
Beginning Progressive
Web App Development

Creating a Native App Experience on the Web
—
Dennis Sheppard

Beginning Progressive
Web App Development
Creating a Native App Experience

on the Web

Dennis Sheppard

Beginning Progressive Web App Development

ISBN-13 (pbk): 978-1-4842-3089-3			 ISBN-13 (electronic): 978-1-4842-3090-9
https://doi.org/10.1007/978-1-4842-3090-9

Library of Congress Control Number: 2017961107

Copyright © 2017 by Dennis Sheppard

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Technical Reviewer: Phil Nash
Coordinating Editor: Jill Balzano
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484230893. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Dennis Sheppard
Tinley Park, Illinois, USA

https://doi.org/10.1007/978-1-4842-3090-9

For my dad, who only ever asked that I try my best.

v

About the Author�� xi

About the Technical Reviewer�� xiii

Acknowledgments��xv

Table of Contents

Part I: Intro to PWAs and Tooling... 1

Chapter 1: �Introduction to Progressive Web Apps��� 3

What a Progressive Web App Actually Is�� 5

Current and Future PWA Support��� 8

Looking Ahead��� 10

Chapter 2: �Tools to Measure Progressive Web Apps��� 11

A Light to Keep You Off the Rocks�� 11

Chrome DevTools��� 15

Webpagetest.org�� 18

Looking Ahead��� 20

Part II: PWA Features... 21

Chapter 3: �Service Workers��� 23

Promises�� 25

Fetch�� 29

Service Workers��� 30

Register the Service Worker�� 31

Updating the Service Worker��� 38

Other DevTools Options�� 42

vi

Browser Compatibility�� 43

Service Worker Recap�� 43

Looking Ahead��� 43

Chapter 4: �Caching and Offline Functionality with Service Workers����������������������� 45

The fetch Event�� 45

The Cache API�� 47

Going Offline�� 53

Different Caching Strategies�� 56

Updating the Cache�� 61

sw-precache�� 63

sw-toolbox��� 65

Dynamic Page Caching�� 69

Looking Ahead��� 71

Chapter 5: �Background Sync for Offline Apps with Service Workers���������������������� 73

The Background Sync API�� 73

Registering for sync��� 73

Listening for sync��� 74

Implementation Details of Using sync�� 75

Testing for Offline Sync�� 80

Making Improvements��� 81

Data Storage�� 82

IndexedDB vs. localForage��� 82

Using localForage For Better Offline Support��� 86

The message Service Worker Event��� 90

Looking Ahead�� 93

Chapter 6: �Adding your App to the Home Screen with Web App Manifest�������������� 95

Installing the App to the Home Screen�� 100

Handling Installation Events��� 100

Manually Adding the App to the Home Screen��� 101

Table of Contents

vii

The App Splash Screen�� 104

The display Property�� 106

The start_url Property�� 107

Looking Ahead��� 107

Chapter 7: �Notifications��� 109

Web Notifications��� 111

Requesting Permission to Notify�� 111

Sending a Notification�� 113

Tagging Notifications�� 116

Web Notifications with Service Workers�� 116

Push Notifications�� 118

Subscribing a User to Push Notifications��� 119

Saving the PushSubscription Object�� 124

Triggering the Push Notification��� 128

Catching Push Events in the Service Worker�� 130

Testing Push on Mobile�� 133

Handling Notification Click Events�� 135

Looking Ahead�� 137

Chapter 8: �App Shell Architecture and Loading Performance������������������������������� 139

