Run exercises_01.Rmd if you have not just done that. # Facets… when you want to map too many categorical variables Actually, this is no exercise, let Silvie explain.


mar1_comparison_time %>% 
  ggplot() + 
  geom_boxplot(mapping = aes(x = world_6region, 
                             y = age_at_1st_marriage_women, 
                             alpha = past_20_years, 
                             fill = main_religion_2008) ) + 
  scale_y_continuous(limits = c(12,35), 
                     breaks = seq(from = 12, to = 35, by = 1), 
                     name = "Women's age at their 1st marriage "
                     ) +
  scale_alpha_discrete(name = "", labels = c("long ago", "past 20 years"), range = c(0.1, 1)) + 
  coord_flip() + facet_wrap(facets = ~ main_religion_2008, ncol = 1 )
mar1_comparison_time %>% 
  ggplot() + 
  geom_boxplot(mapping = aes(x = main_religion_2008, 
                             y = age_at_1st_marriage_women, 
                             alpha = past_20_years, 
                             fill = main_religion_2008) ) + 
  scale_y_continuous(limits = c(12,35), 
                     breaks = seq(from = 12, to = 35, by = 1), 
                     name = "Women's age at their 1st marriage "
                     ) +
  scale_alpha_discrete(name = "", labels = c("long ago", "past 20 years"), range = c(0.1, 1)) + 
  coord_flip() + facet_wrap(facets = ~ world_6region, ncol = 1)
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQpSdW4gYGV4ZXJjaXNlc18wMS5SbWRgIGlmIHlvdSBoYXZlIG5vdCBqdXN0IGRvbmUgdGhhdC4gCiMgRmFjZXRzLi4uIHdoZW4geW91IHdhbnQgdG8gbWFwIHRvbyBtYW55IGNhdGVnb3JpY2FsIHZhcmlhYmxlcwpBY3R1YWxseSwgdGhpcyBpcyBubyBleGVyY2lzZSwgbGV0IFNpbHZpZSBleHBsYWluLiAKCmBgYHtyIGZpZy53aWR0aD04LHdhcm5pbmc9RkFMU0V9CgptYXIxX2NvbXBhcmlzb25fdGltZSAlPiUgCiAgZ2dwbG90KCkgKyAKICBnZW9tX2JveHBsb3QobWFwcGluZyA9IGFlcyh4ID0gd29ybGRfNnJlZ2lvbiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgeSA9IGFnZV9hdF8xc3RfbWFycmlhZ2Vfd29tZW4sIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgIGFscGhhID0gcGFzdF8yMF95ZWFycywgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZmlsbCA9IG1haW5fcmVsaWdpb25fMjAwOCkgKSArIAogIHNjYWxlX3lfY29udGludW91cyhsaW1pdHMgPSBjKDEyLDM1KSwgCiAgICAgICAgICAgICAgICAgICAgIGJyZWFrcyA9IHNlcShmcm9tID0gMTIsIHRvID0gMzUsIGJ5ID0gMSksIAogICAgICAgICAgICAgICAgICAgICBuYW1lID0gIldvbWVuJ3MgYWdlIGF0IHRoZWlyIDFzdCBtYXJyaWFnZSAiCiAgICAgICAgICAgICAgICAgICAgICkgKwogIHNjYWxlX2FscGhhX2Rpc2NyZXRlKG5hbWUgPSAiIiwgbGFiZWxzID0gYygibG9uZyBhZ28iLCAicGFzdCAyMCB5ZWFycyIpLCByYW5nZSA9IGMoMC4xLCAxKSkgKyAKICBjb29yZF9mbGlwKCkgKyBmYWNldF93cmFwKGZhY2V0cyA9IH4gbWFpbl9yZWxpZ2lvbl8yMDA4LCBuY29sID0gMSApCmBgYAoKYGBge3IgZmlnLndpZHRoPTEwLCB3YXJuaW5nPUZBTFNFfQptYXIxX2NvbXBhcmlzb25fdGltZSAlPiUgCiAgZ2dwbG90KCkgKyAKICBnZW9tX2JveHBsb3QobWFwcGluZyA9IGFlcyh4ID0gbWFpbl9yZWxpZ2lvbl8yMDA4LCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICB5ID0gYWdlX2F0XzFzdF9tYXJyaWFnZV93b21lbiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYWxwaGEgPSBwYXN0XzIwX3llYXJzLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICBmaWxsID0gbWFpbl9yZWxpZ2lvbl8yMDA4KSApICsgCiAgc2NhbGVfeV9jb250aW51b3VzKGxpbWl0cyA9IGMoMTIsMzUpLCAKICAgICAgICAgICAgICAgICAgICAgYnJlYWtzID0gc2VxKGZyb20gPSAxMiwgdG8gPSAzNSwgYnkgPSAxKSwgCiAgICAgICAgICAgICAgICAgICAgIG5hbWUgPSAiV29tZW4ncyBhZ2UgYXQgdGhlaXIgMXN0IG1hcnJpYWdlICIKICAgICAgICAgICAgICAgICAgICAgKSArCiAgc2NhbGVfYWxwaGFfZGlzY3JldGUobmFtZSA9ICIiLCBsYWJlbHMgPSBjKCJsb25nIGFnbyIsICJwYXN0IDIwIHllYXJzIiksIHJhbmdlID0gYygwLjEsIDEpKSArIAogIGNvb3JkX2ZsaXAoKSArIGZhY2V0X3dyYXAoZmFjZXRzID0gfiB3b3JsZF82cmVnaW9uLCBuY29sID0gMSkKYGBgCgoK