. initiated
agent agent state
event | The agent must be at the Copper Mining REQCESS
link specified state throughout the
process duration.
Healthy Miner initiates and
handles Copper Mining.
Drill
The object at the specified state
State- | both initiates the process and is
;?;ilfl:‘l instrument for its performance. B instrument initiated
nt event | The instrument must be at the i state Pracess
link specified state throughout the
process duration. Operational Drill initiates
Copper Mining, which
requires operational Drill.

22.4.4 |nvocation Links

Process invocation is an event by which a process initiates a process. An invocation link connects a
source process to the destination process that it initiates, signifying that when the source process
completes successfully, it immediately initiates the destination process—the process at the destination end
of the invocation link. In a normal or expected flow of execution control, the source process does not
initiate the new process if the former does not complete successfully. It is up to the modeler to take care
of modeling what should happen with any process that aborts, e.g., due to a time exception.

Since by definition an OPM process transforms an object, the invocation link semantically implies the
creation of an interim object by the invoking source process that the subsequent invoked destination
process immediately consumes. As discussed in Sect. 10.10.3 in an OPM model, an invocation link may
replace a transient, short-lived physical or informatical object that a source process creates to initiate the
destination process, which immediately consumes the transient object. The physical object Spark in Fig.
10.11 is one example; Record ID in a query is another.

332

OPM Operational Semantics and Control Links

Graphically, a lightening symbol jagged (and possibly curved) line from the invoking source process
to the invoked destination process ending with a closed arrowhead at the invoked process denotes an
invocation link. This is the symbol of the common invocation link.

Table 22.4 State-specified transforming event link summary

which changes Engine Hood to painted.

Name Semantics Sample OPD & OPL Source Destination
The source state r
State-specified triggers the process, ._. . @ SGAURIEE Gorsiinting
consumption and if the precondition e
event link is satisfied, the process L REOLER
consumes the object. Edible Food initiates Eating, which consumes
Food.
Input-output- sl Ki;f:‘::ﬁf;e affecting
specified effect The source state raw o H
event link pair | triggers the process, (s:;tze) bk
(consisting of one | and if the precondition
state-specified is satisfied, the process e
event input link changes the object affectee
and one state- from the source state affecting output
specified output to the output state. process (destination)
link) Raw Copper initiates Purifying, which changes state
Copper from raw to pure.
Input-specified Sample
effect event link | The source state [awaitlrlg] [Dassed J [Tailed } affectee
pair triggers the process, test test test input affecting
o and if the precondition = A (source) process
(consisting of one || is satisfied, the process e state
state-specified changes the object >
event input link from the source state @
and one f‘St?ite- to some state of the
Eﬁsem e | sonsenifs Awaiting test Sample initiates Testing, which a}ffzigssg affectee
changes Sample from awaiting test.
OQutput-specified Engine Hood
effect event link | The source object affecting
pair triggers the process, (rusty] (oily] [pamted J affectee PFOCESS
and if the precondition =
(consisting of one || s satisfied, the process M
state-unspecified changes the object e -
event input link from some state to the Cleaning & affectee
and C_}t{‘e dstate- destination (output) Painting affecting output
specified output i R
g,!;k) = stabe g the abject. Engine Hood initiates Cleaning & Painting, REOEES (deszltg?:on)

Dori — Model-Based Systems Engineering with OPM and SysML 333

Table 22.5 Invocation link summary

Name Semantics Sample OPD & OPL Source Destination

Product

As soon as the Finishing

invoking process

g i 7, Anoth
Invocation ends, it invokes Initiating ; I.".)t Ll
. W\ initiated
link the process process p—
pointed to by the gi:;’dﬁ":t P
- g pping
invocation link.
Product Finishing invokes Product Shipping.
Upon Recurrent
3 2 Processing L
" Self. s e Initiating The same
invocation process AS—— S
link immediately P P

invokes itself.

Recurrent Processing invokes itself.

There is a second kind of invocation link—self-invocation link, which enables modeling invocation of
a process by itself: Upon process completion, the process immediately invokes itself. A self-invocation
link is symbolized by a pair of invocation links, originating at the process and joining head to tail before
ending back at the original process shall denote the self-invocation link. Invocation links are summarized
in Table 22.5. If a waiting period is needed between two consecutive invocations, a Waiting process with
specified time constraints (see below) can be inserted as a destination from the invoking process and as a
target back to the same process. An invocation link from the last subprocess to its parent in-zoomed
process can be used to create loops.

22.5 Condition Links

A process condition semantics is skipping the execution of that process if its
precondition is not met.

A condition link is a procedural link with the control modifier ¢, indicating the

addition of condition semantics to the link’s destination process.

A condition link provides a bypass mechanism, which enables system execution control to skip, or
bypass, the destination process if its precondition satisfaction evaluation fails. Without the condition link
bypass mechanism, failure to satisfy the precondition causes the process to wait for another event.

334 OPM Operational Semantics and Control Links

Upon the arrival of the new event, that process precondition is evaluated again, and if it is satisfied,
the process starts executing, otherwise it is again waiting for the next event. This can cause the control to
get stuck indefinitely in that process in an infinite loop. Using the condition link prevents such situations.

As discussed in Sect. 21.17, as is the case with all control links, if a condition link is attached to a
process P, and P is in-zoomed, the condition link migrates automatically to the first subprocess (or two or
more first concurrent subprocesses) of P. The modeler may move the link from that first subprocess to
another subprocess or add another link from the same source to one or more subprocesses other than the
first one.

22.5.1 Skipping Takes Precedence Over Waiting

A preprocess object set may include both condition links and non-condition links, i.e. procedural links
without the condition control modifier. The distinguishing aspect of condition links is their skip
semantics—skipping or bypassing a process if the source object operational instance of the condition link
does not exist or is not a the required state. Without the condition control modifier, the non-existence of
an operational instance of the procedural link source object causes the process to wait for another event
and operational instances of all source objects to exist, possibly in a specified state, thus satisfying the
precondition.

Meeting all the conditions associated with all the objects or states in the preprocess object set
connected with condition links is necessary to satisfy the precondition and start the process. If the
preprocess object set has one or more objects or states connected with non-condition links and one or
more objects or states connected with condition links, a conflict may arise between the wait semantics
induced by the non-condition link(s) and the skip semantics induced by the condition link(s). To resolve
the conflict, the skip semantics is defined to be stronger than wait semantics, as stated by the following
skip semantics precedence OPM principle.

The Skip Semantics Precedence OPM Principle

Skip semantics takes precedence over wait semantics.

Even if just one of the conditions associated with the condition links connecting with the process does
not exist, the precondition satisfaction evaluation shall fail, execution control skips the process, and an
event occurs that initiates the next sequential process (or the next two or more parallel processes).

Conditions associated with condition links are the first to be considered during precondition
evaluation, because if they are not met, the process being considered for execution is skipped, regardless
of the evaluation result of the remaining part of its precondition. If the skipped process is within an in-
zoom context and there is a subsequent process in this context, execution control initiates that next
process, otherwise execution control transfers back to the in-zoomed process.

There are two kinds of basic condition links: condition transforming links and condition enabling links.

22.5.2 Condition Transforming Links

A condition consumption link connects a consumee to a process with the addition of the control modifier
c. Table 22.6 summarizes the basic condition transforming links.

Dori — Model-Based Systems Engineering with OPM and SysML 335
Table 22.6 Condition transforming link summary
Name Semantics Sample OPD & OPL Source Destination
If an object instance
exists and the rest of the
process precondition is Object c
. satisfied, then the AN
Condition - s
. process performs and Conditioning Conditioned
consumption . .
link consumes the object object process
instance, otherwise Process occurs if Object exists, in
execution control which case Process consumes
advances to initiate the Object, otherwise Process is
next process. skipped.
If an object instance
exists and the rest of the i
process precondition is Object < c
satisfied, then the =
Condition process performs and Conditioning Conditioned
effect link affects the object object process
instance, otherwise Process occurs if Object exists, in
execution control which case Process affects
advances to initiate the Object, otherwise Process is
next process. skipped.

If at runtime (i.e., during execution of the system model) a consumee instance exists when an event
initiates the process, then the presence of that consumee instance satisfies the process precondition with
respect to that object. If evaluation of the entire precondition, which accounts for the entire preprocess
object set (of which the consumee is a part) is satisfied, the process starts and consumes that consumee
instance. However, if a consumee instance does not exist when an event initiates the process, then,
regardless of the rest of the preprocess object set, the process precondition evaluation fails, and the flow
of execution control bypasses (skips) the process without executing that process.

A condition effect link like its regular, non-condition effect link counterpart, connects an affectee to a
process, with the addition of the control modifier c. If at runtime an affectee instance exists when an event
initiates the process, then the presence of that affectee instance satisfies the process precondition with
respect to that object. As with the condition consumption link, if evaluation of the entire precondition,
which accounts for the entire preprocess object set (of which the affectee is a part) is satisfied, the process
starts and affects that affectee instance, but if not, then the process precondition evaluation fails, and the
flow of execution control bypasses the process without executing that process.

22.5.3 Condition Enabling Links

There are two kinds of basic (non-state-specified) condition enabling links: condition agent link and
condition instrument link. A condition agent link is an agent link from an agent to a process with the

336 OPM Operational Semantics and Control Links

addition of the control modifier c. If at runtime an agent instance exists when an event initiates the
process, then the presence of that agent instance satisfies the process precondition with respect to that
object. If evaluation of the remaining precondition is satisfied as well, the process starts and that agent
handles its performance. However, if an agent instance does not exist when an event initiates the process,
then the process precondition evaluation fails and the flow of execution control bypasses, or ‘skips’ the
process without process performance.

A condition instrument link is an instrument link from an instrument to a process, annotated with the
control modifier c. If at runtime an instrument instance exists when an event initiates the process, then
the presence of that instrument instance satisfies the process precondition with respect to that object. If
evaluation of the entire preprocess object set satisfies the precondition, the process starts. However, if an
instrument instance does not exist when an event initiates the process, then the process precondition
evaluation fails and the flow of execution control bypasses, or ‘skips’ the process without process
performance (Table 22.7).

Table 22.7 Condition enabling link summary

Name Semantics Sample OPD & OPL Source Destination
Engineer
The agent
enables the
Agent Priees i he conditioning conditioned
i 2 agent 1s present, Part Gl
condition link s an agent process
otherwise the Designing
process is
skipped. Engineer handles Part Designing
if Engineer is present, otherwise
Part Designing is skipped.
LASER
The instrument AN
enables the
Instrument | Do o> e conditioning conditioned
S exists, : :)
condition link ; Precise instrument process
otherwise the Measuring
process is
skipped. Precise Measuring occurs if
LASER Meter exists, otherwise
Precise Measuring is skipped.

Figure 22.1 is an OPD with a condition instrument link from Nearby Mobile Device to Cellular
Network Signal Amplifying, which occurs only if an environmental object Nearby Mobile Device exists
and is otherwise skipped, as there is no point in amplifying if no device is nearby. Table 22.6 summarizes
the basic condition transforming links.

Dori — Model-Based Systems Engineering with OPM and SysML 337

E User E i Cellular |
Signal [i Network !
Booster , Signal
Vi 3 Cellular Network
i Nearby Signal Amplifying
' Mobile ! O Calling
' Device Mobile
‘anssccad Device

Cellular Network Signal Amplifying occurs if Nearby Mobile Device exists, otherwise
Cellular Network Signal Amplifying is skipped.

Fig. 22.1 Condition instrument link (with partial OPL)

22.5.4 Condition State-Specified Transforming Links

Like their event state-specified transforming link counterparts, there are four kinds of condition state-
specified transforming links. These are summarized in Table 22.8.

22.5.5 Condition State-Specified Enabling Links

Like their regular, non-state-specified counterparts, there are two state-specified enabling links: state-
specified agent link and state-specified instrument link.

A condition state-specified agent link is a state-specified agent link, annotated with the control
modifier ¢, from a specified state of an agent to a process. If at runtime an instance of the agent exists, or
is present, at the specified state when an event initiates the process, then this satisfies the process
precondition with respect to that object. If evaluation of the entire preprocess object set satisfies the
precondition, the process starts and that agent has to be present to handle it until it ends. Otherwise, the
process precondition evaluation fails and the flow of execution control bypasses, or ‘skips’, performing
the process.

A condition state-specified instrument link is a state-specified instrument link,
annotated with the control modifier c, from a specified state of an instrument to a
[process.

338 OPM Operational Semantics and Control Links
Table 22.8 Condition state-specified transforming link summary
Name Semantics Sample OPD & PL Source Destination
Raw Material Sample
{pre-approved] [apprwed]
Th f \
Condition < Process pertorns N
state if the object is in the Y C conditioning
. state from which the specified conditioned
specified . L
. link originates, state of the process
consumption) .
. otherwise the process object
link is skipped
pped. Testing occurs if Raw Material Sample is
pre-approved, in which case Raw
Material Sample is consumed, otherwise
Testing is skipped.
The process performs Raw Material
if the object is in the
. input state (from \
Condition .) e
X which the link cY conditioning
input- . . i
originates) and specified conditioned
output- . .
- changes the object input state process
specified f o B
. rom its input state to of the object
effect link .
its output state, . . A
. Testing occurs if Raw Material is pre-
otherwise the process . . .
is skipped tested, in which case Testing changes
18 skipped. Raw Material from pre-tested to tested,
otherwise Testing is skipped.
Message
The process performs
if the object is in the
input state (from
Condition which the link [conditioning
input- originates) and Delivery specified conditioned
specified changes the object Attempting input state process
effect link from its input state to of the object
any one of its states, Delivery Attempting occurs if Message is
otherwise the process created, in which case Delivery
is skipped. Attempting changes Message from
created, otherwise Delivery Attempting
is skipped.

Dori — Model-Based Systems Engineering with OPM and SysML 339
Suspicious
The process performs Component
if the object is in the [Dfe'te‘ifedJ [te‘“ed J [Srterseésd J
input state (from <7
Condition which the link e
output- originates) and conditioning | conditioned
specified changes the object Stress object process
effect link | from its input state to
any one of its states, Stress Testing occurs if Suspicious
otherwise the process Component exists, in which case Stress
is skipped. Testing changes Suspicious
Component to stress-tested, otherwise
Stress Testing is skipped.
Table 22.9 Condition state-specified enabling link summary
Name Semantics Sample OPD & OPL Source Destination
Engineer
EEINEEA
The agent enables R
State- the process if the conditioning
specified agent is in the specified conditioned
agent specified state, Critical Part state of process
condition link | otherwise the Designing agent
process is skipped.
Engineer handles Critical Part Designing
if Engineer is safety design authorized,
otherwise Critical Part Designing is
skipped.
LASER Meter
[perlodtcally] [mamufacturer J
The instrument Cal\brat‘ed calibrated
State- enables the conditioning
specified process if it is in specified conditioned
instrument the specified state, - state of process
condition link | otherwise the URI{‘:-Preq|5|on instrument
I easuring
process is skipped.
Ultra-Precision Measuring occurs if
LASER Meter is periodically calibrated,
otherwise Precise Measuring is skipped.

340 OPM Operational Semantics and Control Links

If at runtime an instance of the instrument exists and is at the specified state when an event initiates
the process, then the process precondition is satisfied with respect to that object. If evaluation of the entire
preprocess object set satisfies the precondition, the process starts and that instrument must remain existent
and at the same state throughout the duration of the process

If at runtime an instance of the instrument does not exist or exists at a different state than the one
attached to the link source, then the process precondition with respect to that object is not satisfied, the
process precondition evaluation fails, and the flow of execution control bypasses performing the process.
Table 22.9 summarizes the condition state-specified enabling links.

22.6 Exception Links

Exception links enable modeling what to do in case of exception in the time execution of a process below
a minimal threshold or above a maximal one.

22.6.1 Process Time Duration and Its Distribution

Process may have a Duration property (metamodel attribute) with a value expressed in time units, which
shall be compatible with ISO 80000-3:2006—Quantities and units—Part 3: Space and time, which is part
of the group of ISO/IEC 80000 standards that form the International System of Quantities. Units of time
can be milliseconds [ms], seconds [sec], minutes [min], hours [hr], days [dy], weeks [wk], months [mo], or
years [yr]. Duration may specialize into Minimal Duration, Expected Duration, and Maximal Duration.
Minimal Duration and Maximal Duration designate the minimum and maximum allowable time for process
completion. Time duration is an optional, and, as Fig. 22.2 shows, the modeler can choose to indicate
only the expected (nominal) time, minimal and maximal, or all three durations.

Processing Processing Processing
[dy] [sec] [min]
5.0 (42,57) (2.1,3.2,4.5)

The values of Minimal Duration The values of Minimal Duration,
The value of Expected Duration of and Maximal Duration of Expected Duration, and Maximal
Processing is 5.0 dy. Processing are 4.2 sec and 5.7 Duration of Processing are 2.1 min,

sec, respectively. 3.2 min, and 4.5 min, respectively.

Fig. 22.2 Three ways to indicate process duration: Left—expected (nominal) time only, middle—minimal and maximal,
right—minimal, expected, and maximal time durations

The value of the process’ Expected Duration is the statistical mean of the duration of that process.
Duration optionally exhibits the Duration Distribution attribute with a value identifying the name and
parameters for a probability distribution function associated with the process duration or a non-analytical
distribution. At run-time, the value of Duration is determined separately for each process instance (i.e., for
each individual process occurrence) by sampling from the process Duration Distribution. The Duration
property provides for defining exception links. There are two kinds of exception link: overtime exception
link and undertime exception link.

Dori — Model-Based Systems Engineering with OPM and SysML 341

22.6.2 Overtime Exception Link

The overtime exception link connects the source process with a destination overtime handling process to
specify that if at runtime, the performance time of the source process instance exceeds its Maximal
Duration value, then an event initiates the destination process, which is an overtime handling process.

A maximal-timed process is a process for which the modeler determines a maximal
duration.

An overtime handling process is a time exception process that determines what to do

in case the time performance of a maximal-timed process exceeds its maximal
allowable time.

An overtime exception link is a procedural link from a maximal-timed process to an
overtime handling process, indicating that if the duration of a maximal-timed process
exceeds its maximal duration, then the overtime exception process is initiated.

The control modifier for the overtime exception link is a single slanted short bar crossing the link near
the overtime exception process (see Fig. 22.3 for the control modifier of the undertime exception link,
which is a pair of such bars).

22.6.3 Undertime Exception Link

The undertime exception link connects the source process with a destination undertime handling process
to specify that if at runtime the performance time of the source process instance is below its Minimal
Duration value, then an event initiates the destination process, which is an undertime handling process.

A minimal-timed process is a process for which the modeler determines a minimal
duration.

An undertime handling process is a time exception process that determines what to do

in case the time performance of a minimal timed process falls short of its minimal
duration.

An undertime exception link is a procedural link from a minimal-timed process to an
undertime exception process, indicating that if the time performance of a timed

\process falls short of its minimal allowable time, the undertime exception process is
initiated.

The control modifier for the undertime exception link is a pair of parallel slanted close short bars
crossing the link near the overtime exception process. Figure 22.3 is an example of Undertime Exception
Handling. Here, {instance id=2} is a particular instance (occurrence) of Processing, whose Duration is 3.4
min. Since this value is less than 30.0 min—the minimal time duration defined for the process class
Processing, Undertime Exception Handling takes place.

342 OPM Operational Semantics and Control Links

Processing
min
(30.0, 45.6, 60.0)

[uniform, a=5.0, b=70.0]

{instance id=2}

Undertime
Exception
Handling

Duration
[min]

Affectee

The values of Minimal Duration, Expected Duration, and Maximal Duration of Processing are 30.0 min,
45.6 min, and 60.0 min, respectively.

The Duration Distribution of Processing is uniform with parameters a=5.0 and b=70.0.

Either Processing or Undertime Exception Handling affects Affectee.

Undertime Exception Handling occurs if duration of Processing falls short of 30.0 min.

Duration of Processing instance id=2 is 3.4 min.

Fig. 22.3 Undertime exception example

A source process may have both overtime and undertime links, each connected to a different
destination time exception handling process. Suppose in the example in Fig. 22.3 we add an Overtime
Exception Handling process, then the additional OPL sentence would be:

Overtime Exception Handling occurs if duration of Processing exceeds 60.0 min.

Unlike most procedural links, which connect an object and a process, but similar to the invocation
link, the two time exception links are procedural links that connect two processes directly. An implicit
interim object Overtime Exception Message or Undertime Exception Message is created by the OPM’s
process execution mechanism upon realizing that the process failed to terminate by the maximal allotted
time or ended prematurely, falling short of the minimal allotted time, respectively. Since the OPM
operational mechanism creates and immediately consumes these objects, their depiction is not explicit in
the model. This is similar to the invocation link, which suppresses the creation of an interim object by the
source process and its immediate consumption by the destination process. Table 22.10 summarizes the
two time exception links.

The exceptions these links handle relate only to time, but they can also be used for modeling
execution exceptions. For instance, if a process with minimal time duration attached to an undertime
exception link is skipped, which means its duration was 0, then the exception handling process is
initiated.

22.7 Transformation Rate

Often the need arises to model consumption of a consumee or effect on an affectee or creation of a
resultee not as a one-time event but rather as a continuous process or a discrete process with a quantity
larger than 1, transformed over time. We have defined property as an attribute of an OPM element. For
example, Perseverance is a property of OPM Thing. If the value of that property is persistent, the Thing
is an Object; if it is transient—it is a Process. In other words, we can say that a property is an attribute at
the metamodel level, where Thing and Link are OPM Elements. Perseverance is an example of a property
of a Thing. Transformation Rate is a property of a (transforming) Link.

Dori — Model-Based Systems Engineering with OPM and SysML

343

Table 22.10 Time exception links summary

Name Semantics Sample OPD & OPL Source Destination
If in runtime
the process
instance takes
more than the Hiceensing
maximal [min] . overtime
Overtime process class fl?grgn‘lm e S;:;,‘jﬁ”}; proc_essi \:.rlth exception
exception link | duration, the Handiing E;iili?iacat?:z handling
overtm.le Engineer handles Critical Part Designing if PIOCess
excep'tlon Engineer is safety design authorized,
handling otherwise Critical Part Designing is skipped.
process is
invoked
If in runtime
the process
instance takes
less than the Processing
minimal [min] Urdistling : undertime
Undertime process class [uniégghsl::ss%,s gé%.o] E;*gﬁ“ p{ogess} ?ﬁth exception
exception link | duration, the g g‘ca:£§ handling
undem.me Ultra-Precision Measuring occurs if LASER PrQCess
excep_tlon Meter is periodically calibrated, otherwise
handling Precise Measuring is skipped.
process is
invoked

Transformation rate is a property of a procedural link connecting a transformee B
and a process P whose value is the rate of transformation of B by P.

Just as transformation specializes into consumption, effect, and result, so does transformation rate.

\process P whose value is the rate of creation of B by P.

Consumption rate is the transformation rate of a consumption link connecting a
consumee B and a process P whose value is the rate of consumption of B by P.

Yield rate is the transformation rate of a result link connecting a resultee B and a

Effect rate is the transformation rate of an effect link connecting an affectee B and a
process P whose value is the rate of affecting B by P.

344 OPM Operational Semantics and Control Links

rale = 0.66 mr Machining rate = 3 unitsmr 9
[hr]

(3.0)

Steel Rod Shaft

Length

Length
m] ™

Steel Rod exhibits Length.

The value of Length of Steel Rod is initially 3.00 m and finally residue.
Shaft exhibits Length.

The value of Length of Shaft is 0.22 m.

The value of Expected Duration of Machining is 3.0 hr.

Machining consumes Steel Rod at a rate of 0.66 m/hr.

Machining yields 9 Shafts at a rate of 3 units/hr.

Fig. 22.4 Consumption rate and yield rate example

Effect rate can be expressed more specifically as state change rate.

State change rate is the transformation rate of an in-out link pair whose input and
output links connect the input state b; and output state b, of an affectee B to a process
P, whose value is the rate of changing the state of B by P from b; to b,

Figure 22.4 provides an example of consumption rate and yield rate. The modeler may create an
exception if the quantity of the resultee or the consumee is less than the rate times the expected process
duration.

22.8 Computing with OPM

OPM models can be used to carry out numeric calculations. The atomic processes for calculations are the
four basic arithmetic operations Adding, Subtracting, Multiplying, and Dividing. These are used to devise
more involved calculations such as Averaging, Geometric Mean Computing, etc. Care must be exercised
with operations that are not commutative, like Dividing, where the roles of the Dividend and the Divisor
must be explicit in order to get the correct Quotient. Since the mathematical expressions are much more
compact and understood, once a sufficiently low level of computing is reached, the actual formulae can
be recorded as parts of the calculating process names.

As an industrial example, suppose for the system in Fig. 22.4 we wish to compute the value of
residue—the final value of Length of Steel Rod in meters after it has been cut. This is modeled in Fig.
22.5 by the process Residue Length Computing and Fig. 22.6, where Residue Length Computing is in-
zoomed. The initial Length of the Steel Rod, il, is 3.00 m. The Machining process, which lasts 3 hr,
consumes the Steel Rod at a consumption rate of 0.66 m/hr.

Dori — Model-Based Systems Engineering with OPM and SysML 345

Machine Shaft Batch

9

rate = 0.66 mihr Machining

rate = 3 units/hr

Steel Rod

Shaft ZAX

Length Length
[m] [m]
Residue -0.22
il=3.00 { st] Length
3 = Computing
Size
s=9

Residue Length Computing requires the value 1=0.22 m of Length of Shaft and the value of Size s=9 of Shaft Batch.
Residue Length Computing changes the value of Length of Steel Rod from il=3.00 m to residue=1.02.

Fig. 22.5 SD of the Machining system with Residue Length Computing as an operation of Machining

Shaft
Batch

Residue

Length
Computing Steel Rod
2 Used Length
Shaft Computing Used Length l
(u=s™) [m] ¥
Length
[m]
Residue
Computing

residue=ilu

residue
)

Residue Length Computing from SD zooms in SD1 into Used Length Computing (u=s*I) and Residue Computing
(residue=il-u) in that sequence, as well as Used Length of Steel Rod in m.

Used Length Computing requires the value 1=0.22 of Length of Shaft in m and the value s=9 of Size of Shaft Set.
Used Length Computing yields Used Length of Steel Rod in m with value u=1.98.

Residue Computing changes the value of Length of Steel Rod in m from il=3.00 to residue=1.02.

Fig. 22.6 SD1 of the Machining system from Fig. 22.5, in which Residue Length Computing is in-zoomed

346 OPM Operational Semantics and Control Links

The Machining process generates Shaft at a yield rate of 3 units/hr, therefore in 3 hours we get 9
Shafts, as indicated by the participation constraint near Shaft. The length of each Shaft is 0.22 m and the
Size of the Shaft Batch (cut during 3 hr) is 9. All these data are provided in the model in Fig. 22.5.

Zooming into Residue Length Computing in Fig. 22.6, we see that it has two subprocesses. The first is
Used Length Computing (u=s*l) and the second—Residue Computing (residue=il-u). The names of the
processes contain in parentheses the arithmetic expressions to be carried out by each process. The
expression on the first subprocess computes u, the value of Used Length of Rod, as u=s*l. It takes s=9 as
the value of the Size of the Shaft Batch and 1=0.22 m as the Length of each Shaft. The product, u=s*|
=9*0.22 =1.98 m, is the input for the next subprocess, in which the model computes residue=il-u, since the
length of the residue is the difference between il, the value of the initial Length of the Rod, 3.00 m, and u,
the value of Used Length of Rod, so residue=il-u=3.00-0.22=1.02 m. Different parameter values will, of
course, yield different results. This example demonstrates how OPM enables mixing conceptual modeling
with quantitative modeling which provides reasoning for the various mathematical steps involved in the
computation.

22.9 Sets and Iterations

‘A set is a collection of object instances of the same class.

An example of set is provided in Fig. 22.7. Shaft Batch is a set of nine object instances from the class
Shaft, so creating Shaft Batch implies iteration of Machining nine times, each time producing one Shaft.
This is a short formal way in OPM to model iteration: Whenever a process is attached with two
procedural links of the same kind such that one is a link to a set of n members and the other to a member
of the set, the semantics is iteration.

In our example, the two links are result links: one result link is from Machining to the set Shaft Batch,
and the other—from Machining to Shaft. The semantics of this template is iteration nine times of creating
Shaft. This is made more explicit when we zoom into Machining in SD1, expressing the fact that Cutting
and Lathing are performed sequentially and iteratively nine times to yield the nine Shafts. Each
Machining occurrence is a process instance of Machining, within which Cutting and Lathing occur to
create each of the nine instances of Shaft.

Iteration can combine any subset of the procedural links. Iteration can, of course, be applied to
informatical objects as well, providing a convenient, short way to model iterations, for example, in
algorithms, and serve, among many other control constructs (such as Boolean objects), for automated
code generation.

22.10 Operational Semantics in In-Zoomed Process Contexts

In-zooming of a process specifies transfer of execution control to subprocesses at the next detail level.
Executing a process with an in-zoomed context recursively transfers execution control to the top-most

Dori — Model-Based Systems Engineering with OPM and SysML 347

subprocess(es) within the context of the deepest process. Control returns to the in-zoomed process after
its last subprocess completes its execution (Fig. 22.8).

Machine Shaft Batch
rate = 0.66 m/hr Machining rate = 3 units/hr 9 9
Steel Rod [hr] Shaft ZAX
(3.0)
Size

Fig. 22.7 SD of Machining, where Shaft Batch is a set of 9 object instances from the class Shaft, so creating Shaft
Batch implies iteration of Machining nine times, each time producing one Shaft

Machining

rate = 0.68 m/hr

Steel Rod

Shaft Batch

=]

Machine

Shaft

Fig. 22.8 SD1 of Machining, in which Machining is in-zoomed, expressing the fact that Cutting and Lathing are
performed sequentially and iteratively 9 times to yield the nine Shafts

22.10.1 Implicit Invocation Link

An implicit invocation link is a link that is not visible graphically but is implied from

the vertical layout of processes within the context of an in-zoomed process.

Similar to its explicit counterpart, the implicit invocation link signifies initiation of a subsequent
process or concurrently beginning processes. Since invocation is an event, satisfaction of the precondition
for each subprocess is necessary to allow that subprocess to start executing.

348 OPM Operational Semantics and Control Links

An implicit invocation link can be (1) from a process to its first (or several) subprocess(es), (2) from a
subprocess to one or more subprocesses just below it along the time line inside the context of an in-
zoomed process, or (3) from the last in-zoomed subprocess(es) to their enclosing, context defining
process.

Specifically, (1) upon arriving at an in-zoomed process context, control immediately transfers to the
subprocess (es) with the highest ellipse (oval) top-most point within this in-zoomed process context. The
implicit invocation link from an in-zoomed process to its top-most subprocess transfers execution control.
(2) Along the process timeline, the completion of a source subprocess (or the last subprocess to finish
executing in the case of two or more subprocesses that started concurrently) immediately initiates the
subsequent subprocess(es) using the implicit invocation link. (3) Upon completion of performing the
subprocess with an ellipse top-most point that is lowest within this in-zoomed process context, execution
control returns to the in-zoomed process.

When two or more subprocesses have their top-most ellipse points at the same height, then an implicit
invocation link initiates each process and they start in parallel upon individual precondition satisfaction.
The process that completes last initiates the next subprocess or set of parallel subprocesses.

In the OPD on the left hand side of Fig. 22.9, Cleaning invokes Coating, so Cleaning affects Product
first and then Coating affects Product. The invocation link dictates this process sequence. In the
equivalent OPD on the right hand side of Fig. 22.9, Finishing zooms into Cleaning and Coating, with the
former’s ellipse top point above the latter’s, so when Finishing starts, control immediately transfers to
Cleaning, and when Cleaning ends, the implicit invocation link invokes Coating. The two OPDs are
semantically equivalent, but the one on the left does not have Finishing as an enclosing context, making it
less expressive from a system viewpoint while using two links more than the OPD on the left.

37 @ Product
%

Finishing

Product
Ny
v
(o)
Cleaning affects Product. Finishing affects Product.
Cleaning invokes Coating. Finishing zooms into Cleaning and Coating, in
Coating affects Product. that sequence.

Fig. 22.9 Invocation link (left) and implicit invocation link (right)

22.10.2 Implicit Parallel Invocation Link Set

Graphically, when the ellipse top points of two or more subprocesses within the scope of an in-zoomed
process are at the same height (with possible allowable tolerance), these subprocesses are initiated and
begin in parallel, and each starts executing subject to the satisfaction of its precondition. In this situation,
there is a set of implicit invocation links from the source in-zoomed process to each one of the parallel
subprocesses. Process synchronization is such that when the last one of these subprocesses ends,
execution control initiates the next subprocess(es). If there are two or more subprocesses with a lower

Dori — Model-Based Systems Engineering with OPM and SysML 349

ellipse—top point at the same height, the control initiates them in parallel. If there are no more
subprocesses to invoke, control returns to the in-zoomed refineable process.

Figure 22.10 shows subprocesses of Processing with the following partial order: A, (B, C), D, (E, F,
G). B and C start upon completion of A. D starts upon completion of the longer process from among B and
C. E, F, and G start upon completion of D. Execution control returns to Processing upon completion of
the longest process from among E, F, and G.

Processing

Processing zooms into A, parallel B and C, D, and parallel E, F, G, in that sequence.

Fig. 22.10 Partial subprocesses order and implicit parallel invocation link set

Table 22.11 summarizes the implicit invocation link kinds.

22.10.3 Link Distribution Across Context

Graphically, a procedural link attached to the contour of an in-zoomed process has distributive semantics.
Leaving a link attached to the contour of the in-zoomed process means that the link is distributed and
attached to each one of the subprocesses. The contour of the in-zoomed process has semantics analogous
to that of algebraic parentheses following a multiplication symbol, which distribute the multiplication
operator to the expressions inside the parentheses.

In Fig. 22.11, the OPDs on the left and right are equivalent, but the one on the left is clearer and less
cluttered. An agent link from A to P means that A handles the subprocesses P1, P2, and P3. An instrument
link from B to P means that the subprocesses P1, P2, and P3 require B. Analogously in algebra, suppose
the agent (or instrument) link was a multiplication operator, A was a multiplier and in-zooming was
addition, such that P = P1 + P2 + P3, and P was a multiplicand, then A*P = A*(P1 + P2 + P3) = A*P1 +
A*P2 + A*P3.

If an enabler connects to the outer contour of an in-zoomed contour it must connect to at least one of
its subprocesses. Consumption and result links must not be attached to the outer contour of an in-zoomed
process because this violates temporal logical conditions. With a distributed consumption link, an attempt
would be made to consume an already-consumed object by a subprocesses that is not the first to perform.
Similarly, a distributed result link would attempt to create an already existing object instance. The
modeler needs to be careful when more than one process creates the same object, i.e. more than one
instance of the object exists, or two or more processes affect or consume the same object. OPM modeling
tools need to track the number of instances of an object.

350 OPM Operational Semantics and Control Links
Table 22.11 Implicit invocation link summary
Name Semantics Sample OPD & OPL Source Destination
Product iee
Upon subprocess Terminating Initiated
completion Initiating prttl) e
within the Fiodngt Product process. e
g . Finishing o ellipse top
Implicit context of an in- whose ellipse rlstie
invocation | zoomed process, top point is gelow e
link the subprocess above the :
! ! Product ik ellipse top
immediately Shipping initiated oint of the
invokes the process ?nitiatin
one(s) below it. g
process
Product Terminating zooms into Product
Finishing and Product Shipping, in that
sequence.
Top: Initiati A set of
. nitiatin Ny
Subprocesses A L g process. y Wi
and B initiate in @ ioge éliipse processes,
parallel as soon top point is whose
as Processing e et ellipse top
o ints ar
Parallel Starts. Processing zooms into parallel A and B. of initiated Fl'?e sfn?ce o
implicit Bottom: : processes, hiodaht
invocation Frocessing whose ellipse 'gh'
link set Subprocesses B top points are (“]qt =
and C initiate in at the same tolerance)
parallel as soon Hgiistic G, | 2% DRow
as subprocess A a pre- the initiating
ends. determined e
: ; ellipse top
Processing zooms into A and parallel B tolerance). point
and C, in that sequence.

In Fig. 22.12, the OPD on the left contains invalid consumption and result links, as annotated in the
OPL. The consumption link gives rise to the OPL sentence “P consumes C.” The reason is that applying
link distribution, the consequence is the three OPL sentences “P1 consumes C.”, “P2 consumes C.”, and
“P3 consumes C.”. However, since P1 consumes C first according to its temporal order, the same instance
of C does not exist when P2 or P3 performs, and therefore neither P2 nor P3 can consume C again.
Similarly, the same instance of B results only once. The OPD on the right depicts valid links since they
specify which of the subprocesses of P consumes C (it is P1) and which one yields B (P2).

Since attaching a consumption or result link to an in-zoomed process is invalid, when a process is in-
zoomed, all the consumption and result links that were attached to it shall be attached initially or by
default to its first subprocess. It is the modeler’s responsibility to move the links to subsequent
subprocesses as needed.

Dori — Model-Based Systems Engineering with OPM and SysML 351

A
A
B
A handles P. A handles P1, P2, and P3.
P zooms into P1, P2, and P3, in that sequence. P zooms into P1, P2, and P3, in that sequence.
P requires B. P1, P2, and P3 require B.
Fig. 22.11 Link distribution across in-zooming context. Left: the shorter, correct version. Right: the equivalent loinger
version
D D
€ c
A
A
A handles P. A handles P.
P requires D. P requires D.
P zooms into P1, P2, and P3, in that sequence. P zooms into P1, P2, and P3, in that sequence.
P consumes C. NOT VALID! P1 consumes C. VALID!
P yields B. NOT VALID! P2 yields B. VALID!
P3 affects B. P3 affects B.

Fig. 22.12 Link distribution restriction for consumption and result links

As soon as the modeler in-zooms P in Fig. 22.12 and inserts P1 into its context, the modeling tool
should migrate the destination end of the consumption link emanating from C from P to P1. Similarly, the
source end of the result link to B should also migrate from P to P1. When the modeler adds P2, the

modeler may migrate the destination end of the consumption link and/or the source end of the result link
from P1 to P2, as Fig. 22.12 shows.

352 OPM Operational Semantics and Control Links

22.10.4 Split State-Specified Link Pairs

When a process that changes an object from an input state to an output state is in-zoomed, the OPD, either
in-diagram or new-diagram, becomes underspecified. To restore specification, the modeler must attach
both the state-specified input link and the state-specified output link to one of the subprocesses in a
temporally-feasible manner.

A split in-out-specified link pair of process P is an input-output specified link pair
whose input and output link constituents connect different subprocesses of P.

A split input link is the input link of the split in-out-specified link pair.

A split output link is the output link of the split in-out-specified link pair.

In Fig. 22.13, the OPD in the middle is underspecified because if P1 changes A from s1 to s2, P2
cannot do this again, but it can go the other way—change A from s2 back to s1, but neither is explicitly
specified. P1 can change A from s1, i.e., take it out of s1 and leave it in transition between s1 and s2. In-
between P1 and P2 there may be one or more other interim subprocesses, during which A is still in that
transition. P2 then changes A to s2. The OPD on the right models this case (without interim
subprocesses), creating a split input link from s1 of A to P1 and a split output link from P2 to s2.

Sl

e

A A
@4«3@ [« [

A can be s1 or s2. A can be s1 or s2.

P zooms into P1 and P2, in that P zooms into P1 and P2, in that
A can be s of 52 sequence sequence
Fichenigeaiuionistito st P changes A from s1 to s2. P1 changes A from s1.

UNDERSPECIFIED! P2 changes A to s2.

Fig. 22.13 Split state-specified transforming link resolve underspecification

Table 22.12 summarizes the split input-output specified effect link pair. There are no control-modified
versions of the split input-specified effect link, because this can cause the of effect link semantics to be
distorted. For example, if in Fig. 22.13 P1 is skipped, A stays in s1, so if P2 is not skipped, A was not
taken out of s1, so it cannot change to s2 according to the semantics of the effect link.

Dori — Model-Based Systems Engineering with OPM and SysML 353

Table 22.12 Split input-output specified effect link pair

Name Semantics Sample OPD & OPL Source Destination
The top
OA; aiafrl]{{zil;?;?icess arrow: Input | The top arrow:
Split input-output e e iy A o state of an Early
specified effect i i & affected subprocess of an
: . object out of'its input . d
link pair - object in-zoomed
;) E@ process
The top arrow: split [T T T —— o The bottom
input link S iﬁ | arrow: Late | The bottom
subprocess arrow: Output
The bottom arrow: | process changes the of an in- state of the
split output link ggjteitt gc;al:;: in its P1 changes A from s1. zoomed affected object
P ’ P2 changes A to s2. process

22.11 Involved Object Set Instance Transformations

As a consequence of link distribution, the following constraints apply to operational instances of
transformees.

Each consumee instance in the preprocess object set of a process shall cease to exist at the beginning
of the most detailed subprocess of the process that consumes the instance, so that instance is not a
member of the postprocess object set of that process.

Each affectee instance in the preprocess object set of a process that changes that instance as a
consequence of the process performance shall exit from its input state at the beginning of the deepest
(most detailed) subprocess that changes the affectee.

Each affectee instance in the postprocess object set of a process that changes that operational
instance as a consequence of the process performance shall enter its output state at the completion of
the deepest subprocess that changes the affectee.

Each resultee instance in the postprocess object set of a process shall be created and begin to exist at
the completion of the most detailed subprocess that yields the resultee instance.

A stateful object B for which the execution of process P has the effect of changing the state of B, exits

from the input state at the beginning of the most detailed subprocess of P that changes B, and enters the
output state at the end of the same subprocess of P or some subsequent subprocess of P. Since process P
execution takes a positive amount of time, that object B is in transition between states, from its input state
to its output state: it has left its input state but has not yet arrived at its output state.

354 OPM Operational Semantics and Control Links

22.12 UML’s Object Constraint Language (OCL)

The OPM Parameterized Participation Constraint (PPC) mini-language described in Sect. 17.3 is
somewhat reminiscent of Object Constrain Language (OCL), developed by Warmer and Kleppe (1998).
OCL is “a precise text language that provides constraint and object query expressions that cannot be
expressed by diagrammatic notation.” The current OMG OCL version (OMG OCL 2014), explains the
motivation for developing OCL by arguing that “a UML diagram, such as a class diagram, is typically
not refined enough to provide all the relevant aspects of a specification. There is, among other things, a
need to describe additional constraints about the objects in the model. Such constraints are often
described in natural language. Practice has shown that this will always result in ambiguities. ... OCL has
been developed to fill this gap. It is a formal language that remains easy to read and write.”

Comparing OPM’s PPC mini-language to OCL, we note that while OCL is a complete language
whose current OMG 2014 specification holds 262 pages, the PPC mini-language can be specified in a few
pages. It is expressed in the OPD and translated as part of the OPL, and unlike OCL it does not provide
for querying. With respect to the claim that OCL “remains easy to read and write” let us consider the
constraint example provided in OMG OCL (2014, p. 20):

Married people are of age >= 18. The OCL syntax for this constraint is as follows.

context Person

inv: (self.wife->notEmpty() implies self.wife.age >= 18)

and (self husband->notEmpty() implies self.husband.age >= 18)

The corresponding OPM model is provided in Fig. 22.14. The OPL of this model seems to be a bit
more humanly comprehensible than the OCL specification above.

Married
Person Couple
Age [yr] | gnnadrr\j‘(’aic:e(:ouple consists of Husband
Husband Husband and Wife are Persons.
—l Wife Person exhibits Age in yr.
Age of Wife is greater than 18 yr.
é Age of Husband is greater than 18 yr.
Age [yr] Age [yr]
>18 >18

Fig. 22.14 The OPM model of the constraint “Married people are of age >= 18"

Dori — Model-Based Systems Engineering with OPM and SysML 355

22.13 Summary

e An event is a point in time at which something significant to the system execution happens.

e Events and preconditions in concert specify OPM flow of execution control for process
performance according to the event-condition-action paradigm.

e The event-condition-action paradigm stipulates that starting the performance of a process (the
“action”) has two prerequisites: an initiating event and satisfaction of a precondition derived
from the preprocess object set.

e A control modifier is one of the two letter symbols e and ¢, added to a procedural link, which
add to the semantics of that link the event and condition semantics, respectively.

e A control link is a procedural link with the addition of a control modifier.

e An event link is a procedural link with the control modifier e, indicating initiation of the link’s
destination process, triggering that process’ precondition evaluation.

e A condition link is a procedural link with the control modifier c, indicating that if the
precondition of the link’s destination process is not met, then that process is skipped.

o The skip semantics precedence OPM principle states that skip semantics, induced by a control
link, takes precedence over wait semantics, induced by a non-control link.

e A maximal-timed process is a process for which the modeler determines a maximal duration.

e An overtime handling process is a time exception process that determines what to do in case the
time performance of a maximal-timed process exceeds its maximal allowable time.

e An overtime exception link is a procedural link from a maximal-timed process to an overtime
handling process, indicating that if the duration of a maximal-timed process exceeds its maximal
duration, then the overtime exception process is initiated.

e A minimal-timed process is a process for which the modeler determines a minimal duration.

o An undertime handling process is a time exception process that determines what to do in case
the time performance of a minimal timed process falls short of its minimal duration.

e An undertime exception link is a procedural link from a minimal-timed process to an undertime
exception process, indicating that if the time performance of a timed process falls short of its
minimal allowable time, the undertime exception process is initiated.

356

OPM Operational Semantics and Control Links

22.14 Problems

—_

oo kU

©

10.

Why is the event link in Fig. 3.5 needed?

What is the role of the condition link in in Fig. 6.1?

Explain why in Fig. 7.1 two condition links are needed.

Use Fig. 21.15 as a template and replace B, P, P1 and P2 in it with meaningful things.

Explain why each one of the five entries in Table 21.1 marked “invalid” is indeed invalid.
Explain why in Fig. 21.13 P123 (the set TO of thing to out-zoom) cannot contain P4 and BK
only.

What thing must be added to P4 and BK such that TO becomes valid?

Assuming TO is the set as you suggested in the previous question, draw the resulting
SD1.1[new].

Create the OPM model of uninterrupted irrigating by water as a consumee for the process
irrigating. The consumee has an attribute quantity [liter] with value 1000 and the consumption
link has a consumption rate [liter/sec] with value 50.

Create the OPM model of the following system. Gasoline and Diesel Oil are resultees of the
process Refining, which consumes Crude Oil. The resultees Gasoline and Diesel Oil each have an
attribute Volume [m3]. The Refining to Gasoline result link has yield rate [m3/hour] with value
1000 and the Refining to Diesel Oil result link has yield rate [m3/hour] with value 800. Assuming
there is enough Crude Oil, if Refining activates and performs for 10 hours, it will yield 10,000
[m3] of Gasoline and 8,000 [m3] of Crude Oil.

Chapter 23
Logical Operators and Probabilities

Logic and probability theory are two of the main tools in the formal study of
reasoning, and have been fruitfully applied in areas as diverse as philosophy,
artificial intelligence, cognitive science and mathematics.

Stanford Encyclopedia of Philosophy (2013)

Logical operators, including AND, NOT, OR, and XOR (exclusive OR) enable modeling complex
conditions on performance of processes. Using XOR, OPM can also assign probabilities to such outcomes
as creating one of several possible objects, or an object in a specific state. We discuss these in this
chapter.

23.1 Logical AND Procedural Links

Two or more procedural links of the same kind that originate from, or arrive at, different points along the
process ellipse circumference (the process context), have the semantics of the logical AND operator.
Graphically, the links with AND semantics do not touch each other on the process contour. We have been
using this operator all along as the default without explicitly stating this, as it seems natural. Indeed,
textually, the OPL reserved phrase “and” is used to express the logical AND.

The next three examples show the use of AND in various procedural links. In the OPD in Fig. 23.1
(right), the Safe Opening process requires both Safe Owner A and Safe Owner B. In Fig. 23.1 (left),
opening the Safe requires all three keys.

Key A Key B KeyC Safe Owner A Safe Owner B

Safe
Opening
A
Safe ¥ Safe ¥
Safe can be closed or open. Safe can be closed or open.
Safe Opening requires Key A, Key B, and Key C. Safe Owner A and Safe Owner B handle Safe Opening.
Safe Opening changes Safe from closed to open. Safe Opening changes Safe from closed to open.

Fig. 23.1 Logical AND used with agent and instrument links

© Springer Science+Business Media New York 2016 357
D. Dori, Model-Based Systems Engineering with OPM and SysML, DOI 10.1007/978-1-4939-3295-5 23

358 Logical Operators and Probabilities

In Fig. 23.2 (left), Meal Preparing yields all three of the dishes. In Fig. 23.2 (right), Meal Eating
consumes all three dishes.

Chef
Shatter Starter
Entree Entree .
Diner
) Dessert
Chef handles Meal Preparing. Meal Eating affects Diner.

Meal Preparing yields Starter, Entree, and Dessert. Meal Eating consumes Dessert, Entree, and Starter.

Fig. 23.2 Logical AND used with result and consumption links

In the OPD on the left of Fig. 23.3, Interest Rate Changing affects the three objects Exchange Rate,
Price Index, and Interest Rate. In the OPD on the right, all three effects of Interest Rate Raising on
Exchange Rate, Price Index, and Interest Rate are made explicit via three pairs of in-out-specified effect
links.

Exchange
Rate
Interest Rate Interest
Rate
Central Bank [—e| MreStRate hg 3l price index
anging Interest Rate
Central Bank [——® Raising
2
Exchange Rate
A
rice
Index™
(o)
Central Bank handles Interest Rate Changing.
Interest Rate can be low or high.
Central Bank handles Interest Rate Changing. Price Index can be low or high.
Interest Rate Changing affects Exchange Rate, Price Index, Exchange Rate can be high or low.
and Interest Rate. Interest Rate Raising changes Exchange Rate from low to
high, Price Index from low to high, and Interest Rate from
low to high.

Fig. 23.3 Logical AND used with effect link and with in-out specified link pairs

Dori — Model-Based Systems Engineering with OPM and SysML 359

23.2 Logical NOT

“NOT” is a unary logical operator which simply reverses the state of any Boolean object (see Sect. 7.1):
A binary input of “yes” (positive, 1...) is converted to “no” (negative, 0...), and vice versa. There are
several ways to implement NOT in OPM. One is with the flip-flop mechanism, described in Sect. 19.5.
Another way is to use states as constraints or conditions for process execution. If, for example, we want to
model that a process P executes if and only if substance S is NOT present, we model the object S with
two implicit states: existent and non-existent. We link the non-existent state to P with an instrument link
or an instrument condition link, so P can execute only if S is in its non-e, i.e., when it does not exist.

Tk Set
Deadenylati -
Factor Set " Pl ol i
Pab
bucteus) aEl_n] / m \ Poly A Tail
kot [l b i & Deadenylation Jeg
[Comptex | T
Decaysome T TRNA
Exosome Nucleotides
g >
mRNA Location cfu_Dcpz
cytoplasm xistent
D Complex
Nucleotides Location eﬁ:ggﬁm LSM1-7
X 7 T [Edos " CeraNot
existent xistent instmtl [non-c] Pxiﬂcnl] [non-!) m

Fig. 23.4 The mRNA Decay and Nuclear Import Process (Somekh et al. 2014) showing the use of NOT via existent and
non-existent states of molecules

The mRNA Decay and Nuclear Import Process is the in-zoomed process in Fig. 23.4 (Somekh et al.
2014). This OPD shows how the existent and non-existent states of molecules are used to implement
“NOT”. For example, the existent state of the complex CCR4Not (no pun intended), depicted at the
bottom right corner, is linked to Decaysome Import—the third subprocess from the top, so only if
CCRA4Not exists can this subprocess take place. However, in this case there are six other substances (such
as Edc3) that can each enable the process, and they are linked with an OR logical operator (discussed
below), so only lack of all the seven substances would prevent CCR4Not occurring. If the non-e (short for

360 Logical Operators and Probabilities

non-existent) state of CCR4Not would be linked with a condition link to Decaysome Import, that would
mean (disregarding other links) that the absence of CCR4Not is the condition for the occurrence of
Decaysome Import.

23.3 Logical XOR and OR Link Fans

In order to express OR and XOR graphically, we use link fans.

A link fan is a set of f (f >2) procedural links of the same kind that originate from a
common point, or arrive at a common point, on the same object or process.

The convergent end of a link fan is the end that is common to the f fan links.

The divergent end of a link fan is the end that is not common to the f fan links.

The convergent end is attached to one thing, while the divergent end is attached to f things, where f'is
the size of the link fan set—the number of links in the fan. A link can be a member of both a divergent
fan on its source and a convergent fan on its target.

Since the links are procedural, one end is attached to object and the other to processes or vice versa.
Formally, the attribute value of the Perseverance of the Thing attached to the link fan’s convergent end is
the opposite of the attribute value of the Perseverance of the f/ Things attached to the link fan’s divergent
end. Thus, as the OPD in Fig. 23.5 shows, if the attribute value of the Perseverance of the thing attached
to the link fan’s convergent end is dynamic (transient), then the thing is a Process. In this case, the
attribute value of the Perseverance of the f Things attached to the link fan's divergent end is static
(persistent), implying that these f things are all Objects.

23.3.1 The Logical XOR Operator

The semantics of the logical XOR operator is that exactly one of the f'things connected to the divergent
end of the link fan is transformed, enables, or occurs. If the divergent link end is attached to f objects,
then exactly one object is transformed by the process at the convergent end of the link fan, or enables that
process. If the divergent link end is attached to f'processes, then exactly one process occurs.

This use of the XOR operator in OPM is in line with the definition of XOR in digital systems, but it
may be different from some interpretations of the binary XOR operator with multiple inputs, where the
output is 1 for an odd number of inputs and 0 for an even number of inputs. Graphically, a single dashed
arc across the flinks of the link fan whose focal point is at the convergent end of contact denotes the XOR
operator (see Fig. 23.5 left).

The syntax of a link fan of fthings with XOR semantics is different for f= 2 and for > 2. For f'= 2,
the reserved idiom (split reserved phrase) “either ... or” is used. Since this idiom in natural English is
reserved for expressing selection of exactly one of two (but not many) items, for /> 2, the reserved phrase
“exactly one of”” is used. For example, since in Fig. 23.5 (left) the link fan comprises 2 agent links, /'=2, so
the OPL sentence is:

Either Safe Owner A or Safe Owner B handle Safe Opening.

Dori — Model-Based Systems Engineering with OPM and SysML 361

Suppose an agent link to a third safe owner, Safe Owner C, is added to the fan, making f'= 3. The OPL
sentence then becomes:

Exactly one of Safe Owner A, Safe Owner B, or Safe Owner C handle Safe Opening.

Safe Owner A Safe Owner B Safe Owner A Safe Owner B

Safe

Opening Opening

Safe ¥ Safe ¥
Safe can be closed or open. Safe can be closed or open.
Either Safe Owner A or Safe Owner B handle Safe At least one of Safe Owner A and Safe Owner B handle
Opening. Safe Opening.
Safe Opening changes Safe from closed to open. Safe Opening changes Safe from closed to open.

Fig. 23.5 Agent link fan examples expressing logical XOR (left) and logical OR (right)

23.3.2 The Logical OR Operator

The semantics of the logical OR operator is that at least one of the f'things connected to the divergent end
of the link fan is transformed, enables, or occurs. If the divergent link end is attached to f objects, then at
least one object is transformed by the process at the convergent end of the link fan, or enables that
process. If the divergent link end is attached to f processes, then at least one process occurs. This use of
the OR operator in OPM is in line with the binary OR operator with two or more inputs.

Graphically, a double dashed arc across the f links of the link fan whose focal point is at the
convergent end of contact denotes the OR operator (see Fig. 23.5 right).

The syntax of a link fan of f things with OR semantics is similar for /= 2 and /> 2. For both, the
reserved phrase “At least one of” is used. For example, in Fig. 23.5 (right), where the link fan comprises 2
agent links, the OPL sentence is:

At least one of Safe Owner A or Safe Owner B handles Safe Opening.

Suppose an agent link to a third safe owner, Safe Owner C, is added to the fan, making /=3. The OPL
sentence then becomes:

At least one of Safe Owner A, Safe Owner B, or Safe Owner C handles Safe Opening

362 Logical Operators and Probabilities

23.4 Diverging and Converging XOR and OR Links

A converging fan is a link fan whose links point to its convergent end.

A diverging fan is a link fan whose links point to its divergent end.

Table 23.1 presents a summary of XOR and OR converging consumption and result links for f>2,
showing in the top row that a converging consumption link fan is formed when the source things are
objects and the destination thing is a process. In a converging result link fan, the source things are
processes and the destination thing is an object. Conversely, as Table 23.2 shows, when the source thing
is an object and the destination things are processes, we get a diverging consumption link fan, while
when the source thing is a process and the destination things are objects, a diverging result link fan is
formed.

Table 23.1 Summary of XOR and OR converging fans for consumption and result links

XOR OR
A A
Converging B B
consumption
link fan
C C
P consumes exactly one of A, B, or C. P consumes at least one of A, B, or C.

Converging
result link fan

Exactly one of P, Q, or R yields B. At least one of P, Q, or R yields B.

Dori — Model-Based Systems Engineering with OPM and SysML 363

Table 23.2 Summary of XOR and OR diverging fans for consumption and result links

XOR OR

Diverging g
consumption
link fan
At least one of P, Q, or R consumes B

1~ |

™
Diverging

result link {

fan)

P yields exactly one of A, B, or C. P yields at least one of A, B, or C.

An effect link is bidirectional, so the things linked by an effect link fan are both source and destination
at the same time, voiding the definitions of convergent and divergent link fans. Instead, as Table 23.3
shows, the distinction occurs with respect to multiple objects or multiple processes that a link fan
connects.

Table 23.3 Summary of XOR and OR joint effect link fans

XOR OR

Multiple
objects effect
link fan

Multiple
processes effect
link fan

Exactly one of P, Q, or R affects P. At least one of P, Q, or R affects P.

364 Logical Operators and Probabilities

Since an enabler is an object, both agent and instrument link fans can be diverging, with multiple

processes as targets, as shown in Table 23.4, or converging, with multiple enablers as sources, as shown
in Table 23.5.

Table 23.4 Diverging agent and instrument link fans

XOR OR

Diverging
Agent link
fan

Diverging
Instrument
link fan

Exactly one of P, Q, or R requires B. At least one of P, Q, or R requires B.

Table 23.5 Converging agent and instrument link fans

XOR OR

Converging
Agent link
fan

Converging
Instrument
link fan

P requires exactly one of A, B, or C. P requires at least one of A, B, or C.

Dori — Model-Based Systems Engineering with OPM and SysML

365

Invocation link fans can also be diverging or converging for both XOR and OR, as shown in Table 23.6,
where the semantics of questionable combinations is specified.
Table 23.6 Invocation link fans

XOR

OR

Oy

O

Semantics:

If both P and Q terminate at the same
time, R is not invoked.

Di i ; :
in::‘:cr;gtli];%. P invokes either Q or R. P invokes at least one of @ or R.
link fan | Semantics:
P invokes Q or R with probability 0.5
each. It is possible to assign specific
probabilities along the links (see
Section 23.7).
Converging
invocation | Either P or Q invokes R. At least one of P or Q invokes R.
link fan

Semantics:

This is the same as the OPD without the
OR, because invocation is an event link, so
its semantics is OR anyway (see Section
23.6).

23.5 Combinatorial XOR and Combinatorial OR

The XOR and OR logic presented so far implies the selection of exactly one (for XOR) or at least one (for
OR). In cases where the fan size > 2, we can generalize the XOR and OR logic to combinatorial XOR
and combinatorial OR logic. We extend the logic from 1 to any number m links (up to one less than f') by

replacing “one” in the OPL sentence by m, where m < f.

23.5.1 Combinatorial XOR

Consider the following OPL sentence, which extends the model in Fig. 23.5.

Exactly one of Safe Owner A, Safe Owner B, or Safe Owner C handle Safe Opening.

366 Logical Operators and Probabilities

Safe Owner B Safe Owner B

Safe Owner C

Safe Owner A 2.1 Safe Owner C Safe Owner A 2.5,

Safe Safe
Opening Opening
Safe
Safe ¥ N
el

Safe can be closed or open. Safe can be closed or open.

Exactly 2 of Safe Owner A, Safe Owner B, or Safe At least 2 of Safe Owner A, Safe Owner B, or Safe
Owner C handle Safe Opening. Owner C handle Safe Opening.

Safe Opening changes Safe from closed to open. Safe Opening changes Safe from closed to open.

Fig. 23.6 Example of combinatorial XOR (left) and combinatorial OR (right)

The link fan size here is f= 3. If we want to model that exactly two safe owners are needed to open the
safe, instead of “one” we write m = 2, effectively introducing a combinatorial number of possibilities, in

this case “3 choose 27, (g) =3:

Exactly 2 of Safe Owner A, Safe Owner B, or Safe Owner C handle Safe Opening.

In the OPD, we add the number m outside and next to the XOR arc, as demonstrated by the number 2
recorded in the OPD on the left of Fig. 23.6.

In general, in combinatorial XOR we constrain the model to select exactly m of f links, we use the
reserved phrase “exactly m of” where m < f', and the number of possibilities is (rl;).

23.5.2 Combinatorial OR

Similar to the combinatorial XOR, we generalize the OR logic to combinatorial OR. We do so by
extending the logic from 1 to any number m (up to one less than f') links by replacing “at least one of”” in
an OPL sentence by “ at least m of”’, where m < f. Using again the OPL sentence above, which extends
the model in Fig. 23.5, where the link fan size is /= 3, instead of “one” we can write m = 2, effectively
introducing a sum combinatorial number of possibilities.

At least 2 of Safe Owner A, Safe Owner B, or Safe Owner C handle Safe Opening.

In this case, the number of possibilities is (;) + (§)= 3+1=4. In the OPD, we add the number m outside
and next to the OR arc, as demonstrated by the number 2 recorded in the OPD on the right of Fig. 23.6.

In general, for constraining the model to select at least m of f links, we use the reserved phrase “at

least m of” where m < f, and the number of possibilities is (:;) + (f::l D (™).

Dori — Model-Based Systems Engineering with OPM and SysML 367

23.6 State-Specified XOR and OR Link Fans

Each one of the link fans described above has a corresponding state-specified version, where the source
and destination may be specific object states or objects without a state specification. Combinations of
state-specified and stateless links as destinations of a link fan may occur. Figure 23.7 shows on the left a
XOR state-specified instrument link fan and on the right an OR mixed result link fan where the links are
state-specified for objects A and C but not for B.

B
) (=

Exactly one of P, Q, or R requires s2 B. P yields at least one of s3 A, B, or s5 C.

Fig. 23.7 State-specified XOR (left) and OR (right) link examples

Two or more processes can have the same state as their source. For example, as the OPD on the right
hand side of Fig. 23.8 shows, either P1 or P2 (but not both) can consume B when it is at state s1: Either P1
or P2 consumes s1 B. If there are more than two processes, the OPL sentence becomes: Exactly one of P1,
P2, or P3 consumes s1 B. A similar situation occurs with state change in the OPD on the right of Fig.
23.8: Either P1 or P2 changes B from s1 to s2. And for more than two processes: Exactly one of P1, P2, or P3
changes B from s1 to s2.

ERJERRED

4

B can be s1, s2, or s2. B can be s1, s2, or s2.
Either P1 or P2 consumes s1 B. Either P1 or P2 changes B from s1 to s2.

Fig. 23.8 Left: P1 XOR P2 can consume B when it is at state s1. Right: P1 XOR P2 can change B from s1 to s2

23.6.1 Control-Modified Link Fans

Each one of the XOR link fans for consumption, result, effect, and enabling links and their state-specified
versions has a corresponding control-modified link fan: an event link fan and a condition link fan. Table

368 Logical Operators and Probabilities

23.7 presents the event and condition effect link fans, as representatives of the basic (non-state-specified)
links version of the modified link fans.
Table 23.7 Event and condition XOR effect link fans

Event Condition

Exactly one of P, Q, or R occurs if B exists,
in which case the occurring process affects
B, otherwise these processes are skipped.

B initiates exactly one of P, Q, or R, which
affects the occurring process.

23.6.2 State-Specified Control-Modified Link Fans

Each one of the control-modified link fans, except the control-modified effect link fan, has a
corresponding state-specified control-modified link fan. Since these state-specified versions are more
complicated than their non-state-specified version, Table 23.8 presents the OPD and OPL of the state-
specified cases, and below each such case—the OPL sentence for the corresponding stateless case.

Each XOR link fan in Table 23.7 and in Table 23.8 has its OR counterpart (designated by a double
dashed arc) with a corresponding OPL sentence in which the reserved phrase “at least” replaces “exactly”.

23.7 Multiple Control Links Have OR Semantics

Event triggers a process independently of any other event link that might be linked to the same process.
Therefore, two or more event links attached to a process have the logical OR semantics. Cancelling in
Fig. 23.9 can be initiated (triggered) by Bad Weather Forecast or by Artist Sickness. There is no need for
both to coexist. In fact, the likelihood that these two objects will be created in the system at the same
point in time is practically zero. Therefore, the OPD on the right of Fig. 23.9 is correct. The one on the
left is a case when the event that initiates the Cancelling is Bad Weather Forecast, but if that is the case,
Artist Sickness is also required. The OPD in the middle is the complementary case: the event that initiates
the Cancelling is Artist Sickness, but if that is the case, Bad Weather Forecast is also required.

In a similar way, if more than one condition link is the target of a process P with AND semantics, then
all of the conditions must be true in order for P not to be skipped. Suppose the conditions are C1, C2, and
C3. Suffice it that one condition is not fulfilled to cause P to be skipped: C1 or C2 or C3. Hence, while
the AND semantics holds from the viewpoint of the requirement for process performance, from the skip
semantics viewpoint, we are looking at OR semantics. If we want to model that any non-empty subset of
the conditions is sufficient, we need to use the OR link fan, as was done in the model in Fig. 23.5.

Dori — Model-Based Systems Engineering with OPM and SysML

369

Table 23.8 State-specified and stateless XOR control-modified link fans

Link fan kind

Event control modifier

Condition control modifier

State-specified
consumption
link fan

B
.~
(=) (=]

6o

S2 B initiates exactly one of P, Q, or R, which
consumes the initiated process.

The stateless case:

B initiates exactly one of P, Q, or R, which
consumes the initiated process.

B
-~
ERRED -

Exactly one of P, Q, or R occurs if B is s2, in
which case the occurring process consumes B,
otherwise these processes are skipped.

The stateless case:

Exactly one of P, Q, or R occurs if B exists, in
which case the occurring process consumes B,
otherwise these processes are skipped.

State-specified
agent link fan

e

\

)

g

S2 B initiates and handles exactly one of P,
Q, orR.

The stateless case:

B initiates and handles exactly one of P, Q,
or R.

) (2K

B handles exactly one of P, Q, or R if B is s2,
otherwise these processes are skipped.

The stateless case:

B handles exactly one of P, Q, or R if B exists,
otherwise these processes are skipped.

State-specified
instrument
link fan

) ¢

G
¢

S2 B initiates exactly one of P, Q, or R, which
requires s2 B.

The stateless case:

S2 B initiates exactly one of P, Q, or R, which
requires B.

R

B
() OF

Exactly one of P, Q, or R requires that B is s2,
otherwise these processes are skipped.

The stateless case:

Exactly one of P, Q, or R requires that B is s2,
otherwise these processes are skipped.

370 Logical Operators and Probabilities

Artist Performance Artist Performance

Artist Performance s haided
scheduled A

LY

Performance
Cancelling

Performance
Cancelling

Bad Weather Artist Bad Weather Artist
Bad Weather Artist Forecast Sickness Forecast Sickness
Forecast Sickness

Bad Weather Forecast initiates Artist Sickness initiates Bad Weather Forecast or Artist
Performance Cancelling, which Performance Cancelling, which Sickness initiates Performance
requires Bad Weather Forecast. requires Artist Sickness. Cancelling. Performance
Performance Cancelling Performance Cancelling requires Cancelling requires Bad Weather
requires Artist Sickness. Bad Weather Forecast. Forecast or Artist Sickness.

Performance Cancelling changes Artist Performance from scheduled to cancel.

Fig. 23.9 Event link has OR semantics (right) since they are unlikely to happen at the same moment

23.8 Link Probabilities and Probabilistic Link Fans

A process P with a result link that yields a stateful object B with # states, s1 through sn, without specifying
a particular state, as in the OPD on the left of Fig. 23.9, mean that the probability of generating B at any
one particular state shall be 1/n. In this case, the single result link to the object replaces the result link fan
to each of its states, so the OPD on the left of Fig. 23.9 is equivalent to and, being simpler than the one on
the right, is the preferred version.

In the left OPD of Fig. 23.10, the result link from P to B, which has 3 states, means that P will create B
with equal probability, Pr = 1/3, for being created at each one of the three states.

g 7
cajeslen] G

B can be s1, s2, or s3. B can be s1, s2, or s3.
P yields B. P yields exactly one of s1 B, s2 B, or s3 B.

11 =]

Fig. 23.10 Equivalence between result link and a set of XOR state-specified result links

Dori — Model-Based Systems Engineering with OPM and SysML 371

s
A P
K BY ¥V \1 ¢
EBRERIED 5 (=t) (o2

P yields s1 B with probability 0.32, s2 B with P yields A with probability 0.3, B with probability g, or sc1 C
probability 0.24, or s3 B with probability 0.44. with probability 0.7-q.
The analogous deterministic case: The analogous deterministic case:
P yields exactly one of s1 B, s2 B, or s3 B. P yields exactly one of A, B, or sc1 C.

Fig. 23.11 Probabilistic state-specified object creation examples

Generally, probabilities of following a specific link in a link fan are not equal.

Link probability is an optional attribute value assigned to a procedural link in a XOR
diverging link fan that specifies the probability of following that particular link among
the possible links in the fan link.

A probabilistic link fan is a link fan with a probability value assigned to each of its
links, such that the sum of the probability values of all the links is exactly 1.

Graphically, in a probabilistic link fan, a probability value in the form Pr = p;, where p; is the link
probability numeric value or a parameter, such that ¥/ p, = 1. This Pr = p; symbol, which appears along
each one of the f links in the probabilistic link fan, denotes the probability that the system execution
control mechanism will select that particular link and follow that path.

The corresponding OPL sentence is the XOR diverging link fan OPL sentence without link
probabilities omitting the phrase “exactly one of...” and adding instead the phrase “...with probability p;”
following each participating thing name with a probability annotation Pr = p;.

Figure 23.11 shows two probabilistic state-specified object creation examples and their deterministic
OPL analogues. In the OPD on the left, process P can create object B in three possible states, s1, s2, or
s3, with corresponding probabilities 0.32, 0.24, and 0.44 (totaling 1), as indicated along each result link of
the result link fan. In the OPD on the right, P can create one of the objects A, B, or sc1 C, i.e., C at state
sc1, with the probabilities 0.3, g, and 0.7—q (totaling 1), respectively.

For a process P with a result link that yields a stateful object B with states s1 through sn, and with
initial state si, P creates B at state si with probability 1. If B has m < n initial states, P shall create B at one
of the initial states with probability 1/m.

For a probabilistic result link fan, any one of the resultees may be an object without or with a specified
state. For all the link fans comprising other procedural link kinds (including those with the event and

372 Logical Operators and Probabilities

condition control modifiers), where the targets of the links in the link fan are processes, the source may be
an object or a specified state of an object.

A
| D ¥\
(=)
R eice A MR petOaniineg S B I e e T Y P with probability p, @ with probability g,
Ul el s R probability q, or R with probability or R with probability 1-p—q consumes
0.1, sd1 D with probability 0.25, or sd2 s constllmes A s2 A
D with probability 0.15. P-q . :

Fig. 23.12 Objects with and without specified states as resultees and consumees of a probabilistic link fan

B can be s1, s2, or s3.

States s1, s2, and s3 are initial.

P1 yields one of s1 B with probability 0.2,
s2 B with probability 0.3, or s3 B with

P changes B from s1 to either s2 5 probability 0.25, or P1 with
: = : probability 0.5. =

with probability 0.4 or s3 with P2 Vislds ohis of 81 B with brobability 0.1 probability 0.5 changes B

probability 0.6. Y P Y Sty from s1 to s2.

B can be s1, s2, or s3.
State s2 and State s3 are final.

Exactly one of P1 with
probability 0.25, P2 with

s2 B with probability 0.4, or s3 B with
probability 0.5.

Fig. 23.13 Examples of various probabilistic state-specified change: from a state to one of two final states (left),
probabilistic result to one of three final states (middle), and probabilistic change from one state to another (right)

The OPD on the left hand side of Fig. 23.12 shows a probabilistic result link fan in which P yields one
of the objects A or B, or C at state sc1, or D at state sd1 or sd2, each with its specified probabilities. The
OPD in the middle of Fig. 23.12 shows a probabilistic consumption link fan in which A is consumed, with

Dori — Model-Based Systems Engineering with OPM and SysML 373

specified probabilities, by one of the processes P or Q or R. The OPD in the bottom expresses the same,
with the additional fact that A must be at state s2.

Figure 23.13 presents examples of various probabilistic state-specified transformations. On the left is
a state change from a state to one of two final states. In the middle—probabilistic creation (result), and on
the right—probabilistic change from one state to another.

23.9

Summary

Logical operators, including AND, OR, and XOR (exclusive OR) enable modeling complex
conditions on performance of processes.

Two or more procedural links of the same kind that originate from, or arrive at, different points
along the process ellipse circumference (the process context), have the semantics of the logical
AND operator.

A link fan is a set of f>2 procedural links of the same kind that originate from a common point,
or arrive at a common point, on the same object or process.

The convergent end of a link fan is the end that is common to the f fan links.
The divergent end of a link fan is the end that is not common to the f fan links.
A link fan with a single dashed arc denotes the logical XOR operator.

A link fan with a double dashed arc denotes the logical OR operator.

A converging fan is a link fan whose links point to its convergent end.

A diverging fan is a link fan whose links point to its divergent end.

Each one of the XOR link fans for consumption, result, effect, and enabling links and their state-
specified versions has a corresponding control-modified link fan: an event link fan and a
condition link fan.

Link probability is an optional attribute value assigned to a procedural link in a XOR diverging
link fan that specifies the probability of following that particular link among the possible links in
the fan link.

A probabilistic link fan is a link fan with a probability value assigned to each of its links, such
that the sum of the probability values of all the links is exactly 1.

23.10 Problems

Combine the two OPD in Fig. 23.1 to express that each one of the two safe owners must have all
the three keys to open the safe.

Combine the two OPD in Fig. 23.2 to express that the chef prepares either entrée or starter and
dessert, and the diner eats whatever is prepared.

374 Logical Operators and Probabilities

3. In the top-left and bottom-right OPDs in Table 23.1 replace the thing manes with content that
will yield sense-making OPL sentences.

4. Repeat the previous question for Table 23.2.
Do the same for one OPD in each one of Tables 23.3, 23.4, and 23.5.

6. Chose any three OPDs from the last three questions and add probabilities to them. If needed,
modify them.

Chapter 24
Overview of ISO 19450

This book contains a comprehensive coverage of OPM that is compatible with ISO 19450 Publically
Available Specification (PAS) titled “Automation systems and integration—Object-Process
Methodology”, and in French: “Systémes d’automatisation et intégration—Meéthodologie du processus-
objet’. The ISO 19450 PAS has been adopted by the International Organization for Standardization (ISO)
in December 2015 through the work of ISO Technical Committee 184/ Sub-committee 5 (TC184/SC5) after
a six-year effort, mainly by Richard Martin, David Shorter, Alex Blekhman, and this author. This book
was prepared in parallel with the ISO 19450 PAS standard, so the two are almost completely aligned with
each other. Since the standard (formally PAS) must conform to the rules of ISO for standard authoring, it
is structured differently and is not as elaborate as the book. Rather, it is an orderly exposition of OPM that
enables tool developers to use it, along with this book, as a solid basis for developing an ISO 19450-
complaint software tool to support OPM-based conceptual modeling. ISO standards like ISO 19450 PAS
contain normative parts and often also one or more informative parts. To be compliant with the standard,
a normative part must be strictly followed, while an informative part is not mandatory. This book is a
superset of ISO 19450 PAS. About 90% of the material in this book is aligned with ISO 19450. The rest
can be considered as the equivalent of an addition to the informative part of the standard—it should be
followed, but ISO 19450 in its current initial form does not mandate it. This closing chapter describes
briefly the content of the ISO 19450 PAS, where each section is devoted to a summary of one or more
sections of ISO 19450.

24.1 The ISO 19450 Introduction

The first paragraph of the ISO 19450 document’s introduction (p.v) is the following.

Object-Process Methodology (OPM) is a compact conceptual approach,
language, and methodology for modelling and knowledge representation of
automation systems. The application of OPM ranges from simple assemblies of
elemental components to complex, multidisciplinary, dynamic systems. OPM is
suitable for implementation and support by tools using information and
computer technology. This document specifies both the language and
methodology aspects of OPM in order to establish a common basis for system
architects, designers, and OPM-compliant tool developers to model all kinds of
systems.

The introduction goes on to discuss the generality and industry- and business-wide applicability of
OPM as a basis for model-based systems engineering:

© Springer Science+Business Media New York 2016 375
D. Dori, Model-Based Systems Engineering with OPM and SysML, DOI 10.1007/978-1-4939-3295-5 24

376 Overview of I1SO 19450

OPM notation supports the conceptual modelling of systems with formal syntax
and semantics. This formality serves as the basis for model-based systems
engineering in general, including systems architecting, engineering,
development, life cycle support, communication, and evolution. Furthermore,
the domain-independent nature of OPM opens system modelling to the entire
scientific, commercial and industrial community for developing, investigating
and analysing manufacturing and other industrial and business systems inside
their specific application domains; thereby enabling companies to merge and
provide for interoperability of different skills and competencies into a common
intuitive yet formal framework.

OPM facilitates a common view of the system under construction, test,
integration, and daily maintenance, providing for working in a
multidisciplinary environment. Moreover, using OPM, companies can improve
their overall, big-picture view of the system’s functionality, flexibility in
assignment of personnel to tasks, and managing exceptions and error recovery.
System specification is extensible for any necessary detail, encompassing the
functional, structural and behavioural aspects of a system.

Toward the end of the Introduction section, there is reference to the drafting and authoring of
technical documents in general and international standards in particular:

One particular application of OPM is in the drafting and authoring of technical
standards. OPM helps sketch the implementation of a standard and identify
weaknesses in the standard to reduce, thereby significantly improving the
quality of successive drafts. With OPM, even as the model-based text of a
system expands to include more details, the underlying model Kkeeps
maintaining its high degree of formality and consistency.

The initial motivation for making OPM an ISO standard is to use it as a basis for model-based
standards—the contemplated new generation of ISO standards. Indeed, in Dori et al. (2010) we proposed
a combined, model-based structured graphical and textual meta-standard approach for specification,
verification and validation of complex systems in general and ISO enterprise standards in particular. This
methodology, developed under the auspices of the ISO TC 184/SC 5 OPM Study Group, is designed to
cope with current inconsistencies and incompleteness of technical documents (Blekhman et al., 2011). To
support authors of technical specifications while creating and editing model-based technical documents,
we developed Model-Based Authoring of Specifications Environment (MBASE).

In order to overcome the problem of the difficulty humans have with reading long OPL texts due to its
mechanistic, repetitive nature, the MBASE framework includes Tesperanto (short for Technical
Esperanto)—an evolution of OPL that is still automatically generated from the OPD but is much more
amenable to being read by humans than OPL, even if the text is long (Blekhman and Dori 2013).This
framework has been successfully applied in modeling communication in an operation room (Blekhman
et al. 2015).

Dori — Model-Based Systems Engineering with OPM and SysML 377

Tesperanto can be considered as a textual version of The Imitation Game, better known as Turing
Test—a test proposed in 1951 by Alan Turing, which was designed to settle the issue of machine
intelligence. While in the original Turing Test a human judge has to decide whether she or he is
interacting with a human or a computer, in the textual version of Turing Test, the judge has to decide
whether a given text was written by a computer or by a human. Quite clearly, OPL text, while being
comprised of syntactically correct English sentences will quickly be identified as written by a computer, it
will be more difficult for a human to reveal this when presented with a Tesperanto text.

24.2 1SO 19450 Terms, Definitions, and Symbol Sections

Clause 3 of the 19450 PAS includes over 80 definitions of concepts that are used in the standard. These
are ordered alphabetically, with Ialicized words in the definitions being themselves terms defined in this
clause. Figure 24.1 is a sample of the ISO 19450 Terms and Definitions Clause, containing some of the
terms starting with the letter p. For example, procedural link is defined at the top of Fig. 24.1 as a
“graphical notation of procedural relation in OPM”. The term procedural relation is in ltalics because it is also a
term in its own right, which indeed happens to appear next alphabetically:

3.57
procedural relation
connection or association between an object or object state and a process

According to ISO directives, the definitions must be phrased such that if we can substitute an
Italicized term with its definition and still get a legible, sense-making definition. For example, when we
perform the term substitution of procedural relation in the definition of procedural link, we get:

3.56

procedural link
graphical notation of connection or association between an object or object state and a process in OPM

This explains why none of the term definitions neither starts with a capital letter nor end with a period.
We can continue with this substitution process twice, first for process:
3.56
procedural link

graphical notation of connection or association between an object or object state and a transformation of
one or more objects in the system in OPM

Looking at the definition of transformation, we find:
3.77
transformation
creation (generation, construction) or consumption (elimination, destruction) of an object or a change in the
state of an object
So now we get as a definition of procedural link:

378 Overview of I1SO 19450

3.56

procedural link

graphical notation of connection or association between an object or object state and a creation
(generation, construction) or consumption (elimination, destruction) of an object or a change in the state of
an object of one or more objects in the system in OPM

3.56
procedural link
graphical notation of procedural relation in OPM

3.57
procedural relation
connection or association between an object or object state and a process

NOTE 1 Procedural relations specify how the system operates to attain its function, designating time-dependent or
conditional initiating of processes that transform objects.

NOTE 2 An invocation or exception link signifies a transient object in the flow of execution control between two processes.

3.58
process
transformation of one or more objects in the system

3.59
process class
pattern for processes that perform the same object fransformation pattern

Fig. 24.1 Sample of ISO 19450 Terms and Definitions Clause

As we see, this is still working, although, unavoidably, the definition gets longer and longer. This can
go on until all substitution have been made, and the validity check is done by verifying that no cycle has
been created, i.e., the term being defined must not appear anywhere in the definition.

The list of term definitions is followed by Clause 4—Symbols and Clause 5—Conformance. Then
comes Clause 6—Object-Process Methodology principles and concepts, discussed next.

24.3 Object-Process Methodology Principles and Concepts

Clause 6 is an overview of OPM. It starts with OPM modeling principles, initially “Modelling as a
purpose-serving activity”, which discusses how to determine the scope of the model:

System function and modelling purpose shall guide the scope and extent of
detail of an OPM model. ... The function or benefit expectations of stakeholders
in general and beneficiaries in particular shall identify and prescribe the
modelling purpose. This, in turn, shall determine the scope of the system
model.

Dori — Model-Based Systems Engineering with OPM and SysML 379

The use of “shall” is mandatory and prevalent in standards, as the first line in the quote above
demonstrates; it implies a mandatory, conformance issue. Next, unification of function, structure, and
behaviour is discussed:

... The combination of system structure and behaviour enables the system to
perform a function, which shall deliver the (functional) value of the system to
at least one stakeholder, who is the system’s beneficiary. An OPM model
integrates the functional (utilitarian), structural (static), and behavioural
(dynamic) aspects of a system into a single, unified model. Maintaining focus
from the viewpoint of overall system function, this structure-behaviour
unification provides a coherent single frame of reference for understanding the
system of interest, enhancing its intuitive comprehension while adhering to
formal syntax.

The Clause then goes on to elaborate on the difference between function and behavior, the former
being a subjective, utilitarian aspect, while the latter is the objective dynamic system aspect. With respect
to setting the boundary of the system, 19450 states:

The system’s environment shall be a collection of things, which are outside of
the system but which may interact with the system, possibly changing the
system and its environment. The modeller shall distinguish these
environmental things, which are not part of the system, from systemic things,
which are part of the system. The modeller is not able to architect, design or
manipulate the structure and behaviour of environmental things even though
those environmental things may influence or be influenced by the system.

The last subject in the first subclause of Clause 6 is the clarity-completeness trade-off:

Overwhelming detail and complicatedness are inherent in real-life systems.
Making such systems understandable entails a trade-off that should balance
between two conflicting criteria: clarity and completeness. Clarity shall be the
extent of unambiguous comprehension that the system’s structure and
behaviour models convey. Completeness shall be the extent of specification for
all the system’s details. These two model attributes conflict with each other. On
the one hand, completeness requires the full stipulation of system details. On
the other hand, the need for clarity imposes an upper limit on the extent of
detail within an individual model diagram, after which comprehension
deteriorates because of clutter and overloading.

The next subclause in Clause 6—OPM Fundamental Concepts—presents first the bimodal representation
of OPM—its graphics text equivalence:

An OPM model shall be bimodal with expression in semantically equivalent
graphics and text representations. Each OPM model graphical diagram, i.e. an
Object-Process Diagram (OPD), shall have an equivalent OPM textual
paragraph comprised of one or more OPM language sentences using the Object-
Process Language (OPL).

380 Overview of I1SO 19450

Then OPM elements are defined as things and links. This is the first step in defining the OPM metamodel,
described in ISO 19450, as shown in Fig. 24.2.

In the sequel, the critical difference between a conceptual models and a runtime model is explained,
emphasizing that when constructing OPM models, modelers need to understand the distinction between
the conceptual model they are creating and an operational occurrence of that model that they may use to
assess system behavior. The modeler may simulate system behavior by creating object and process
operational instance occurrences, and then follow the flow of execution control embodied in the
connections and OPM semantic rules.

OPM Element

A

OPM Link connects OPM Thing

S c
Structural Link

3 Process
connects I
\ connects
>

Object

Procedural Link

Fig. 24.2 OPM metamodel overview (Figure 1 in ISO 19450)’

24.4 The Four Annexes of ISO 19450

The main ISO 19450 document is 100 pages long. It provides an orderly exposition of OPM that is
coherent with the specifications in this book, although it is less elaborate and does not contain some
details, which can be considered “informative” (see below). The reaming 76 pages of this document
contain four annexes, which together complete the definition of OPM from various angles.

Annex A presents the formal syntax for OPL, in EBNF form. Annex B presents conventions and
patterns commonly used in OPM applications. Annex C presents aspects of OPM as OPM models.
Finally, Annex D summarizes the dynamic and simulation capabilities of OPM.

'The shading like the one in this figure indicates OPDs and excerpts copied from ISO 19450.

Dori — Model-Based Systems Engineering with OPM and SysML 381

Each annex has an attribute whose values are “normative” and “informative”. The term normative in
ISO standards means that this is an abiding operational part of the standard and shall be followed by
whoever claims to conform to the standard.

Conversely “informative” means that this is a non-abiding part of the standard that may be followed
but is not mandatory to claim conformance to the standard. In this sense, all the material in this book that
is not included in the normative parts of ISO 19450 can be aggregated into another informative annex.

Based on Bibliowicz and Dori (2012), a fifth (informative) annex, in which OPDs are defined with a
graph grammar, was planned to be included in ISO 19450. It was finally removed because of technical
problems with the multiple graphical elements that were too difficult to handle with the new ISO
publication system.

24.41 Annex A: Normative: OPL Formal Syntax in EBNF

A formal grammar is a set of production rules of the form V' = w that describe how to form valid
strings from the set of terminals—symbols that comprise the language’s alphabet. The alphabet of OPL is
the set of all the reserved phrases and punctuation marks. In a context-free grammar, every production
rule can be applied regardless of the context of a nonterminal. As discussed in Sect. 11.5, while OPL is a
subset of English, it is formal. The grammar of OPL is context free. The syntax, exemplified in Fig. 24.3,
uses the notation of Extended Backus—Naur Form (EBNF), a notation for expressing the syntax context
free grammar languages. The ISO version of EBNF used in ISO 19450 is specified in ISO 14977:1996.>
The EBNF OPL specification comprises about 400 production rules occupying 12 pages. Here is how
OPL is described in the foreword to the Annex.

’ISO 14977 is a freely available standard that can be downloaded free of charge from http:/isotc.iso.org/livelink/
livelink/fetch/2000/2489/1ttf Home/PubliclyAvailableStandards.htm

http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm
http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm

382 Overview of I1SO 19450

A.4.20PL Identifiers
(* Region: Identifiers — This region defines all identifiers used throughout the grammar *)

object identifier = singular object name, [" in ", measurement unit], [range clause]
| singular object name, " object”, [* in ", measurement unit], [range clause]
| plural object name, ["in ", measurement unit], [range clause]
| plural object name, " objects”, [" in ", measurement unit], [range clause] ;
process identifier = singular process name
| Singular process name, " process"
| plural process name
| plural process name, " processes" ;
thing identifier = object identifier
| process identifier ; (*see7.1and 7.2 %)
state identifier = non capitalized word ;
tag expression = non capitalized phrase ;

(* EndRegion: Identifiers *)

Fig. 24.3 A sample of the EBNF notation expressing the context-free grammar of OPL

OPL is a dual-purpose language. First, it serves domain experts and system
architects engaged in analyzing and designing a system, such as an electronic
commerce system or a Web-based enterprise resource planning system. Second, it
provides a firm basis for automatically generating the designed application.

OPL is the textual counterpart of the graphic OPM system specification,
corresponding to the diagrammatic description in the OPD set. OPL shall be an
automatically generated textual description of the system in a subset of natural
English. Devoid of the idiosyncrasies and excessive cryptic details that characterize
programming languages, OPL sentences shall be understandable to people without
technical or programming experience.

24.4.2 Annex B — Informative: Guidance for OPM

This annex describes several OPM principles that appear in this book, as well as the multiple thing copies
convention, designed to reduce clutter when a link needs to be drawn between two things in an OPD that
are “geographically” remote by allowing duplication of the same thing. To facilitate recognition of the
repetition, the modeler may replace thing symbol by a corresponding duplicate thing symbol—a small
object or process slightly showing behind the repeated thing, as illustrated in Fig. 24.4.

Dori — Model-Based Systems Engineering with OPM and SysML 383

Duplicate
Object

=)
@ Photocopying

Fig. 24.4 Duplicate object and duplicate process symbols

Duplicate
Object

24 4.3 Annex C — Informative: Modeling OPM Using OPM

Annex C is a rather comprehensive, albeit not complete, model of the important concepts of OPM
expressed in OPM. This as a reflexive metamodel—a model of OPM that uses OPM to specify itself
(Reinhartz-Berger and Dori 2005). A key test of a “good” conceptual modeling language is its reflexive
metamodeling capability. As Annex C shows, OPM does it well. The SD in Fig. 24.5 is elaborated in
Annex C with about 20 OPDs.

Annex C also provides a metamodel of Process Performance Controlling—the process of executing a
process that specifies all the details involved in implementing the event-condition-action paradigm using
about 10 OPDs at four levels of detail. Figure 24.6 is SD1 of this system model. A complete and
executable specification of this system, integrated into the reflexive OPM model, can serve as a reliable
and flexible source of an advanced OPM modeling tool implementation.

2444 Annex D — Informative: OPM Dynamics and Simulation

Annex D describes the animated execution of an OPM model and ways to specify and denote the
Duration attribute of a Process. The events presented so far were object or state events: they happened
when a specific object became existent or entered a specific state. Among other things, this Annex
specifies timed event, which depends on the arrival of a specific time in the system, as shown in Fig. 22.7.

384

Overview of I1SO 19450

pecifie
OPM
Model System

}

OPD graphically specifies OPL
Set textually specifies Spec
graphically specifies OPL +
OPD textually specifies |Parag raph]
+ OPD graphically specifies OPL +
rCOﬂStI’UCt textually specifies [Sentence! j

Punctuation| +
Mark [

+

Reserved
Phrase

can be in-zoomed to create

hing Set

= Thing
Name

OPM Model specifies System.

OPM Model consists of OPD Set and OPL Spec.

OPL Spec consists of at least one OPL Paragraph.
OPD Set consists of at least one OPD.

OPD Set graphically specifies OPL Spec.

OPL Spec textually specifies OPD Set.

OPD consists of at least one OPD Construct.

OPL Paragraph consists of at least one OPL Sentence.
OPD graphically specifies OPL Paragraph.

OPL Paragraph textually specifies OPD.

OPD Construct graphically specifies OPL Sentence.
OPL Sentence textually specifies OPD Construct.
OPD Construct consists of Thing Set and Link Set.
Thing Set consists of two to many Things.

Link Set consists of at least one Link.

Thing exhibits Name.

OPL Sentence consists of three to many Phrases and at least one Punctuation Mark.

Phrase consists of at least one Word.

OPL Reserved Phrase and Name of Thing are Phrases.
Link graphically specifies Reserved Phrase.

Reserved Phrase textually specifies Link.

Thing can be in-zoomed to create OPD

Fig. 24.5 Top-level OPD (SD) of a reflective OPM meta model (an OPM model of an OPM model)

Dori — Model-Based Systems Engineering with OPM and SysML

385

Preprocess

- -
~Executable %
Process

.
S

Process
Performance
Controlling

Object Set

)

[

Enabler Cancel

Set Message Process

Status

Process
Initiating

w| idie

\7Postcondition
Consumee
Set 2 started
(t=0)
Postprocess
Object Set
Process
Performing aborted
Resultee
Set

AN

Abort

Affectee

Success

Set Message Message

Process Performance Controlling zooms into Process Initiating and Process Performing in that

sequence, as well as Postcondition.

Preprocess Object Set consists of Consumee Set, Affectee Set, and Enabler Set.
Postprocess Object Set consists of Resultee Set and Affectee Set.

Executable Process is environmental.

Executable Process invokes Process Initiating.

Process Performance Controlling exhibits Process Status.

Process Status can be idle, started (t=0), aborted, or completed (t=n).

Process Status is initially idle and finally completed (t=n) or aborted.

Postcondition can be false or true.

Postcondition is initially false.

Process Initiating requires Preprocess Object Set.

Process Initiating changes Process Status from idle to one of idle or started (t=0).
Process Initiating yields false Postcondition and Cancel Message.

Process Performing occurs if Enabler Set exists, otherwise Process Performing is skipped.
Process Performing affects Postcondition and Affectee Set.

Process Performing changes Process Status from started (t=0) to one of aborted or completed

(t=n).

Process Performing yields Resultee Set and either Success Message or Abortion Message.

Fig. 24.6 Process Performance Controlling from SD in-zoomed in SD1

386 Overview of I1SO 19450

T Person

Bith) >>| minor
/

|

Age [yr] € J S y
Legal Status
E] <18 >=18 Changing

Fig. 24.7 Legal Status Changing changes Person from minor to adult when Growing changes Age of Person from
<18 to >=18. (Figure D.1 in ISO 19450)

Alternatively, Fig. 24.8 uses the object System Clock, which any system may have, either explicitly as
in this example, or implicitly, to trigger an event when the System Clock, which starts upon Birth, and
when it reaches 18 yr it creates an event that triggers Legal Status Changing.

Person

adu;t
3 >

System Clock [yr] 4

0 Legal Status
—'_ Changing

Fig. 24.8 The System Clock event initiating Legal Status Changing (Figure D.2 in ISO 19450)

References

Agile Modeling http://agilemodeling.com/style/activityDiagram.htm#Swimlanes, accessed July 3, 2015.

Ashby, W.R. Concepts of Operand, Operator, Transform. George Washington University, St. Louis,
2001. http://www.gwu.edu/~asc/biographies/ashby/MATRIX/SG/sg_1.html Accessed March 16,
2015.

Arnheim, R. Visual thinking. University of California Press, Berkeley, CA, 1969.
Baddeley, A. Working Memory. Science 31 Vol. 255 no. 5044 pp. 556-559, January 1992.

Bak, P., Tang, C., and Wiesenfeld, K., Self-Organizing Criticality. Physics Review Letters, 59(4), pp.
381-384, 1987.

de Bakker, J.W. and de Vink, E.P. Control Flow Semantics. MIT Press, Cambridge, MA, 1996.

Bar-Yam, Y. Dynamics of Complex Systems. Perseus Books, Reading, MA, 1997.
Berkeley, G. 4 Treatise Concerning the Principles of Human Knowledge. Trinity College, Dublin, 1710.

Bibliowicz, A. and Dori, D. A Graph Grammar-Based Formal Validation of Object-Process Diagrams.
Software and Systems Modeling, 11(2), pp. 287-302, 2012.

Blair, C. D., Boardman, J. T. & Sauser, B. J. Communicating strategic intent with systemigrams:
Application to the network-enabled challenge. Systems Engineering, 10(4), pp. 309-322, 2007.

Blekhman, A. and Dori, D., Tesperanto — A Model-Based System Specification Methodology and
Language. Proc. 23rd Annual INCOSE International Symposium, Philadelphia, PA, USA, June 24—
27,2013.

Blekhman, A., Dori, D., and Martin, R. Model-Based Standards Authoring. Proc. 21st INCOSE
International Symposium, Denver, CO, USA, pp. 650-659, June 19-23, 2011.

Blekhman, A., Wachs, J. P., and Dori, D. Model-Based System Specification with Tesperanto: Readable
Text from Formal Graphics. To appear in IEEE SMC, 2015. Systems engineering in the product
lifecycle

Bock, C. Systems engineering in the product lifecycle. International Journal of Product Development,
2(1-2), pp. 123-140, 2005.

Bock, C. SysML and UML 2 support for activity modeling, Systems Engineering 9(2) pp. 160—186, 2006.
Bolshchikov, S., Somekh, J., Mazor, S., Wengrowicz, N. and Dori, D.Visualizing the Dynamics of
Conceptual Behavior Models: The Vivid OPM Scene Player. Systems Engineering. To appear, 2015.

Box, G. E. P. and Draper, N. R. Empirical Model Building and Response Surfaces, John Wiley & Sons,
New York, NY, 1987.

© Springer Science+Business Media New York 2016 387
D. Dori, Model-Based Systems Engineering with OPM and SysML, DOI 10.1007/978-1-4939-3295-5

http://agilemodeling.com/style/activityDiagram.htm#Swimlanes
http://www.gwu.edu/~asc/biographies/ashby/MATRIX/SG/sg_1.html

388 References

Bunge, M. Treatise on Basic Philosophy, Vol. 3, Ontology I, The Furniture of the World. Reidel, Boston,
MA, 1977.

Bunge, M. Treatise on Basic Philosophy, Vol. 4, Ontology II, A World of Systems. Reidel, Boston, MA,
1979.

Chein, M. & Mugnier, M.L. Conceptual graphs: fundamental notions.Rev. Intell. Artif. 6(4), pp. 365406,
1992.

Chen, P.P. The Entity Relationship Model — Toward a Unifying View of Data. ACM Trans. on Data Base
Systems 1(1), pp. 9-36, 1976.

Clark, J. M. & Paivio, A. Dual coding theory and education. Educational Psychology Review, 3(3), 149—
210, 1991.

Coad, R. and Yourdon, E. Object-Oriented Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1991.
Cook, S. In the Foreword to Warmer and Kleppe (1999).

Descartes, R. Principles of Philosophy (1647). Trans. Valentine Rodger Miller and Reese P. Miller. D.
Reidel Publishing Company, p. 282, 1984.

Dittrich, K.R., Gatziu, S., and Geppert, A. The Active Database Management System Manifesto: A
Rulebase of ADBMS Features. Lecture Notes in Computer Science 985, Springer, pp. 3-20, 1995.

Dirks, T. The Greatest Films, 2001. http://www.filmsite.org/gone.html. Accessed March 16, 2015.
DoDAF — DoD Architecture Framework Version 1.5, 2007.

DoDAF - DoD Architecture Framework Version 2.02, Change 1, 2015.
http://dodcio.defense.gov/TodayinCIO/DoDArchitectureFramework.aspx. Accessed March 16, 2015.

Dori, D., Object-Process Methodology — A Holistic Systems Paradigm, Springer Verlag, Berlin,
Heidelberg, New York, 2002 (ISBN 3-540-65471-2; Foreword by Edward Crawley. Hard cover, 453
pages, with CD-ROM). eBook version: http://link.springer.com/book/10.1007/978-3-642-56209-
9/page/l

Dori, D., ViSWeb — The Visual Semantic Web: Unifying Human and Machine Knowledge
Representations with Object-Process Methodology. The International Journal on Very Large Data
Bases (VLDB), 13, 2, pp. 120-147, 2004.

Dori, D. Words from Pictures for Dual Channel Processing: A Bimodal Graphics-Text Representation of
Complex Systems. Communications of the ACM, 51(5), pp. 47-52, 2008.

Dori, D., Martin, R., and Blekhman, A. Model-Based Meta-Standardization: Modeling Enterprise
Standards with OPM. 2010 IEEE International Systems Conference, San Diego, CA, USA, April 5—
8,2010.

Dori, D. Reinhartz-Berger, 1., and Sturm, A. Developing Complex Systems with Object-Process
Methodology using OPCAT. LNCS 2813, pp. 570-572, 2003.

http://www.filmsite.org/gone.html
http://dodcio.defense.gov/TodayinCIO/DoDArchitectureFramework.aspx
http://link.springer.com/book/10.1007/978-3-642-56209-9/page/1
http://link.springer.com/book/10.1007/978-3-642-56209-9/page/1
http://www.springerlink.com/content/a1y9e34pbkd0p9ku/

References 389

Downton, C. In Smolan, R. and Erwitt, J. One Digital Day. Time Book/Random House in association
with Against All Odds Production, 1998.

Firlej, M. and Helens, D. Knowledge Elicitation: A Practical Handbook. Prentice-Hall, New York, 1991.
Fowler, M. UML Distilled, Second Edition. Addison-Wesley, Reading, MA, 1999.

Friedenthal, S., Moore A., and Steiner, R. A Practical Guide to SysML (Second Edition), The Systems
Modeling Language, Morgan Kaufmann, 2014.

Galileo, G. The Assayer, 1623, as reprinted in (Drake, 1957, p. 274)

Grobshtein, Y. and Dori, D. Generating SysML Views from an OPM Model: Design and Evaluation.
Systems Engineering, 14 (3), pp. 327-340, 2011.

Harel, D. Statecharts: A Visual Formalism for Complex Systems. Science of Computer Programming 8,
pp. 231-274, 1987.

Harel, D. On Visual Formalisms. Communications of the ACM 31(5), pp. 514-530, 1988.

Helighen, F. Principia Cybernetica Web (1997). http://pespmc].vub.ac.be/occamraz.html Accessed May
27,2015.

Holt, J. UML for Systems Engineering: Watching the Wheels. 1EE Professional Applications of
Computing, 2004.

IATA http://www.iata.org/about/Pages/index.aspx Accessed May 31, 2015.

Kant, 1. Prolegomena to Any Future Metaphysics That Will Be Able to Present Itself as a Science (in
German). Riga, 1783.

Kilov, H. and Simmonds, I. D. Business Patterns: Reusable Abstract Constructs for Business
Specification. In Humphreys, P., Bannon, K., McCosh, A., Migliarese, P. and Pomerol, J.S. (Eds.),
Implementing Systems for Supporting Management Decisions. Chapman and Hall, London, 1996.

Klyne G., Carroll, JJ., and McBride, B. RDF 1.1 Concepts and Abstract Syntax, 2004
http://www.w3.org/TR/rdf-concepts Accessed March 16, 2015.

Koffka, K. Principles of Gestalt Psychology: New York: Harcourt-Brace, 1935.

Kostovic, I. and Rakic, P. Developmental history of the transient subplate zone in the visual and
somatosensory cortex of the macaque monkey and human brain. J. Comp. Neurol., 297: 441-470,
1990. doi: 10.1002/cne.902970309

Latimer, C. and Stevens, C. Some remarks on Wholes, Parts and Their Perception. Psycologquy 8(13), Part
Whole Perception (1), 1997.

Lehman, F. (ed.) Semantic networks in artificial intelligence. Pergamon, Oxford, UK, 1999.

http://pespmc1.vub.ac.be/occamraz.html
http://www.iata.org/about/Pages/index.aspx
http://www.w3.org/TR/rdf-concepts

390 References

Maclntyre, J. What’s wrong with the noun/adjective/verb object oriented design strategy (2010).
https://whileicompile.wordpress.com/2010/08/01/the-noun-adjective-verb-object-oriented-design-
strategy-sucks/ Accessed June 9, 2015.

Manola F. and Miller E. RDF 1.1 Primer, 2014. http://www.w3.0org/TR/2014/NOTE-rdf11-primer-
20140624/. Accessed March 16, 2015.

Mayer, R.E. The promise of multimedia learning: using the same instructional design methods across
different media. Learning and Instruction 13, pp.125-139, 2003.

Mayer, R.E. and Moreno, R. Nine Ways to Reduce Cognitive Load in Multimedia Learning. Educational
Psychologist 38(1), pp. 4352, 2003.

Mazanec, M. and Macek O. On General-purpose Textual Modeling Languages. Proc. 12th Annual
International Workshop on Databases, Texts, Specifications, and Objects, Zernov, Rovensko pod
Troskami, Czech Republic, pp. 1-12, 2012.

Meinhardt, H. The Algorithmic Beauty of Sea Shells. Springer-Verlag, Berlin, 1995.

MIT ESD. Massachusetts Institute of Technology Engineering Systems Division Vision.
http://esd.mit.edu/about/vmv.html Accessed May 28, 2015.

Mordecai, Y. and Dori, D. I A Model-Based Framework for Architecting System-of-Systems
Interoperability, Interconnectivity, Interfacing, Integration, and Interaction, 23" International
Symposium of the International Council on Systems Engineering INCOSE [S-2013, Philadelphia,
PA, USA, June-2013.

Ockham, W., Quaestiones et decisiones in quattuor libros Sententiarum, Petri Lombardi ed., Lugd., 1495.

OMG OCL Object Constraint Languge, Version 2.4, 2014. http://www.omg.org/spec/OCL/2.4/PDF/
Accessed June 20, 2015.

OMG SysML System Modeling Language, Version 1.3, 2012. http://www.omg.org/spec/SysML/1.3/
PDF/ Accessed March 16, 2015.

OMG UML Unified Modeling Language, Infrastructure, Version 2.4.1, 20111. http://www.omg.org/spec/
UML/2.4.1/Infrastructure/PDF/ Accessed March 16, 2015.

OMG UML Unified Modeling Language, Superstructure, Version 2.4.1, 2011S. http://www.omg.org/
spec/UML/2.4.1/Superstructure/PDF Accessed March 16, 2015.

OMG UML for Systems Engineering RFP, 2003. http://syseng.omg.org/UML for SE RFP.htm
Accessed March 16, 2015.

Ouellette, J. A Fundamental Theory to Model the Mind. Quanta Magazine, 2014. https://www.
quantamagazine.org/20140403-a-fundamental-theory-to-model-the-mind/. Accessed March 18, 2015.

Peleg, M. and Dori, D. The Model Multiplicity Problem: Experimenting with Real-Time Specification
Methods. IEEE Transactions on Software Engineering 26(8), pp. 742—759, 2000.

https://whileicompile.wordpress.com/2010/08/01/the-noun-adjective-verb-object-oriented-design-strategy-sucks/
https://whileicompile.wordpress.com/2010/08/01/the-noun-adjective-verb-object-oriented-design-strategy-sucks/
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
http://esd.mit.edu/about/vmv.html
http://www.omg.org/spec/OCL/2.4/PDF/
http://www.omg.org/spec/SysML/1.3/PDF/
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
http://syseng.omg.org/UML_for_SE_RFP.htm
https://www.quantamagazine.org/20140403-a-fundamental-theory-to-model-the-mind/
http://www.omg.org/spec/SysML/1.3/PDF/
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
https://www.quantamagazine.org/20140403-a-fundamental-theory-to-model-the-mind/
http://esml.iem.technion.ac.il/site/wp-content/uploads/2011/07/Mordecai-Dori-2013-I5-20130331.pdf
http://esml.iem.technion.ac.il/site/wp-content/uploads/2011/07/Mordecai-Dori-2013-I5-20130331.pdf

References 391

Reinhartz-Berger, I, and Dori, D. A Reflective Metamodel of Object-Process Methodology: The System
Modeling Building Blocks. In Business Systems Analysis with Ontologies, P. Green and M.
Rosemann (Eds.), Idea Group, Hershey, PA, USA, pp. 130-173, 2005.

Rescher, N. and Oppenheim, P. Logical Analysis of Gestalt Concepts. British Journal for the Philosophy
of Science 6, pp. 89—106, 1955.

Rissanen, J. Modeling by shortest data description. Automatica 14 (5): 465-658, 1978.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorenson, W. Object-Oriented Modeling and
Design. Prentice-Hall, Englewood Cliffs, NJ, 1991.

Schapiro, M. Words, Script, and Pictures — Semiotics of Visual Language. The New Republic, 1996.

Shannon, C.E. and Weaver, J. The Mathematical Theory of Communication, University of Illinois Press,
1949.

Smithsonian Institute http://humanorigins.si.edu/evidence/behavior/tools Accessed May 31, 2015.

Somekh, J., Haimovich, G., Guterman, A., Dori, D. and Choder, M. Conceptual Modeling of mRNA
Decay Provokes New Hypotheses, 2014. PLoS ONE 909): e107085.
doi:10.1371/journal.pone.0107085.

Stanford Encyclopedia of Philosophy, 2013. http://plato.stanford.edu/entries/logic-probability/ Accessed
July 8, 2015.

TOGAF Version 9.1, The Open Group Architecture Framework, https://www.opengroup.org/togaf/ Slide
Decks Management Overview ; 2011. Accessed June 8, 2015.

USPTO 7,099,809 _Modeling System, US Patent and Trademark Office, number 7,099,809, Filed: March
15, 2001. Granted: August 29, 2006. http://www.google.com/patents/US20070050180

W3C Consortium, Resource Description Framework (RDF), 2014. http://www.w3.org/RDF/ Accessed
March 16, 2015.

Wand, Y. and Weber, R. An Ontological Evaluation of Systems Analysis and Design Methods. In
Falkenberg, E.D. and Lindgreen, P. (Eds.) Information System Concepts: An In-Depth Analysis.
Elsevier Science Publishers B.V. (North Holland), IFIP, pp. 145-172, 1989.

Wand, Y. and Weber, R. On the Ontological Expressiveness of Information Systems Analysis and Design
Grammars. Journal of Information Systems 3, pp. 217-237, 1993.

Warmer, J. and Kleppe, A. The Object-Constraint Language: Precise Modeling with UML. Addison-
Wesley, Reading, MA, 1999.

Weber, R. H. and Weber, R. Internet of Things, Legal Perspectives. Springer, 2010.
Wertheimer, M. and Reizler, K. Gestalt Theory. Social Research 11(1), pp. 78-99. 1944.

Winograd, T. and Flores, F. Understanding Computers and Cognition. Addison-Wesley, Reading, MA,
1987.

http://humanorigins.si.edu/evidence/behavior/tools
http://plato.stanford.edu/entries/logic-probability/
https://www.opengroup.org/togaf/
http://www.google.com/patents/US20070050180
http://www.w3.org/RDF/
http://www.togaf.info/togaf9/togafSlides91/TOGAF-V91-M1-Management-Overview.pdf
http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netahtml/PTO/search-bool.html&r=1&f=G&l=50&co1=AND&d=PG01&s1=20020038206.PGNR.&OS=DN/20020038206&RS=DN/20020038206
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=1&f=G&l=50&co1=AND&d=PTXT&s1=7,099,809.PN.&OS=PN/7,099,809&RS=PN/7,099,809
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=1&f=G&l=50&co1=AND&d=PTXT&s1=7,099,809.PN.&OS=PN/7,099,809&RS=PN/7,099,809

OPM Principles at a Glance

The OPM principles are listed below in the order they appear in the book.

1. The Function-as-a-Seed OPM Principle—Modeling a system starts by defining,
naming, and depicting the function of the system, which is also its top-level
process.

2. The Model Fact Representation OPM Principle— An OPM model fact needs to appear
in at least one OPD in order for it to be represented in the model.

3. The Timeline OPM Principle—The timeline within an in-zoomed process is directed
by default from the top of the in-zoomed process ellipse to its bottom.

4. The Minimal Conceptual Modeling Language OPM Principle—A symbol system—a
language —that can conceptually model a given system using ontology with fewer
diagram kinds and fewer symbols and relations among them is preferable over a
l?lrger ontology with more diagram kinds and more symbols and relations among
them.

5. The Thing Importance OPM Principle—The importance of a thin]gl T in an OPM model
is directly related to the highest OPD in the OPD hierarchy where T appears.

6. The Object Transformation by Process OPM principle—In a complete OPM model,
each process must be connected to at least one object that the process transforms or
one state of the object that the process transforms.

7. The Procedural Link Uniqueness OPM Principle— At any level of detail, an object and a
process can be connected with at most one procedural link, which uniquely
determines the role of the object with respect to the process.

8. The Singular Name OPM Principle—A name of an OPM thing must be singular.
Plural has to be converted to singular by adding the word “Set” for inanimate
things or “Group” for humans.

9. The Graphics-Text Equivalence OPM Principle—Any model fact expressed graphically
in an OPD is also expressed textually in the corresponding OPL paragraph.

10. The Thing Name Uniqueness OPM Principle—Different things in an OPM model
which are not features must have different names. Features are distinguishable by
appending to them the reserved word “of” and the name of their exhibitor.

11. The Detail Hierarchy OPM Principle—Whenever an OPD becomes hard to
comprehend due to an excessive amount of details, a new, descendant OPD shall
be created.

12. The Timeline OPM Principle—The timeline within an in-zoomed process is directed
by default from the top of the in-zoomed process ellipse to its bottom.

13. The Skip Semantics Precedence OPM Principle—Skip semantics takes precedence over
wait semantics.

© Springer Science+Business Media New York 2016 393
D. Dori, Model-Based Systems Engineering with OPM and SysML, DOI 10.1007/978-1-4939-3295-5

Index

«Blocky Stereotypeccccevvevverreereereenenne.

abbreviated participation constraint

F= ot (o) o H SRRSO 327,155,139
T 0T 1RSSR 139
activity diagram ... 139,136
ACHVILY AIAZIAIML ...ttt et e se e b e te st e s sesseeseeneeseensensensensennes 135
= Lot {0) U USSR OSSR 167, 139, 30
adjective..............

affected object.....

affectee.

AFFIHATION. L.eiiieecceeee ettt ettt e e et eeab e teeere e beeebeenbeerbeenbeenaens 90, 27
ALFIHATION .ottt ettt st sttt b e sttt e et e bbbt eae et ne et enee
agent.ccoeeenreenenenen

agent condition HNK ..ot
AZENT EVENT HINK . ..ottt ettt ettt eee s 330
AZENT LHINK .ottt ettt e e 180, 20
AGETEGALE MAIMIIG, ..cuviutititietieiieit ettt ettt ettt ettt b bbbt e st e st et et e sbesbesbeebeebtestenaentenaenbeas 226
AGEIEGatiON ..ouiiiiiiiieiet ettt ettt be b 217
aggregation COMPIENENSIVENIESSc.eoiiuiieiiieieteei ettt sttt ns 232
aggregation NIErarChy.cocooiiii e 230
aggregation-participation242,223,221,216, 185, 183, 22
aggregation-participation HNK ... 27
aggregation-participation relation Symbol sccoocooviviieeiieeieeeeeeeeeeee e 224
aggregation-participation SYMDOL.ccooiiiiiiiini e 22

ALEDTA .o 349, 207, 205, 197
AlEDIraiC @QUALION. ..ot 200
algebraic PareNtheses.oooiiiiiie s 349, 206
ATICESTOL. .ouiiiiiieeiiee ettt et e et e et e e st e e e tteeetbeeeabee e taeeeaaeeassee e taeeasbaeenbeeeaseeenbeeenbeeenbeeenbaaenraeas 223,216
animated execution.

animated SIMUIAtIONcc.ooiiiiiiceece et x, 1, 16,267
ANIMIATION. Loeiiiieiiie ettt et e et e et e e etbeeesteeesbeeeesbeessseeessbeessbaeanseeesseeessaeensseesseennsaesnseas 15
anti-reciprocal structural liNK.ccccoiiiiiiiiii s 189

ANEI-SYMIMETIIC . oottt s s s 188
ATCRITECTIIIG. .ttt bbb et et be bt s et es e e st e e e tenbenbens 295
ATCRITECTUTE. ...ttt b e bt e bt e b e ae e et et et et e besbesbeebeeseeneeneenean 91
ATCRITECTUTE. ..ttt et ettt st eb e bt e st et et e be b e bt e bt ebeeaeeneensenee 89
Arial font

ATEEY ettt ettt et a e bt b e bt e bt et e et e e et e eateebb e eaeeebeesheebeebeeas

ATTIICIAL SYSEEIM. ...ttt ettt neeeens 246

PA {00 0 Bl 4 T2 o= o <)] Y SRRSO 236

R Yo od £= 1w (o) s FRR SRR 194, 185, 183, 120, 111, 109
ASSOCIALION LINK. ...oviieiiee ettt et e et et e et e e e et e ereeeaeeeaeeeaeens 187
ASSOCIAtION WIth TIME.ociiiiicccccceee ettt et eeaeen 110
ALOIMIC STALE ...oiiiiiicee et e e ettt e et e e e at e e et e e e beeeeaeeeeaaeeeanee s 274,271
© Springer Science+Business Media New York 2016 395

D. Dori, Model-Based Systems Engineering with OPM and SysML, DOI 10.1007/978-1-4939-3295-5

396 Index
ALETIDULE L.ttt et e ens 254,247,242, 241, 40
Automatic Crash RESPONSE.c.couiiiiiiiiiiiiiiiercec ettt 3
backward structural Telationc..oooviiiiiiiiiicc e 185
backward structural relation NAME.cocviieiiiiiiiiieee e 216

DACKWATT TG ...ttt sttt 187
DERAVIOT ...ttt e e ettt et a e et e e reeenneas 91, 89
BERAVIOT. ..ttt sttt h ettt b e bbb e bt bt ent et enten 75
DENEFICIATY ..ot

benefit at cost

bidirectional model-specific NUIL tag.coiiiiiiiieiie e 193
bidirectional tagged structural link.ccoooiiiiiiii s 187
bimodal graphics-text repreSentationc..ccoireiieirireeeee e 130

bimodal repPreSENtaAtioN.ccucciiiiiiieiiceeeeececee ettt et te e b e b e reas 124
binary structural relation.ccooiieiiiiiie e 239,194, 185, 183
DLACK DOX ...ttt ettt ettt ettt et b et et e et et e bt e sa e s b e b et e b e ebeeteeteereesaenaensenbenrereas 329
block definition diagrramc.coeiiiiiiiie e 32,29
Block Definition dia@ram.c.ccueeveriieiieiieieieieeesese ettt v e er et saesse s e 136
DLOCK QIAZIAIMttt ettt ettt e et e et e ebesseeseesaenbensensenaensens 227

DIUEPTINT ..ottt ettt et st a e e s e estes e st e s s e b esseesessaesaessessensensensensens 131
bolding OPL CONVENTIONccuiiiiiiiiiiiiiiiiiecec ettt et 128
BOOLEAN ODJECL. ...ttt ettt ettt ettt ettt et e beeteereeseeneeneententens 53
BOOLEAN PAIL ..ttt ettt et et et e e teeteeseeneenaententens 55
Boolean variable.
DBOTEOM-UP AIF@CLION. ...ttt st 278
DIAII oottt 268, 151, 129,99, 98 ,16
DY PSS MECHANISIIL. ..ottt ettt ettt sb e st ae et ese et e tenbenbenbeas 333
CAIL ACTION . ..ttt sttt ettt s et e b e bbbt ene e st e st et entenaeste e 139
capitalization OPM convention. . 121,111
CATAINALIEY. ..ottt ettt a ettt n et ne b neas 213, 202
Cartesian PrOAUCEc.ciiueiieieete ettt sttt ns 284,274,271, 244
cause and effect

CRANEE ettt sttt a et e st ne b

Change Preventing PrOCESS. . ..ottt et e et se b beneas 117
characterization

class. .o

class diagram......

CLASS TEVELttt ettt ettt
ClAaSSIFICAtIONttt
classification-instantiation

closed triangular arroWhead.cccoeoiiiriiiii e 186
CIULERT . oottt 296
COAE BENETALION. ...ttt b ettt ettt b et be e be s 346
COZNITIVE ASSUMPLIOIL. ..eiiiiiiiiiiiiiiiiitit ettt ettt ettt a bbbt et nesnesne et 129
combINATOTIAL ORoiiiiiiiiiiiii ettt 366
combiNAtorial XOR . ..cc.oouiiiiiiieiieieeee ettt ettt ettt b et ae sttt ettt e 366
COMMA-SEPATALEM. ...c.eviiinieiiiiietit ettt sttt sttt st b et a et b et besn e nennes 257

COTMPATTIMIEIIE . 1.ttt ettt ettt ettt et ea b e e aeesbteshe e bt et e et e enbesabeestesatesbteseeebeenaeenbeeneesaneenne 242

Index 397
COMMPLEXILY 1.ttt ettt ettt e et e et et e s testeeseeseententensensenseeseeseeseeneensensensansansensenee 295
complexity MaNAGEMENTcc.ccuvuiriiiriiiiieerte ettt ettt st 296, 149
(000 10)10) 1 =) oL AR OO OO OO SUP PSSR 85
COMPOSITE AGZIEGALIOIL ..c..eviiiiiiiiiiiiiiiiieteee ettt saesaesae e 227

COTMIPOSITION ..ottt e it s bt sht e bt e s bt e bt e st e et e e st e satesatesbsenbeenbeebeeneeenneenee 221
compound State.c.cceceeeeeenienieniennns274,271
comprehensiveness-clarity tradeoffcocooiiiiiiiiiii e 165
computer programming langUAaGE.ccoeieieiiierieiere ettt ettt 127
computing with OPM 344
CONCEPLUAL LEVEL ...ttt sttt ettt s 262
CONCEPLUAL MNOAEL. ..ottt ettt 93,76
conceptual modeling.

conceptual modeling language
condition.......cccceeevveveeeennrercennnes

Condition agent HNKoooiiii e
condition consumMPtion Kcccccoiiiiiiiieieeeeeeee e

condition effect link

condition input-output-specified effect link.ccoevvvirieiieiieneneeee e, 338,337
condition input-specified effect link.cccoveoierininiiiice e 338,337
condition INStrument HNKccooiiiiiii e 336
condition linkccccoeeviiiiiiiiiie ... 355,333
condition output-specified effect link 339,337
CONAITION SEMANTICS. ...ttt sttt ettt sttt sttt sa e ne s 333
condition state-specified agent linkccccoevieiiiiiinii e 337
condition state-specified consumption link 338,337
condition state-specified instrument link.cccooooiininiininiii e 338
constraint property BlOCKoooiiiiiiiie s 155, 146
construction. ... 162,158
consumee......... ... 179,163
COTISUITIITIZ ..ottt ettt b e s bbbt ebe e bt es b e st et et e b e e bt e bt e bt e bt e st enten b et enbesbesbesbeebeeneane 109, 5
COMSUIMPTION 1.ttt ettt ettt b bbbt et e b s b s b s bt e bt e st e st e st e tesaesbeebeebeebeeneeneentebennes 162, 158
conSUMPioN €VENt HNKooiiiiii e 330

consumption link
consumption rate
containment hierarchycooooiiiiie et 190
containment relationNShiPc.ccviviioiiiiiicicc et 143

context-free grammar. 132, 127
CONEINIUOUS PIOCESS ..eevvieureeireeuiersresseesteeseeseeseasseasseeseesssesseenseesseeseessesnseassesssesseesseesseensessseensenssennen 342
(oo} o1 oo FAUE USSR SRRSO 53
Lole) s o) I [0} .7 AR 151,139
control link ... 355,329
CONEIOl MECHANISIIL ...ouviiiiiiicccc ettt te e eaeeeveeereeaeeneens 268
CONtrol MOIfIELoocvviiiiiicie e 355, 341, 329, 327, 53, 27
control-modified HINK fan.cccoooiiiiiiiiie e 367

CONVETZEINT BTN, ...ttt ettt ettt b et b et b bbbt ebennenea 360
converging consumption HnK fan. ... 362
CONVETZINEG FAIN. c.eiiiiiiieeiecte ettt ettt st e s bt e st st et et et et e beebeebeeaeeneensensensenes 362
converging result HNK fan ... 362
COTTECEIVE ACEIOTL ..eniiiiiite ittt ettt et ettt st s et saeesbeesbe e bt enteenbeeneesaneenee 268

398

Index

CLEALIVILY . 1.ttt ettt et st e st et e st e et e et et e en e e st e satesetesaeenae e aeenteenbeenne 227
CUSEOIMET ...ttt ettt 296, 151, 131, 124, 87
customer-side StAKENOLAET.cc.oouiiiiiiiie et 130
cyberneticcocceeevereneniennene

cyber-physical mechanism.

cyber-physical system

dash-SePArated WOTMScc.eeiiiiiiiiit ettt ettt b bt ettt e nbe st st e
AtA MEIMIDET: ...ttt ettt s et et et bbbt bt et e st et e nbenteste e 242
database schema

AECISION INPUL TIOTE ...ttt ettt ettt st e e st st e s et et se b eneebe e eseeseneeseneas 155
AECISION NOME. ...ttt ettt et ae et et a e b e st et et ese s e st e b e e eseeseneebennas 153
default CaPItaliZationcccieiiiiiiiiieeeeeee ettt et b b ere e 257

default essence value....
efault IULLEAG, ..ottt ettt 192
default participation CONSIAINT.c.cciviieieieieieeeeet e 213,198, 197
L6 1=y =101 L] = o <D RPN 274,258
default system name.
AESCENMAANLE. ...ttt b et b et b et b e bt ese b neas

[0 L= Feq 1 T3 4) TSROSO SRRRUPRRNt
desired attribute valuec.ccccoeennene.
destination participation constraint
detail explosion problem..........................
AEVEIOPET ...ttt ettt ettt e te s teste e et esten e e st et e beebe b e e bt eneententensenbetente e
diagram kind multiplicity problemccccooieiiieiinieeeeeee e
dimension
QISCIELE PIOCESS .uveuveniitirtieieeiteitete ettt ettt ettt e e et e s testesbeeseestesten b et enbesbe bt ebeeneeneententensasensenee
discriminating attribULEcoooiiiiiiiiiie et
distributive [awcccoovieeiiiiiieeee,

distributive law of structural relations.....

distributive semanticscccecvevueenenne.

QIVETZENE EI1A. ...ttt ettt ettt ettt e st et et e b et e st b et s e b ene b e e eneebeneebennas
QIVETZING FANL ..ottt sttt b e sttt e e b e st b et e s ebe s beneas 362
DoDAF
(6 o) o F- 11 a =D q 0 1<) o OO OOV 124
dual-channel aSSUMPTIONoviuiiiiiiiieee et 133, 129
AYNAINIC ASPECE. ..ttt ettt ettt ettt a et et b e e e s et eneeb et es e et et ese s eneebeneenan 16

EBINF. oottt ettt ne b 127
ECA PATAAIZIN. -tttk ettt sttt b et s b et sttt b s 327
EFFBD ..ottt 139
BIFECE. e 162, 158, 13
Effect

effect @VENt INK.cooiiiiic e 330
effeCt HINK ..o 180, 164, 16, 11,7
EIfECETATE . ..o 343
EleCEIIC SIGNAL .. 268
ElECLIONIC BCOMOIMY. ...ttt ettt sttt b ettt b et eaes 75

electronic signal268
BLEIMIBIIT ...ttt ettt sttt s a et h et et a et b et b ettt et n e eaen 80
EITIETZEIICE. ..uveertientienteetteteenteeteeateeutesateeueesatesatesteesbe e bt e bt enbeeabeeabeeatesaseestesutesbeesaeenbeenbeebeenteens 253,222

Index 399
EMETZENE fEATUIE.viiviieiiiieiieieete ettt ettt et e et e e tesaestesse e st e st eneensensensenseeaes 255,253
ENADLET ...ttt sttt neene 263, 169, 166, 22, 20
EIIADIETS. ...ttt e e e re e ae e be e be e beebeerbeetbeeaaeeteeareeetsereenreas 20
enabling link........ ... 180, 168, 162
ENCAPSULATION ..ttt ettt sttt e e st e st et et et e st e b e e bt eseententensensenaeste e 242
ENGINEETING SYSTEIM. ...iutiiiitiiiiitieiietee ettt ettt ettt ettt et et st et e bbbt et e st et et e besbesbesbesaeebeesteneeneens 88
ENGLiSh SraImIMar. ..c..oouiiiiiiiiiiiieeee ettt ettt bbbt be ettt ettt e 279
Enhanced Functional Flow Block Diagramcccccceoenininininiiieiiecceeeeececee See EFFBD
environment
ENVIFONIMENTAL. ...ouviiviiiiciecee ettt ettt et e e et eete e ae et e ete e e e enaeeaeeeaseeteeeaeeeseeren 150, 90
enVironmMental thing ..o 27,24
LT Y =) o Lol TSP 23
DY) (ol PSSR 27
L3 7] s L SRR 355, 347, 341, 327
eVeNt CONLIOl MOAIfIETcc.eiiiiiiiicieeeeee ettt e e teeaeessesaessennens 27
LN 7=y o 11 0)OSR 355, 329, 40, 27
EVENT SEIMANTICS. 1..vieuiieiieie ettt ettt et et e st e s bt e st e bt et e enseentesneeeseesseenneenseeseensennseanes 329
LTV Nt} o Lo H 1 (o) 0 = Lot u (o) o KU 355, 328, 327
EXCEPLION LINK Lottt et ettt e 340
EXECULADTIILY ..eovieiieieiece ettt sttt ettt et e beeteeteeaeereeneeneennens 15
executable COAE GENETATION.ccueviiriiiiciieticieieeete ettt ettt et st ebeeseeseessensesessensene 131
EXECULION CONEIOL ..viiiiiieiiciieteee ettt st teete et ese et et ebesbe b e ebeeneeseessensensensensenee 346
exhibition-characterization.ccccoeevivieiiiiicceeece e 254, 244, 239, 216, 40
exhibition-characterization Symbolccccceiriiiiiinin e
exhibitor.ooveieieieen
EXISEETICE ...eeivieeiieeeitieette ettt e et e et e ettt e e abeeeatbeesebeeesbeeeabeeansbeessbeeeaseeensbeeasbeesabeeansseeasseeeasaeensaeenns
EXPECted DUIFATION ...oviiiiiiiiiiieiieeee ettt ettt ettt et e be bt eae et e aesenae e
explicit attribute.....
explicitness............. ... 255,251
eXpressive POWercccceeueene. ... 240,129, 123
Extended Backus-Naur FOIIM........ccccoiiiiiiiiiiiiiiciececcieetee ettt eve e eae e
fact representation OPM Principlecocoiiiiiiieiiee e
feature.......ccoceevveeeevievieceeeceeeeeene
fEEADACK.evieiceicie ettt ettt ettt eab et et e teeteeteereeseesaenaentens 130
fE@ADACK LOOP. ..ttt ettt 267
final state258,26
fIFST ClASS CILIZEM. 1.vvivvieiiiictieeeee ettt ettt ettt e et teese e st esbesb e besbestaesaeseeseessensansans 150
fIrSt OTAer AETIVATIVE ...ovivieiciiciieicee ettt ettt et ss e b e bessesbaesaeseessessensensans 248
11T o1 i (o) o OO TSRS 359, 265
FLOW OF COMEIOL ..ottt b ettt s et ess e b e bessassassasseeseensensensans 141
flow of execution control.

FLOW SEIMANTICS. ..eovveeveiiiieciiciieieiete ettt e e b e sbeebeeseeseeseessessessessessessessessaeseensensensens 155

fork....... xi, 73, 140, 155, 197, 206, 207, 208, 209, 210, 211, 212, 213, 214, 224, 225, 228, 229, 232,
237,249,278

FOrK COMPIENENSIVENESSocviiviiiiiiiiiiiictietectietet ettt ettt a ettt eseesaesaessesesense e 210

FOTR AEEI@E. ...ttt ettt b ettt 209

(0)19 3 0 T 1o (=30 PSRRI 155

fOTR OPL SENTEIICEviivviieiieiie ettt ettt et ettt ettt et e beebeeabeeaseesseeesesteeensenseenseens 207

400

fOrmal MOGELc.ooiiiiee ettt ettt ettt te s be st se e st e st e st enseneas 92
formal modeling [anGUAEE.c.cccouiiriiiiiiiiicre ettt 92
FOTIMALIEY. Lottt b ettt ettt s bttt ne st et tetenaenaeas 151
forward relation NAIMNE.cc.iiiiiiiiceceececeee ettt et b e beebeesbeeeseesaeeasesseesaeens 216
forward Structural Telationcc.ioiiiiiiieecce ettt e et eaeeas 185
FOTWATA TAZ ...ttt ettt ettt ettt et et et e et s e b et e b e eben e e s e e eseeb et esenaeneesenes 187
FUNCLION L.ttt 253,246, 242,91, 88, 83,75, 19, 4
FUNCHIONA] VALUE. ...t ettt ettt et e ae v e enaeeneeeaeeens 379, 83
Function-as-a-seed OPM principle...

function-behavior diStINCLIONc..coviiiiiiiccceec ettt enes
fundamental structural Felationcc.ooviiiiiiicice ettt eae e

fundamental structural relation
fundamental structural relations.
general ...
ENETALIZATION. ...ttt ettt nes 217
generalization-specialization. ..o 292,287,277,242, 216, 56
generalization-specialization hierarchy.

gerund process NAMING MOGE.ccvevviriiriririeieieierie ettt estete et estestessessesseesaessesensensensens 112
Fode] v 1L s LT) oy TO R STUSRUPRUP 222
graphic modalityccccecveveieiennnnnn. ... 149,123

graphics-text equivalence principle ... 132,125
GUIITEIMEES ...t 31
handle.

RaNALE ODJECE ...ttt ettt sttt ettt ettt 225
handle thing. ..ottt b ettt 213,207
hard attribute255,253

RATAWATE. ..ottt b bbbt s et e et e b e be s bt sbeeseent et ententetens 167
harpoon-shaped ArTOW.cocoiiiiiieeee ettt sttt et 187
NAS-2 TEIATION. ...ttt ettt ettt sttt be bt et et aeesens 223
RIETATCRY. ...ttt ettt ettt ettt ettt e e s esens 218
hierarchy tree..... 217
RESTOTY . ettt ettt a et b ettt b e enis 263, 262
RLOLESIIL. <.ttt ettt ettt s et bt ne et et a et b et n et e s b nnenan 222
homogeneity..............

human intelligence. ...

human interface

TAENTIIADILIEY ...ttt
1AeNtifiable €NTILY. ..ccvooviciieicieieeee ettt et te et e teesaese s ntenaerens 262
identity......ccccoeenene ..262,257,179, 162, 161, 159, 158, 99, 98
TEEE STD 610.12 ..ottt b et b et bttt b e enen 90
imperative process NAmMing MOGEccoceviririeiieiieieiere ettt et ete e see e esaeaesenaensens 113
implicit attributecccoovveeveiennnnen. 255,250
implicit invocation link. 350, 347
INCOSE ..ttt ettt b et b bbbttt b ettt et 136

INFINTEE TOOD. ettt sttt 334
INFOIMATICAL ...ooovviiiie ettt et e e et e et eeetaeeeaeeeeteeeeaneeenes 150, 75
informatical ODJECL.ooviruiieiieieeee e 163, 120, 101, 100,99, 98

Index 401
INFOrMAtiCAl SYSTEIM ...eeviiiiiiiiieiieieee ettt ettt et e besbeetesseeseeseennensensens 99
INformatical thingcccooiiiiii ettt 27,23
INfOrmation OVETload.ccceiiiiiiiiiiie ettt ettt 296
information processing Channelooooiiiiiiiie e 151

INFOIMATION SYSTEIML.itiiiiiieiieiieetetet ettt sttt et ettt et b bt e bt ene e st ente s ensesaesreee 253
information systems deVelOPIMENL.c.ciiuiiiuirieiieieeeee ettt 202
INNETENE FEATUIEoouiiiiiiieiee ettt ettt ettt b et et ae b et b e saeneesens 253
INheritable @leMENT.cc.oiiiiii ettt 280
inheritance.

INTHAL SEATE . .ottt

INIEIATIOTL Lottt ettt et ettt e bt s b s bt e bt e bt e bt et e et e esbesaseebeesaeenbeenbeeas
IN-0UL. e

in-out-specified effect link pair. 180, 176
in-out-specified value effect liNK Pair.ccccveieiiiiiiiceeeee et

input state.......cccceeneene

INPUL-OULPUL LINK PAIT 1.evivieeieiieieieeee ettt a b e e stesseeseeneens 158,16 ,14
input-output specified effect Nk ... 14
input-output-specified effect event link pairccoeoiiniiiiiie 332

input-specified effect event link pairccooeiiiiiiniin e 332
input-specified effect link Pair. ..o 180, 177
INISTATICE ..ttt e et e e et e e e e eetaeee e eetaaeeeeetsseeeeesaeeeeennteeeeeeareeesennrees 288,287, 286
INSTIUIMENT. L..ovieiie et ettt e e et e et e e eaveeeveeeeaeeeeareeereeanns 180, 167, 22, 21,20
instrument condition lINKcccooiiiiiii e 336
INSTrUMENt €VENT LINK ...oooiiiiiii ettt e eenes 330

INSTIUMENT LK. .ottt ettt ettt nee s 180
interface.................. ... 166, 131
INEETIIM ODJECT ..ottt ettt s b e bt ettt et be e e 342,331
Internal BlocK diagram.cccoooouiiieiiiiieieceee et 136, 32
Internal Block Diagram.cccceoeveininnicnciccenne

International Council on Systems Engineeringc.ccoccoeineoiiniincineccccee, See INCOSE
International System of QUANEILIES.cooueiiiriiiieeee e 340
INEEITIET ..ottt ettt b e bbbt bt e et et sbe st e sbeebeebeeneeneens 75
Internet Of THINES. .. oo.oiiuieieeee ettt 114,75
INEETSECEION. .ottt ettt bbbttt et et e sb e s bt s bt sbeeb e ebee e e tenaenaens 328
INEUIEIVEIIESS ..ttt ettt b ettt et et sbe s bt bt sbe bt et e e et enaenaens 151
INVETISE TRIATION ...ttt ettt 223
INVOCAtION HINK. ..t 342,333,331, 118
INVOIVEA ODJECE SEE ...ttt bbbt ebeese e s e s essesense e 328, 169
IN-ZOOIMEA PIOCESS . ..eeuvititieiietieiieietet e te ettt steee et et e stessesbesbeeseeseeseessensensansessessessassesseessensensensensens 183
IN-ZOOMING ...oovveieieiieniine .42,38, 1
IN-ZOOMING=0UL-ZOOIMUNEoouiiiiiiiiiiiiiiiniiere ettt ettt sae bttt neaenaenaeas 295
1S-2 T@IALION. . 223

1SO 19450vvooreeee.. X1, xxii, 1, 127, 132, 219, 235, 375, 377, 378, 380, 381
ISO 19450 ISO 19450, ..o oo ee e eee e es e e e e e e e e s es s eeseseses e ees e eeseeeeseeeeeee 375
ISO L9450 PAS. ..o s e e s s s s s s s e e 375

402

ISO 80000-3:2006 — Quantities and UNILS.c.ccevererererierieieieeetesteete et ee 340
ISO QIFECHIVE ...ttt sttt ettt eat et e et e be s b e bt e bt eneententensansensesseee 377
ISO TCLBA/SCD. ettt ettt s st e e st e st et et e beeb e b e e bt eneententensasansesseee 375
ISO/IEC 152 88StANAAI. ..c.veeueeuieuieiieieieieet ettt ettt ettt ettt et et sbesbesbeeaeeseeneeneeneens 83

TEETALION .ot e ettt e et e e e ta e e e e e taaae e eeabaeeeeeatraeeeetrreeeeetaraeeeeanrees 346

JABBEA TN, ..ottt h ettt st b e bt ettt et et sbeenes 332
JOII TMOME .ttt b e bt bbbt et et et et e bbbt n et e et et e b ebes 155

LEAITINE CUTVE. ...ttt ettt ettt ettt ettt s et e e b e b e st et e e et e et e ne et e e e st ebeneebeneeneeaens
left-brainer.
levels of detail.
lexical analysis. ...

HEECYCLE. ..ttt etttk eens
LTHFELINEL ottt
lifespan diagram.
lightening SYMDOLcoouiiii et 332
IR et ettt ettt 27,19
HNK CArdiNalityl .o..c.eoveieeiiece e 197
HNK diSTIIDUION. ..ottt 349
HNK FAIL o 360
link OVer-SPeCifiCationcccieiiieieieeeee ettt sttt ettt b 280
HNK PrODaDILILY. .couvenieiiiiieee ettt ettt sttt ettt b 371
link under-specification. .. .282,280
LIVING OTANISIIL ...ttt ettt et et s tesbesbeebeeseeneeneeneens 159
10ZICAL ANDL ...ttt st sttt a et e et bbbt e bt ettt et e nae e 328,264
108ICAl AND OPEIALOL «..cuviviiiiieiieiieitete ettt ettt ettt b bttt et et e e besbesbesbeebeeseeneenaeneens 357
LOZICAL OR ..ttt b e bbb ettt et e be st e st sbeebe e st et eneentens 328
108ICAl OR OPEIATOT ...ttt b b ettt et et st st b sbe e st eneeneentens 361
10GICAL TEIATION. ...ttt ettt ettt ettt e st b et beaenas 149
LOZICAL XOR. ...ttt ettt a ettt ae et e et e s e e st et et e st e b e st eb et eneebeneeseeenas 328
logical XOR operator 360
machine-oriented OPL 0al.cccooiiiiiie s 124
Mannattan NS,co.oiiieeee ettt ettt ne e 217
many-to-many Cardinality.cocooiireiii s 202
o0 EE 10 0 Q0] o1 =1 () o RSP SRRRPSRRP 306
maximal allotted tIME.c.oouiiii e 342
Maximal DUTFQTIONL ...c.vuiiiieiiieet ettt ettt e e nenea 340
MAXIMAI-tIMEA PIOCESS ..ovicvieeieeieiieieieteee ettt ettt et be b e st e beesaesaesaensensenes 355, 341
memory mechanism

MENEAL TECOTT ...ttt
00T 0 0 Lo Yo [=Y N 260, 205, 191, 125
MELAMOTPRIOSIS «.evieiiiiieiititieeeee ettt ettt e et et e st e eb e e st e st essensessensessessessesseeseeneensensans 160
MELA-STANAATT ...ttt ettt sttt 376
30U e (oo U 246, 242
methodology.296, 295,76
minimal allotted tIMEccoouiiiiie ettt 342

MiINIMal DUTALIONooouviiiiieccticceecee ettt et e et e et e e eaeeeeaeeeereeenreeennes 340

Index 403
Minimal Ontology PriNCIPLE.ccccveiiieiiiieeeeeeee ettt neens 94,76
minimal universal ONEOIOZY.cccciiiiriiiniiiric e 94,78
MINIMAl-tIMEA PIOCESS.coueeiieiiiiieeeeee ettt sttt 355, 341
minimum description length (MDL) Principlecccocccnioiiiniinininincecceeececeees 77
INOAALIEY . ..ttt sttt ettt b e bbbt ene st et et e ntenteete e 123
mode.255,252
TNIOAEL .ottt sttt b bttt e b b e bt bt e bt eh e e a e n b et et et e be bt bt bt ententententan 92
107016 (<) 15 ¢ Vot SRR 296, 123, 24
model fact representation OPM principle.cccoooiiiiiniiiiiiiee. ...296, 209, 46, 42, 39
Model-Based Authoring of Specifications Environment (MBASE)cccocoieiiiiiiiniiiie 376
model-based Standard.ccoiiii et 376

model-based systems engineering (MBSE)... ... 76

modelingccooviiiiniie .92
modeling error........... . 124
MOAEling JaNGUAZE.cueiuinieiiie ettt 92
MOdel-SPecific NUILLAGceeviiiiii s 193
module

multiple condition clause OPL SENTENCE.c.ccuevverieriiriiriiciieieieieteieie et e e e see e sae e 272
MUItIPIE INNETTEANCE.ovieieiieiiciee ettt ettt se e esbeaesbessenneas 280
MUItIPLICAtION OPEIATOT ...ttt 349

INUIEEPIICIEY. oentiee ettt 203, 197
natural language.249, 2006, 205, 129, 125
natural language ProCESSINGccooiiiiirieieieieere ettt sttt sae s See NLP

non-comprehensive fork SYMDBOL.occooiiiiiiiiie e 211
non-comprehensiveness SYMDOLcc.ooiiiiiiiiiieeeeseeeeteee ettt 232
NON-hUMAN ENADIET. ...c.oouiiiiiiiii ettt 168

non-reciprocal structural K.ccooiiiiiiiii e 189
non-reserved phrase. 132,128
non-technical StaKeholder.coiiiiiii e 130
THOULIL ounitteientetetestet ettt ebes ettt et s e b bttt be s bebe st s e b sttt et ebe e saebeneas 249,247, 110, 109, 103, 102
NOVICE OPM USET. ..ttt b ettt s b e s st b et a e benae b 124
NUIL SErUCEUTAl TINK ..ottt 192
TEULIL EAE ettt bttt ettt ettt n et et b et e et et e ae et et et e e neeaens 192
null tag unidirectional structural Hnk ... 268

Object Constrain LanGUAEZE.c.ooeiiiieiieieieeee ettt sn e 354
Object Constraints LanGUAZEcoooiiieiriiirieeee et 236
0] o) [T o 3 U0) RS SUORUSU

object fork.ccoovevveiriennne. .

Object Management GIOUPc.coeiriirieiirieieieieieseeee ettt ettt be et ne

Object Modeling TEChNIQUE.cc.oviiieiiciieiieieeeeee ettt sttt eae s sse e 243
object singularity OPM principle 121,112
object transformation.................... ... 194,109
(0] o) [=Te1 o) g U1 1= LTRSS See 00
object-oriented MEthOASccooiiiiiiiii et 162
ODbjeCt-ProCess ASSEITION.cc.coruirieiiriiiriiieiintetetet ettt ettt ettt ee 94, 80

ODbject-Process COTOLIATYccoiriiiiiiiiietite ettt ettt 79

404

Index

0DbJeCt-Process AIAGIAIMc.cveiiriiriiriecieeeieet ettt ettt st se et e e sebesaeeaes See OPD
Object-Process Diagram (OPD)cccccoiiiiiininiiinieinceenceceesc et 19,5
0DbJeCt-Process laNGUAGEcveiiriiriiriiiieiieiee ettt ettt sttt ettt eaes See OPL
Object-Process Language 132,123
Object-Process Methodology ...See OPM
ODbject-Process THEOTEIM.........ccuiiiiiiiiiieeeeeeee ettt sttt s eneene 94,79
OCKRAM'S RAZOT. ...ttt sttt 77
OMBG. .ttt bbb bbbkt b bttt ae et beaen 1

one-sided participation constraint..

OPD construct.

OPD EIEIMENL. ..ottt ettt
OPD SEL. ..ottt 210, 132, 125, 123,42, 39
OPD ETO. ..o e 38
OPEN NEAA AITOW ...ovviiiiieiieiieiieetete ettt ettt testeeteeseestestessensansesseeseeseessessensensensensesseen 186
10 013 1= 4 U LSOO SE U PPN 119, 20,6
0] 7<) o= 1 10 o A OO P R USSRRN 254,247, 246, 242, 241
OPETAtiONAl INSTANICE ...o.viviiieiieiieietee ettt ettt et ettt e bt e st e st e st ensesensentenee 380
operational level
OPErational SEMANTICSc.eeuiiiiieiiieiieet ettt ettt bbbt ae st e e e stesaeste e 327
OPETALOT ..ttt ettt ettt ettt et s bt e bttt et et ea bt e at e s bt e she e bt e bt e bt ea bt e ab e e et e eateebtesh e e bt e nte e bt enteeabeenee 119
OPL. .o .. 226,124,123,11 See Object-Process Language
OPL PAra@raPhL ..coueoueeiieieeiieitetee ettt ettt sttt ettt ettt sb e 132, 125
OPL 1eSerVed PRIASE.cuiiiiiieiieiiiei ettt ettt et se e s eneneas 132, 128
OPL SEITEIICE ...ttt ettt e e et e et e e et e e e teeeeteeeeaaeeeteeetaeeeateeeseeeeraeaanns 123, 16, 14
OPL SPECITICATION. ...ttt ettt b et ne b beneas 125
OPM

OPM MEtAMOAEL. ...ttt ettt b et b et s bbb beneas 125
OPM STUAY GIOUP - +-ttveuietiteiteteietestete ettt ettt eteete e te e e st s te e et e ee st eseneebesseneebeneeseseneebeneeneaseneesennas 376
OPM taDI. ..ottt 306

(O Q6= les L= () o KRS 214
OFAET TULE ..ottt ettt e et e e te e eaeeeteeteeaeeaeeeaseeaeeerseeaeeessenseenseenreenes 212
orderabilityccccoveiieiiiieiieeeeeeee e 323, 306, 237, 232, 230, 229, 214, 212, 211, 209
(006 153 10111 1RSSO 214,211
ordered

OTENONOIINALviiiiiiice ettt ettt e v e e et e e ae e e e e e aeeeteeereeaeereenns 228
Orthonormal POLYIINE.cceeiiieieiee ettt ettt sbe s s e 217
OUEPUL. Lottt ettt b e s e sa e sb e bt et bt et et b bt b e bbbt ean s enesnenre et 163

output link
OULPUL SEALE. ...ttt 261, 180, 173, 14, 13
output-specified effect event link pair.ccocooveiiiniiii e 332
output-specified effect link Pair.ccocviiiiiiiii e 177
OUL-ZOOIMUIE ..eenvtentieieeteete ettt ettt ettt et et et et e e ateshtesu e e sbeesb e e bt e be e bt eatesabeesaesatesseesbeebeeseenseeneeas 63

Index 405
OVETTIAR. ...ttt en e 280
overtime exception lNK.cooiiiiiiiiiiiiieee e 355, 341, 264
overtime handling PrOCESS.coiviriiiiieieieeeee ettt 355, 341
parallel implicit invocation liINK SEt.........ccooiiiiiiiiieieiee et 350

PATAINIEELT ...ttt ettt ettt ettt e bt et e et e et e e st e eat e ehteeh e e sb e e bt e bt e bt et e ea bt eabeeht e eat e bt e she e beenaeens 199
Parameter CONSTIAINT SET. ...c.ccuiiiiieierierterierie ettt ettt ettt ettt et et e st e st sbeebeestesbetentenbenbens 235
PAramMeter CONSTIAINTSitiitieiieiieieieierte ettt ettt ettt b bttt s et e et e sbesbesbeeaeestenbenaentenaenbens 204
parameterized participation CONSTraiNt.cccuevieriiirinirieeee e 213,199
parameterized participation constraint

Parameterized Participation Constraints (PPC) mini-languagec.ccccoceneineiiiinninccee 237
PArametric dIAGIAIMco.oiiuiieiieieeeee ettt ettt ettt e s 147, 146
PArametrics QIAGTAINLooueiiiiieiiie ettt ettt ettt ettt et a ettt e s eaens 135

Parametrics dIagTamco.oeiuiiiiieeee ettt 136
PATSIIIG ettt ettt ettt st e b e bttt ettt b bt e b e bt bttt et h e b e bt e bt bt bt e et et it 127
partial aggregation CONSUMPLIONc.ciiuiiiiiiiiie e 232
02Vt t= o) a U=) USSR 82
participation constraint. ..260, 235,213, 203, 202, 201, 200, 199, 198, 197
participation constraint SYMDBO]cccooiviiiiieieeeeeeee e 200
PArt-0f FElatiONSNIP. ..oviiieeieieiceee ettt ettt aenae s 221
path label 265,264
PETfOTIMANCE TIIMIE,eevvivitieiieiieiieiet ettt ettt et e et e st e s be et e e st eseeseessessensasesseesessassaessessensensensensens 341
PETSEVETANICEeeeeieneieiieiieteeteete et ente et e eseesetesaeesaeesaeenseeseenseenseensesnsesneesnsenaeenaeas 278,250,241, 185
PETSISTENT. ...ttt ettt et st sae e bt et et et et 116, 113,102, 98, 27
PRTASE. ..ottt ettt ettt b e b ettt ne ettt ebentenre e 186, 132, 128, 127
physical object ...

PRYSICAL TRINE ..ttt et ettt bbb enean
physical-informatical diStINCHION.ccoviiiriiiiie e 149
POTE FOLAING . .ttt b bbbt et e b e et s bt saeeseent et etentenbens 303
POSTCOMAITION. ...ttt ettt b bbbt s et e et e st e sbesbeseeeseentenbensenaeneens 328
POSTPIOCESS ODJECE ST ..ouvitiiieiieiieiieiee ettt ettt et 328, 170, 169, 105
PrECONAITION ..ottt ettt st et esee e e 328,264, 164
precondition satisfaction evaluation.cceciiiiiiiiieiiieee s 333
preprocess object set 328, 264, 170, 169
PIreProCESS ODJECES SET ..oviuiiuiieiieieieiieieeete ettt 120, 106, 105, 104
probabilistic consumption lnk fan. ... 372
Probabilistic IINK fan. ..ottt ettt seenaeaeneens 371
probabilistic reSUIt lINK fanccoiiiiieecceeeeeeeecee ettt sa e naens 371
PIODADILIEY ..ottt 149
Procedural K.ccooiiiiiiiicicieieiees ettt be e ens 377,162,27,19
Procedural HNK.c.coiiiiiiic et 171
procedural link uniqueness OPM principle ..

procedural participation CONSTIAINT.cccceeiririeieieieeercee ettt sre e aeneens 203
procedural participation CONSTIAINT.cocceviririeieieieerere ettt eens 203
Procedural TEIAIONoviiiiieiieiieeee ettt ettt et et e bessessesseeseennenneneens 377
procedure...................

PrOCeSS. ...ccevverecnenene

Process aCtiVationc..cceoieirieiiiiiiiiiceneere e

process activation mechanism.ccccoeveneveninnieneincnncncnceecee

PIOCESS CLASS . ..ttt ettt ettt b et sttt b et b e 290

406

Index

PTOCESS CTIEETIA. ..eeuvieniieiieieeieete ettt ettt ettt et e st e s et e bt e st e e bt et e enseentesatesntesaeenaeeneeans 120, 109
PrOCESS AUIATION ..eoueiitiiiiietieiieiteie ettt ettt sttt e bt e st e st e s e b e b e b e sbesbeeseeseentensensensensensens 340
PIOCESS FOTK .ttt ettt ettt ettt st 214,207
PTOCESS INSTANICE. ...ttt ettt ettt ettt ettt ea e sh e e s bt e bt e bt e bt e bt eabeestesatesbaesaeenbeenaeens 290
PTOCESS INVOCATION ...ttt ettt ettt e bttt et e b e bt estesatesbaesasenbeenaeens 331
process participation CONSTIAINT.cccoviiiiiiiiiiiicet ettt 197
PIOCESS PEITOITIIAIICEveuetiieiiteeietietee ettt ettt ettt ettt ese e b et et e beseesensesessene et esesessensesenseneesenes 329
PTOCESS TEST. ..ttt ettt ettt et e e bt et et et et e s bt e b e bt e bt ea e e st et et et e sbeebesbeeseestenbentenbenaenbeas 194
processes

Object Transformation by Process OPM principle.ccocooiiniiiiiiineieeeeee 94, 82
PIOCESS-OTIEINTEM ...ttt ettt ettt ettt s et e et b st et e e st st e e et e e ese et et ebeneeneeeenes 157
PTOMUCE. .ottt ettt ettt et et e et e teete et e esa e s s ess e b e beebeebeeseessesaessessessessessesseeseeseeseassessansan 88
PTOAUCTION TULE ..oviiiiiiiiiiieietee ettt ettt b et be et sb e b e b e b e sbeeseesaesaessessessessensesens 127
PIOZTAIM COAR ..ottt ettt ettt ettt e et b et s et en et et e s e e e st et et enestene et eseeneesens 151, 131

Programming lanGUAZEccccovruirieuirieiiiieeee ettt 242,151, 124, 123,53
PLOPETLY . oottt ettt ettt st 343, 342, 340, 195, 192, 188, 114
protocol.

PSEUAO-COUE ...ovienienietitietietietteet et et et stestesteete e st e e e aesesseeseeseeseeseessessassessensessassassassaessessensensensens
pseudo-process

Publically Available Specification.... 132,127
qualitative attribute............cccceevnee.255,252
QUANEItAtiVE @EITDULEoiiiiiiiiic ettt 253
range participation CONSEIAINTooiiiiiiiiieee et 213,199
RDF. ettt 231, 230, 229, 226, 225, 224
RDF graph.....

RDF TPLE. .ottt ettt b et e bbb s enenean 229, 226, 225
TEAMING OTAET. ...ttt et ettt st b e bt e st e s e s et et e sbeebessesseestentensentensensens 230
real-time fEEADACK.iouiiiiieee ettt 130
TEAL-TIINIE TESPOIISE . ..uiniititietieiiete ettt ettt ettt ettt ettt b e bt b e e st et e et e sbeebesbeseeeseentensentensensens 130
TeCIPIOCAl TEIATIONL. ...ouiiiiiiiiiiiee ettt st sttt ettt ae b 185

reciprocal Structural liINK ... 189
reciprocal Structural relation.oocoiriieiieieeee s 195, 188
reciprocal tagged structural relation 188
TECIPIOCIEY. vttt ettt ettt ettt b ettt et e b b s bt s bt ebe et et et et eae e 195, 189, 188
TECIPIOCIEY TAG -.veententintititieteet ettt ettt ettt b e bt eb e bt e st et e b et e s b e sbesbeebeese et e aenaetens 189
TEAUINAAIICY. ...ttt ettt ettt s bt b et e e st e et et e e st et e e e b e s e st et e e ese st eneebeneenensenis 129
refineable..349, 323, 322, 321, 318, 316, 312, 311, 309, 305, 302, 301, 281, 278, 239, 236, 234, 221,
218,215

TEfINEE ..ot 322,306, 302, 301, 281, 239, 218, 216, 215
T 100 T3 0T=) o L PSSRSO 320, 42
refinement-abstraction mechaniSmc.cocooiiiiiiiii e 295
relational database.cooiuiiiiiiii et
reqUIremMent dIAZIAIMLcoooiiiiiiieiet ettt sttt sttt aenes
requirements diagram.

Requirements diagramcoooiviriiriiiie ettt
reqUIrements €liCItatiON.cucieiieieieieeec ettt st e s re st se e ene e nnens 130
TESEIVEd OPL PRIASE. ...cuviiiiieiieiieieeet ettt ettt ettt et e besteste st aesaeseennensensans 168
FESEIVEA PRTASE. ...veoiieiiiiiiietieteeieetet ettt ettt sbe b e st eneeneenaensensense e 257,223,218, 200

RESEIVEA PRIASE. ..ottt ettt 14

Index 407
Resource Description FrameworK...........cocuooieieiinininiciciceeeeeees s See RDF
TESULLIINK. Loeoeiiiei e ettt e et e e e e eteeereeeeaneeens 180, 164
TESUILEE ..ottt ettt et e e et e et e e teeeteeeseeete e beeebeenbeesbeeaseesbeeaseesaesasessseeasennes 179, 163, 59
FEVEISe ENGINEETINGccuiiiiiiiiiiiiiiiiiieietete ettt ettt et et ettt e bbb saesbesaeebeeanennennens 75
reverse-eNgiNeeriNg NATUIEccocuoiierierieenieeieete et eite st estee st esteetesbeestesatesbeesteesaeenbeenbeenseenseenee 295
FIGNT-DIAINET . ..ttt bbbttt b e st s b s bt e st st et e e e benaenbeas 129
TOLE ottt et e et e ettt e eteee—teeateeeeteeetteeetaeeeteeeaeeaaeeas 169, 162
roOUNd-triP ENGINEETINEG. ..cc.eiuiiiiiiieieteteee ettt et ettt sbe st e st et eaenaenbeas 125
rountangle
TOULITIE, ..ttt ettt et bt b e bt bt et e et e bt e b bt eb e e st e st et et e nbesbesbesbeebeenbententenaenbens 242
TUINEIITIE .ottt ettt ettt et ettt e bt sa e s bt et e e bt et e et e eabeeabesaeesbeesbeenneenseeas
runtime model. ...
scenario.

SCIENCe. ..c..vevevereereeieenenee,
SECONA OTder AETIVALIVEcuiiiiiiiieiiie ettt sttt
Self-INVOCAtioN INKcoiiiii s

self-organized criticality.
semantic sentence analysis
SEIMANTICS ..ttt ettt ettt et b e s bbbt bt ettt a e bbbttt nnen

sequence diagram 141,139, 135

[7 (ol TSROSO 246, 242, 88
SeL e ... 346, 229, 209
Shared agEIregationccooioieieieeee ettt ettt sttt ettt ntens 228
shorthand graphic NOTATIONcc.eoviiiiriiiiiceeee ettt 224
short-lived object

SKIP SEIMANTICSttt ettt st b e bt b e s et et et e b e sbesbesbeeseent et entenaeneens
skip semantics precedence OPM PrincCipleccoouevieniniiniininieieieeeeee et 355
SO AP 233 WOTKGIOUP .eeviiieiieiieieietetest ettt st sttt ettt e et e bbbt ene e st ent et ebensente e 136
socio-technical system. 88
SOCTAtIAN QUESTION ..ottt ettt ettt e et st st b bt ebeeneeneens 78
SOFE ATEIIDULE ...t ettt ettt e e e e e et e eaeeeaeeeaeeeaeans 255,253
SOftWAre ENGINEETINGcueuietiiiiieieiet ettt ettt et se ettt e e e st e te e e seebe e ebe e seesens 135
solid black triangle.c.cc........ 224
source participation CONSTIAINTcceiiiririririreeeeeeeeee et 213,201, 198
spatio-temporal fraMEWOTK.cooiiiiiiiiie et 290
specialization.ccccceeveerenenne. ...287,281,278
split in-out-specified HiINK PAIL.c.cccocviririiicieiecceseee et a bbb ae s 352
SPHEINPUEL LINK Lottt ettt ettt b e b e sbeebessaesaessessessessensensens 352
split input-output specified effect link paircccevieviriiicieeceeeee e 353
SPHE OUEPUL LINK. .ottt et eeeeeseesa e s ensenaensens 352
stakeholder ...296, 87
STAKENOIALTS ...ttt 6
StandardiZation DOAY.cccoeieieiiieieeeeeeeeeee ettt a et aenae s 149
STALL. ottt ettt 274,257, 94, 82, 81, 16, 13, 12

SEALE. ittt et e e e e he e et a e e b e e et e e e bt e e tbeeatbae e ateetbeeesbaeereeeaaeenssaeenreans 274
SEALE ChANZE TALE ...ttt sttt ettt et et e e beetesseeseesaenaensensesens 344
state eNUMETatioN SENEEIICE.c..viiiieiieeee et et eeee e et e e eeae e e e eeeaaeeeeeeaaeeeeeenneeeeennnns 257
STALE EXPIESSION ..uiiiiiiiiiiiiieiie ettt ettt et sae st st 259
SEATE MACKINEooiieiiicc ettt eete e e e ete e eetaeeeteeeeteeeeteeentreeennes 265

408

Index

state Machine diagramccocveiiiieriiniiieeeeeee ettt 139, 33,29
SEALE SPACE ..ttt ettt ettt et ettt et a e bt e h e bt e bt e bt et e et ente et e btesaeenbeenaeens 274
SEALE SUPPIESSION ...ceutiiuiieiiieiieete ettt ettt ettt et et et sa e sb e e sh e b e et e e bt esbeeabeestesatesbaesaeenbeenaeens 259
SEALE TTANSIEION ...eeiiiiieit ettt et sttt e bttt et et e st st e baesaeenbeenaeens 261
SEALE LTANISIEION . .eeutiiiieiie ettt ettt e bt et ettt sat e sateset e bt e saeenbeeaeeabeeaee 261
state-expressing—State-SUPPIESSING.couiriirieriirieiieeie ettt ettt ettt e siee s esbeenieens

STALEIUL ODJECE ...ttt ettt ettt a e s b et e aeeae e
stateful objects
stateless object

state-maintaining PrOCESS.cceveriirirerinieteteeee et 223,194, 184, 121, 116
state-object association K.oiiiiiiiiie s 274,270
state-0bject assOCIation HNKS.c.cciiiiiiiciciceccee ettt a b b e 269
state-specified agent condition link343, 340, 339
state-specified agent event link

state-specified agent lINK ..o
state-specified agent link fan ...
state-specified characterization link

state-specified consumption event linkccccooeveriiiiiiieieeeeeee e 332
state-specified consumption lnk.ccoceoieiiiionininieee e 180, 173
state-specified consumption Hnk fan ..o 369
State-specified consumption HnK fancccooeoieierininiieceeeeeeeee e 368
state-specified control-modified link fan. ..o 368
state-specified effect HNKcccooeiiiininin e 180, 175, 174
state-specified instrument condition link.c.cccocviiniiiiniiie 340,339
state-specified instrument event link 331
state-specified inStrument K.oocooiiiiiiii e 172
state-specified instrument Nk fan.cocooiiiiiiinin e 370
state-specified procedural HINKcccoooviiiiiiiiii e 171
state-specified result link.......... ... 180, 174
state-specified tagged structural linK.cococoiiiiiiiii s 268
state-specified transforming event Hnkcocooiiiiiiiiiiiie e 331
StAte-10-0DJECE IINK. ...eoeiiiie ettt 270
stereotype 136
SEIUCEUTAl LINK. ..ottt 195, 186, 183,27, 19
structural participation CONSTIAINE.coouiiiiiiieieee s 198
structural relation.cccoeevennen. ... 194,183

STrUCTUTAl TElAtioN PAITcuiciieiieeieieieee ettt ettt teeteesaesa e b e besaenens 185
STIUCEUTAL FAZ .+ttt ettt ettt s st et ettt et et e st st et et e e neneens 186
STIUCTUTAL VIBW ..ttt ettt ettt b e ettt n e e 67
structure

Structure

structure-behavior INteGration.cccoiiiiiieiie e s 162
SUDPIOCESS . ..ttt ettt et et et et et et e e te s et eae e st eseesteaensesseeseeseeseaseessensensansenseesesseeseessensensensensensens 183
subset of Englishccccoeiiiiiiiceeecce 381, 226, 133, 132, 130, 129, 127, 123, 11

SUDSYSEEIM ...ttt ettt ettt et ettt e st e e te e st ese et es e sb e besseebeeseeseeseessensensensensessesseaneaseensensensan 85
supplier......... ... 87
SWIIMANE. ... 141
swimlane activity diagramcc.couviriiiiiiiiiinicirc ettt 141
SYNICNTONOUS PIOCESSeviuvitietieiieiieiientete e stestestesetestesteseestebasbesbeebesseeseaneensensentensensessesseeseeneeneensensan 82

Index

£S5 0 L= b PR PP 130,91

SysML x,1,3,4,6,29,30,31, 32,33, 34, 35,73, 75,93, 114, 135, 136, 137, 138, 139, 142, 143,
144, 145, 146, 147, 148, 149, 150, 152, 153, 155, 156, 162, 167, 187, 200, 219, 227, 228, 229,
237,242,243, 244, 246, 247, 278, 297, 322

SysML behavioral diagramsc..cccecevvevireniiineinincneineneeneteereeeeteeeveseeeereseeesneseenesneeenes 139

SysML block definition diagramcocceieieieiiiieiieseree e 278
SYSML diagram fTame.coueiuiiiieieieietesteet ettt sttt ettt et ettt st st bt ene et enteneens 31
SYSML QIAZIaIm LYPE. c.eeuviiiiiiiieiieiieietete sttt ettt ettt et ettt ettt b e bt s et e et e b e besbesbesbesaeeseeneeneeneens 29
SysML pillars 136
SYSML SPECIHICALION. ...ttt ettt b e be s 137
SYSML SEEIEOLYPE. ..ottt ettt ettt ettt ettt b e bt b e st s et e et et e sbesbesbeebeebeeneentens 31
SYSTEINL L.ttt ettt b bbbt ettt ettt s bt bbbt e bt e st ea e bbb bbbt e bt e bt e s e ettt bt be bt beenean 94, 83

SYSTEIM ATCHILECE ...ttt ettt ettt et seeaens 124
SYSTEIM COMPLEXILY. ...ttt ettt ettt sttt b et et et e e ese e e ee 42
SYSTEM AEVEIOPIMENL.oueiiiiiieiiiee ettt 295, 151
system development MethodOLOZY.ccooveuiiieiiiiiiiee s 295
System Diagram (SD)......c.ccccecernennee.

E A=) 4 W=D (ot LT) o ISP 262
system Modeling [anGUAZE.ccuevverieriirieieeeeeeee ettt ettt te e esa e s b aensens 296
SYSEEIM OF AISCOUISE. ...uvivviiiiieiieiieietet ettt ettt b et et se et et e b e b e ebessassaeseesaensensensensens 288

SYSEEIM OF SYSLEINIS ..ueeuiiitiiitietieetetet ettt et e sttt e ettt et e b e besbe st e ebeeseesaesaessessensensessessesseaseansessensan 75
systemic 150,90
SYSEEIMIC ThiNIE ...eeeiiieiee ettt ettt et ettt st sbeeaeeneenean 27,24
systemic-environmental diStINCIONcccoviiirieiiiieieeeeeeee e 149
system-of-systems

Systems Modeling LanGUAaZEcccuevueiiriinieieiieiieieieiesie ettt ettt sbe e

DA oottt et e ettt ettt et ettt ettt e st a et e st s e bRt bes e s et es e s et R et e st b e nt et e b ene s entese s en e et e s eneesent et e eseneeseneeneas

tagged structural link ...
technical specification...
template......cccoceeenenene
M AefINItIONoouiiiiieiie ettt ettt
LTI SUDSTITULTION ..ttt ettt st sttt et e b aas
termination.c.cceceeeeeneennene
ternary Structural relationo.ocooiiiiie e

TESPEIANTO. ...ttt ettt b et be ettt et bbb bbbt nee 376, 131
textual modality. 149,123
The IMitation GAIMIE........cc.oiiuieiee ettt 372

L0000 TS o] 01 (o) o USRS 331
BIMNE TECOTA ...ttt ettt ettt et e e eaeeeaeeeteebeebeeateeassesseetsessseessenseeseeseenreens 262
BIIMIE UL, ..ottt e e e et e et e e e ta e e s tseeeabeeessaeeesseeesbaeensaeensseessseeenseeennnas 340

HIMEA BVENE. ..ttt 383
HMELINE ..o e 248, 230, 194, 110
timeline OPM Principle.c..coviiiiriiiniiiccc et 304, 50, 47
EITIE. Lo e ... 213,207
TINE ODJECE ST ...ttt ettt 225,209

410

EINIE PIOCESS SEL ..ttt ettt ettt ettt ettt et et et e eatesatesa e be e st e bt enteenbeentesasesneesneenseenaeens 209
BIIE SEL. ittt ettt h ettt et a e e h e bt e h e bt e bt et et e et nteeat e bt e shtenbeenaeens 235
EINE ThING. .ottt ettt 214,207

tine thing set
tine thing set

L9 V011 (o) 1 =1 (o) o RO USRS 158,94, 7
TranSfOrMatiONc.ooiiiieeeieeteee ettt et et e e ere e et eeaeeereenes 120,100, 82,7
Eransformation HNK.c..oooviiiiiiieeee ettt et e et e e ennes 180, 163
[0V o Ty (0] 0o 1 (o) 1 1B i L o YOS 343
transformation SEMANTICSc..ocviiiiiiiecie ettt ettt e et e ereeeteeereeaeereeaeeeaeeeneas 155

[0 0 1S3 () 1 L= USRS 263,162, 6
Transforming event K.cccoiiiii s 330
transforming link 186, 163, 162
ErANSIENE ODJECE ..oovviniiiiiicticeeeeee ettt et e e b sense e 331,162,121, 117
ELANSIENE ODJECES. ..vevieiiiiiicieeee ettt ettt et ettt e s et e e b esbeeseesassaesaessensensensensens 117
ELANSTEION Lottt ettt e aa e e e bt eetae e abeeesbeeeasaeesseeesseeessaeensseesnseeensaeesseennnen 261
ELANISTEIVE. ..ottt ettt e et e et e e e tb e e e bt e etae e sbeeeaseeesbaeessaeesseeessaeesseesnseeessaeensseennnen 239
ErANSIEIVE TEIATIONL ..oovviiiiciicii ettt ettt v et e s e teeene e aeeeaeens 278

transitive structural relation.c.cocoveriiniiiiniiniceeeee 287, 195, 190, 188, 184
EFANSIEIVILY oo 195, 190, 188
triangular symbol. ..

BEIZEOT o bbbt 327
TUTINE TS ettt ettt ettt e e bt e s bt e bt e bt et e et e e st e eatesatesaeenbeesbeebeenbeeas 377
Turing Test tEXtUAL VEISION.c.ceciiiiieiiiicieeeee ettt sttt 377

UML 322,297,278, 247, 246, 242, 237, 229, 228, 227, 200, 187, 167, 162, 150, 149, 143, 139, 138,
137,136, 135, 35,32, 6
UML €lass QIAGIAIMN. ...cvitiriieiieiieiieieiees ettt sttt et b e sttt e et e sb e sbe s bt seeestentensensenbeeens 278

UML for SE RFP.

unary structural relation. ...

undertime eXception lNKccooiiiiiiiiii s

undertime handling PrOCESScoiriiiiiiiiieeee et
unfolding-folding...........cc........

unidirectional default NUIl tag.coooiiiiiii e
unidirectional model-specific NULL tagcooeiiiiiiiie e 193
Unified Modeling Language.............cc......... ... See UML
UL Lottt st b e sttt st n et et 328
universal building BIOCKc.ccooveuiiriiiiiiiiccccc et 97
UNSTADIE ODJECE. .oviieiiiiiitiieeeee ettt ettt esb e b e besbessessaeseeseessensansens 274
UNSEADIE STALE ...ttt 261
use case

USE CASE AIAZTAIN . c.c.veuiiiieiiieiei ettt sttt st b e s et be e s e 139, 29
USE €CASE AIAGIaM SUDJECE. ..ovievieeieiieieieetese ettt ettt et e tesbessesseesaeneeneennan 31
use-case diagram. 169

USET. .ottt
user-defined bidirectional NUIL tag.........cccoviriiiiieieieeeeee e 193

Index

411

user-defined dedicated SYMDOLcccooiviiiiieiieee et 218
user-defined NUIL TG,cc.cciviiiiiii e 195,193
user-defined unidirectional NUIL Ag.c..ccviriiiiniiiiinic e 193
Value . .ooeiiieeeee e

value changing link ...

value effect link.........

Value SETtNG LINKooiiiii ettt
value-specified procedural HinK............cocooiioiiiiii e 177
view creating

WAIE SEIMANTICS. ...ttt ettt b e bbbt b et et et e st s bt bt e bt e st e st et enbenbenes 334
White dIAIMONIAeoeiiiiie ettt e ettt eene 228
whole-part

VLA TALE . ..ttt ettt b ettt ettt ettt ettt eene

	Foreword
	Preface
	Table of Contents
	Main ISO 19450-compliant OPM Symbols
	PART I: Model-Based Systems Engineering Introduced
	Chapter 1: Ready to Start Modeling?
	1.1 The Automatic Crash Response System
	1.2 The Function-as-a-Seed OPM Principle
	1.3 Identifying the System’s Function
	1.4 Identifying the System’s Beneficiary
	1.5 A Process Transforms an Object
	1.6 Summary
	1.7 Problems

	Chapter 2: Text and Simulation Enhancements
	2.1 OPL: A Subset of English
	2.2 States and Animated Simulation
	2.2.1 The Effect of a Process on an Object
	2.2.2 From an Implicit Effect to an Explicit State Change
	2.2.3 State Naming

	2.3 Animated Execution of the OPM Model
	2.4 Summary
	2.5 Problems

	Chapter 3: Connecting Things with Links
	3.1 Procedural Links Versus Structural Links
	3.2 Adding Enablers
	3.2.1 Adding an Agent and an Agent Link
	3.2.2 Adding an Instrument and an Instrument Link

	3.3 Adding Structural Links
	3.4 Physical Versus Informatical Things
	3.5 Model Facts and OPL Paragraphs
	3.6 Environmental Versus Systemic Things
	3.7 Initial and Final States
	3.8 Triggering State and Event Link
	3.9 Summary
	3.10 Problems

	Chapter 4: SysML: Use Case, Block, and State Machine Diagrams
	4.1 The SysML Use Case Diagram
	4.2 SysML Blocks and the Block Definition Diagram
	4.3 SysML State Machine Diagram
	4.4 Summary
	4.5 Problems

	Chapter 5: Refinement Through In-Zooming
	5.1 Measuring Crash Severity
	5.2 In-Zooming: Refining a Process in a New OPD
	5.3 The OPD Tree
	5.4 The Model Fact Representation OPM Principle
	5.5 The Crash Severity Attribute and Its Measurement
	5.6 Simulating the System: An Animated Execution Test
	5.7 Summary
	5.8 Problems

	Chapter 6: The Dynamic Aspect of Systems
	6.1 Exiting in Case of Light Severity
	6.2 Message Creating and Sending
	6.3 Process Execution Order: The Timeline OPM Principle
	6.4 Help Is on the Way!
	6.5 Scenarios: Threads of Execution
	6.6 Summary
	6.7 Problems

	Chapter 7: Controlling the System’s Behavior
	7.1 Branching with Boolean objects
	7.2 Condition Link Versus Instrument Link
	7.3 Generalization-Specialization
	7.4 Zooming into Crash Severity Measuring
	7.5 Participation Constraints
	7.6 Logical Operators: OR Versus XOR
	7.7 Crash Severity Measuring Refined
	7.8 Scope of Things: Signal as a Temporary Object
	7.9 How Is Diagnosing Done?
	7.10 Summary
	7.11 Problems

	Chapter 8: Abstracting and Refining
	8.1 In-Zooming: Refining a Process in a New OPD
	8.2 Message Handling In-Zoomed
	8.3 Structural View of the ACR System
	8.4 Summary
	8.5 Problems

	PART II: Foundations of OPM and SysML
	Chapter 9: Conceptual Modeling: Purpose and Context
	9.1 Systems, Modeling, and Systems Engineering
	9.1.1 Science and Engineering: Commonalities and Differences
	9.1.2 Conceptual Modeling and Model-Based Systems Engineering

	9.2 A Foundational Systems Engineering OPM Ontology
	9.2.1 Objects Exist, Processes Happen? Some Thought-Provoking Q&As
	9.2.2 The Object-Process Theorem
	9.2.3 The Object-Process Corollary
	9.2.4 The Object-Process Assertion: The Basis for OPM
	9.2.5 Why Not Just One Kind of Thing? A Graph with Nodes and Links?
	9.2.6 The Thing Importance OPM Principle

	9.3 Object, State, Transformation, and Process Defined
	9.4 System and Related Concepts
	9.4.1 Default System Naming
	9.4.2 Involved Humans: Stakeholder, Beneficiary, Customer, User, Supplier
	9.4.3 System Source: Natural or Artificial
	9.4.4 Function, Structure, and Behavior Definitions Refined
	9.4.5 The Need for Concurrent Structure-Behavior Modeling
	9.4.6 System Architecture
	9.4.7 System Environment and Thing’s Affiliation
	9.4.8 Function Versus Behavior

	9.5 Language and Modeling
	9.5.1 Model and Modeling
	9.5.2 Informal Versus Formal Models
	9.5.3 Complexity Management

	9.6 Summary
	9.7 Problems

	Chapter 10: Things: Objects and Processes
	10.1 The Object-Oriented Versus The Object-Process Approach
	10.2 Existence, Things, and Transformations
	10.2.1 Object Refined
	10.2.2 Objects and Human Memories

	10.3 Object Identity
	10.3.1 The Identity of Informatical Objects
	10.3.2 Process as a Transformation Metaphor
	10.3.3 Process Definition Refined
	10.3.4 Transformee Defined
	10.3.5 Cause and Effect

	10.4 Syntax Versus Semantics
	10.4.1 Are Objects and Processes the Semantic Analogues of Nouns and Verbs?
	10.4.2 Syntactic Versus Semantic Sentence Analysis
	10.4.3 The Preprocess Object Set
	10.4.4 The Postprocess Object Set
	10.4.5 The Involved Object Set

	10.5 The Procedural Link Uniqueness OPM Principle
	10.6 The Process Test
	10.6.1 The Object Transformation Criterion
	10.6.2 The Time Association Criterion
	10.6.3 The Verb Association Criterion
	10.6.4 An OPM Model of the Process Test System

	10.7 Naming OPM Elements
	10.7.1 Capitalization, Bolding, Phrase, and Thing Naming
	10.7.2 The Singular Name OPM Principle
	10.7.3 Process Naming

	10.8 Thing Defined
	10.9 Properties of OPM Things
	10.9.1 Default Values of Thing Generic Properties

	10.10 Boundary Cases of Things
	10.10.1 State-Preserving Processes
	10.10.2 How to Model State-Preserving Processes with Tagged Structural Links
	10.10.3 Transient Objects and Their Invocation Link Substitute

	10.11 Operator, Operand, and Transform
	10.12 Summary
	10.13 Problems

	Chapter 11: Object-Process Language: The Text
	11.1 OPL: The Textual Modality
	11.2 The Dual Purpose of OPL
	11.2.1 The Human-Oriented OPL Goal
	11.2.2 The Machine-Oriented OPL Goal

	11.3 The Graphics-Text Equivalence OPM Principle
	11.4 Metamodel of OPM Model Structure
	11.5 Reserved and Non-Reserved OPL Phrases
	11.6 Motivation for OPM’s Bimodal Expression
	11.6.1 The Dual-Channel Assumption
	11.6.2 Benefits of the Bimodal Representation
	11.6.3 Engaging the Customer: The Social Aspect
	11.6.4 Closing the Requirements-Design Gap

	11.7 Tesperanto: A Human Readable Auto-generated Text
	11.8 Summary
	11.9 Problems

	Chapter 12: SysML: Foundations and Diagrams
	12.1 UML: Unified Modeling Language
	12.2 SysML Pillars
	12.3 Requirements Diagram
	12.4 Blocks and Structure
	12.5 Activity Diagram
	12.5.1 Refining an Action into an Activity
	12.5.2 Accept, Send, and Time Event Action Nodes

	Sequence Diagram
	12.7 Requirements Diagram
	12.8 Parametric Diagram and Constraint Property Blocks
	12.9 SysML–OPM Comparison
	12.9.1 OPM Processes as First Class Citizens
	12.9.2 Physical and Informatical Things
	12.9.3 Model Multiplicity Versus Model Singularity
	12.9.4 Graphics Versus Bimodal Graphics-Text Combination
	12.9.5 Activity Diagrams Compared with OPDs
	12.9.6 Flow of Control in Activity Diagrams Versus OPDs
	12.9.7 OPM Implementation of a Requirements Diagram

	12.10 SysML–OPM Synergies
	12.11 Summary
	12.12 Problems

	Chapter 13: The Dynamic System Aspect
	13.1 Change and Effect
	13.2 Existence and Transformation
	13.2.1 Construction and Consumption: Extreme Object Changes
	13.2.2 Change of State or Change of Identity?
	13.2.3 Transformations in Living Organisms
	13.2.4 Transformations of Artificial Objects

	13.3 Procedural Links
	13.3.1 Transforming Versus Enabling Procedural Links
	13.3.2 Transformees

	13.4 Transforming Links
	13.4.1 Consumption and Result Timing
	13.4.2 The Evolution of Effect Link

	13.5 Enablers
	13.5.1 Agent: A Human Enabler
	13.5.2 Instrument: A Non-Human Enabler
	13.5.3 Enabling Links: Agent and Instrument Links
	13.5.4 Enabler Versus Affectee

	13.6 The Preprocess and Postprocess Object Sets
	13.7 State-Specified Procedural Links
	13.8 State-Specified Enabling Links
	13.9 State-Specified Transforming Links
	13.9.1 State Change Versus Object Consumption and Generation

	13.10 State-Specified Effect Links
	13.10.1 Value-Specified Procedural Links

	13.11 Summary
	13.12 Problems

	Chapter 14: The Structural System Aspect
	14.1 Structural Relations
	14.1.1 Binary Relations in the Focus
	14.1.2 Forward and Backward Structural Relations
	14.1.3 Structural Links Versus Structural Relations
	14.1.4 Structure Tag and Tagged Structural Link
	14.1.5 Bidirectional Tagged Structural Link

	14.2 Reciprocity and Transitivity of Structural Relations
	14.2.1 The Reciprocity Attribute of Structural Relation
	14.2.2 The Transitivity Attribute of Structural Relation
	14.2.3 Null Tags, Null Structural Links, and Their Default OPL Phrases
	14.2.4 Model-Specific Null Tags

	14.3 Structural Relations as State-Preserving Processes
	14.4 Summary
	14.5 Problems

	Chapter 15: Participation Constraints and Forks
	15.1 Structural and Procedural Participation Constraints
	15.2 Structural Participation Constraints
	15.2.1 Parameterized Structural Participation Constraints
	15.2.2 Range Participation Constraints

	15.3 Shorthand Notations and Reserved Phrases
	15.4 Cardinality
	15.4.1 The Four Common Cardinality Kinds
	15.4.2 The 16 Cardinality Kinds

	15.5 Procedural Participation Constraints
	15.5.1 Parameterized Procedural Participation Constraints
	15.5.2 Enabler and Transformee Participation Constraints

	15.6 The Distributive Law of Structural Relations
	15.7 Fork, Handle, and Tine
	15.8 The Tine Thing Set
	15.8.1 Fork Degree
	15.8.2 Fork Comprehensiveness
	15.8.3 Fork Orderability
	15.8.4 Tine Thing Set Order Rule

	15.9 Summary
	15.10 Problems

	Chapter 16: Fundamental Structural Relations
	16.1 Relation Symbols and Participants
	16.2 Relation Names and OPL Sentences
	16.3 Structural Hierarchies, Transitivity, User-Defined Symbols
	16.4 Summary
	16.5 Problems

	PART III: Structure and Behavior: Diving In
	Chapter 17: Aggregation-Participation
	17.1 Underlying Concepts
	17.1.1 Gestalt Theory
	17.1.2 Holism and Emergence
	17.1.3 Decomposition Depth
	17.1.4 Why Use “consists of” and not “has a”?

	17.2 Aggregation-Participation as a Fork
	17.3 A Semantic Web Example
	17.3.1 Different Phrases, Same Semantics

	17.4 Aggregate Naming
	17.5 Composite and Shared Aggregation in UML and SysML
	17.6 Expressing Parts Order
	17.7 Aggregation and Tagged Structural Relations
	17.8 Non-Comprehensive Aggregation
	17.8.1 Partial Aggregation Consumption

	17.9 The Parameterized Participation Constraints MiniLanguage
	17.10 Summary
	17.11 Problems

	Chapter 18: Exhibition-Characterization
	18.1 Feature and Exhibitor
	18.1.1 Primary and Secondary Qualities

	18.2 Attribute and Operation: The Two Kinds of Feature
	18.3 Features in UML and SysML Versus OPM
	18.4 OPM Thing and Feature Name Uniqueness
	18.5 The Four Thing-Feature Combinations
	18.5.1 The Object-Attribute Combination
	18.5.2 The Object-Operation Combination
	18.5.3 The Process-Attribute Combination
	18.5.4 The Process-Operation Combination

	18.6 Fundamental Structural Hierarchies
	18.7 The Attribute Naming Problem
	18.8 Properties of Features and Links
	18.8.1 Explicitness
	18.8.2 Mode
	18.8.3 Touch: A Property of a Quantitative Attribute
	18.8.4 Emergence
	18.8.5 The Link Homogeneity Property

	18.9 Summary
	18.10 Problems

	Chapter 19: States and Values
	19.1 State Defined
	19.1.1 State Enumeration
	19.1.2 Initial, Final, and Default States

	19.2 State Suppression and Expression
	19.2.1 State Specializations and Their Participation Constraints

	19.3 Value: A Specialization of State
	19.4 State Transition: When a Process Is Active
	19.5 Path Labels and Flip-Flop
	19.6 A Model of the Brain’s “Self-Organized Criticality”
	19.7 State-Specified Tagged Structural Links
	19.8 Compound States and State Space
	19.8.1 Multiple Condition Clause OPL Sentence
	19.8.2 Using Processes to Determine Compound States

	19.9 Summary
	19.10 Problems

	Chapter 20: Generalization and Instantiation
	20.1 Generalization-Specialization: Introduction
	20.1.1 Process Specialization
	20.1.2 Link Underand Over-Specification

	20.2 Inheritance
	20.2.1 Creating a General from Candidate Specializations
	20.2.2 Feature Inheritance
	20.2.3 Inheritance of Structural Relations
	20.2.4 State and Link Inheritance

	20.3 Specialization Through a Discriminating Attribute
	20.4 State-Specified Characterization Link
	20.5 Classification-Instantiation
	20.5.1 Classes and Instances
	20.5.2 Instantiation Versus Specialization

	20.6 The Relativity of Instance
	20.7 Constraining Attribute Values
	20.8 Process Instances
	20.9 Summary
	20.10 Problems

	Chapter 21: Complexity Management: Refinement and Abstraction
	21.1 The Need for Complexity Management
	21.2 The Model Complexity Assertion
	21.3 Aspect-Based Versus Detail-Level-Based Decomposition
	21.4 The Completeness-Clarity Trade-off
	21.5 State Expression and State Suppression
	21.6 Unfolding and Folding
	21.7 In-Diagram and New-Diagram Unfolding
	21.8 Port Folding
	21.9 In-Zooming and Out-Zooming
	21.9.1 In-Diagram and New-Diagram In-Zooming
	21.9.2 In-Zooming and Out-Zooming of Objects

	21.10 Synchronous Versus Asynchronous Process Refinement
	21.11 The Equivalence between In-Zooming and Unfolding
	21.12 The System Map and the Ultimate OPD
	21.13 The OPD Object Tree and Forest
	21.14 Out-Zooming
	21.15 Simplifying an OPD
	21.16 Abstraction Accounts for Procedural Link Precedence
	21.16.1 Precedence Among Transforming Links
	21.16.2 Precedence Among Transforming and Enabling Links
	21.16.3 Precedence Among Same-Kind Non-control Links and Control Links
	21.16.4 Summary of the Procedural Link Precedence

	21.17 Link Migration upon In-Zooming
	21.18 View Creating: The Fourth Refinement Mechanism
	21.19 Middle-Out as the De-facto Architecting Practice
	21.19.1 OPM Caters to the Mixed Approach
	21.19.2 When Should a New OPD Be Created?

	21.20 Navigating Within an OPM System Model
	21.20.1 OPM Diagram Labels and Tree Edge Labels
	21.20.2 Whole System OPL Specification

	21.21 Summary
	21.22 Problems

	Chapter 22: Operational Semantics and Control Links
	22.1 The Event-Condition-Action Control Mechanism
	22.2 Precondition, Preprocess and Postprocess Object Sets
	22.3 Kinds of Control Links
	22.4 Event Links
	22.4.1 Initiating a Non-first Subprocess via an Event Link
	22.4.2 Enabling and Transforming Event Links
	22.4.4 Invocation Links
	22.4.3 State-Specified Enabling and Transforming Event Links

	22.5 Condition Links
	22.5.1 Skipping Takes Precedence Over Waiting
	22.5.2 Condition Transforming Links
	22.5.3 Condition Enabling Links
	22.5.4 Condition State-Specified Transforming Links
	22.5.5 Condition State-Specified Enabling Links

	22.6 Exception Links
	22.6.1 Process Time Duration and Its Distribution
	22.6.2 Overtime Exception Link
	22.6.3 Undertime Exception Link

	22.7 Transformation Rate
	22.8 Computing with OPM
	22.9 Sets and Iterations
	22.10 Operational Semantics in In-Zoomed Process Contexts
	22.10.1 Implicit Invocation Link
	22.10.2 Implicit Parallel Invocation Link Set
	22.10.3 Link Distribution Across Context
	22.10.4 Split State-Specified Link Pairs

	22.11 Involved Object Set Instance Transformations
	22.12 UML’s Object Constraint Language (OCL)
	22.13 Summary
	22.14 Problems

	Chapter 23: Logical Operators and Probabilities
	23.1 Logical AND Procedural Links
	23.2 Logical NOT
	23.3 Logical XOR and OR Link Fans
	23.3.1 The Logical XOR Operator
	23.3.2 The Logical OR Operator

	23.4 Diverging and Converging XOR and OR Links
	23.5 Combinatorial XOR and Combinatorial OR
	23.5.1 Combinatorial XOR
	23.5.2 Combinatorial OR

	23.6 State-Specified XOR and OR Link Fans
	23.6.1 Control-Modified Link Fans
	23.6.2 State-Specified Control-Modified Link Fans

	23.7 Multiple Control Links Have OR Semantics
	23.8 Link Probabilities and Probabilistic Link Fans
	23.9 Summary
	23.10 Problems

	Chapter 24: Overview of ISO 19450
	24.1 The ISO 19450 Introduction
	24.2 ISO 19450 Terms, Definitions, and Symbol Sections
	24.3 Object-Process Methodology Principles and Concepts
	24.4 The Four Annexes of ISO 19450
	24.4.1 Annex A: Normative: OPL Formal Syntax in EBNF
	24.4.2 Annex B – Informative: Guidance for OPM
	24.4.3 Annex C – Informative: Modeling OPM Using OPM
	24.4.4 Annex D – Informative: OPM Dynamics and Simulation

	References
	OPM Principles at a Glance

	References
	OPM Principles at a Glance
	Index