What an App Shell Is�� 139

Caching the App Shell�� 143

Measuring App Shell Performance�� 145

Going Beyond the App Shell��� 146

Render Blocking Scripts��� 148

Async and Defer��� 149

Deferring Stylesheet Parsing and Execution�� 151

Preloading JavaScript and CSS and Other Resources�� 151

Looking Ahead�� 153

Table of Contents

viii

Chapter 9: �Exploring HTTP/2 and Server Push�� 155

Head-of-Line Blocking��� 155

Header Compression�� 158

Introducing HTTP/2�� 159

Implementing HTTP/2 in Node.js�� 159

Server Push�� 162

Deploying HTTP/2 and Server Push��� 168

Measuring the Impact of HTTP/2 and Server Push�� 169

Looking Ahead��� 172

Part III: Putting the Features to Use.. 173

Chapter 10: �Turning a Real App into a PWA��� 175

The Movies Finder App��� 175

The Plan to Make a PWA�� 180

Getting the Code and Running It�� 181

Setting Up sw-precache�� 182

Caching All the Things��� 186

Deploying to Firebase�� 189

Moving the Render-Blocking Stylesheet�� 193

Implementing Server Push��� 193

Adding the App Manifest�� 197

Thoughts on Movies Finder Performance�� 206

Looking Ahead��� 207

Chapter 11: �PWAs From the Start�� 209

React PWA�� 210

Creating a React App�� 211

Configuring the Service Worker�� 213

Running and Building the React App�� 214

Deploying and Measuring Your React PWA��� 215

Summary of React’s PWA Effort��� 217

Table of Contents

ix

Preact PWA�� 217

Preact CLI��� 218

Running the Built-in Preact HTTP/2 Server�� 219

Preact CLI Plugins��� 220

Running Lighthouse on Firebase-Deployed Preact��� 221

Summary of Preact’s PWA Effort�� 223

Vue.js PWA��� 223

Vue CLI and PWA Creation�� 224

What the Deployed Vue PWA Offers�� 225

Running Lighthouse on Firebase-Deployed Vue��� 227

Summary of Vue’s PWA Effort�� 229

Angular PWA�� 229

Angular’s Rocky PWA Start��� 230

Building the Angular PWA��� 231

Running Lighthouse on Firebase-Deployed Angular��� 232

Summary of Angular’s PWA Offering�� 233

Ionic PWA��� 233

Installing Ionic�� 234

Enabling the Ionic Service Worker�� 236

Building Ionic�� 236

Deploying and Testing the Ionic PWA��� 237

Summary of Ionic’s PWA Offering��� 239

Starting a PWA from Scratch��� 240

Looking Ahead��� 240

Part IV: Leveling Up Your PWA... 241

Chapter 12: �Leveling Up Your PWA�� 243

Google’s PRPL Pattern��� 243

Lazy Loading��� 244

Code Splitting��� 244

Table of Contents

x

Analyzing Bundles�� 246

Server-Side Rendering��� 249

Drawbacks to Server-Side Rendering�� 251

Resources to Implement Server-Side Rendering��� 251

Pre-Rendering�� 252

Web Workers�� 252

PWA News�� 256

Safari�� 256

Workbox�� 256

A Last Word�� 259

Index�� 261

Table of Contents

xi

About the Author

Dennis Sheppard is the VP of Technology at NextTier Education, a startup dedicated

to helping students navigate the college selection process. Long before that, though,

Dennis graduated from Louisiana Tech University with a computer science degree and

went on to develop and architect software for almost a dozen different industries. With

over 10 years of professional software development experience, he has built his share of

web applications, for both mobile and desktop. Because of that, Dennis strongly believes

in the power of Progressive Web Apps to further help the tech world reach those who

don’t have access to the fastest networks and latest and greatest phones. He was born

and raised in the Deep South, but migrated to the suburbs of Chicago where he lives

with his wife, a set of twins who are growing up way too fast, and an arthritic but playful

golden retriever.

xiii

About the Technical Reviewer

Phil Nash is a developer evangelist for Twilio and a Google

Developer Expert. He's been in the web industry for 10 years

building with JavaScript, Ruby, and Swift. He can be found

hanging out at meetups and conferences, playing with new

technologies and APIs, or writing open source code online.

Sometimes he makes his own beer, but he’s more likely to be

found discovering new ones around the world.

Phil tweets at @philnash and you can find him elsewhere

online at https://philna.sh.

https://philna.sh/

xv

Acknowledgments

I think everyone who has ever written a book has at least a little bit of crazy in them.

Because of that, there needs to a handful of people to help manage the crazy. I’m

particularly lucky to have a lot of people to help me with that. Without these people,

what you’re about to read would be a much bigger mess than it already is.

First, a huge thank you to Brooke McEntee for creating the diagrams and icons in the

book. She did a miraculous job transforming my awful sketches into what you see here. If

any part of the diagrams isn’t perfect, that’s 100% on me.

Thank you to my friend and coworker Carly Kaluzna for her encouragement and for

coming up with the name iPatch, so you can blame her for that. Thank you to my former

co-author AJ Liptak whom I constantly bounce ideas off and ask technical questions

that I could just as easily google. Thanks to Becky Lehmann for helping me to be a better

teacher and urging me to continue with unparalleled positivity. Thanks to Rick Williams

for being ready to celebrate with me as soon as this book is finished. Thank you to Justin

Shiffman who always champions whatever I’m working on, even if he did say he’d pay

me not to write another book. Thank you to Dave Hoag who first introduced me to PWAs

a couple of years ago, and thank you to the entire NextTier team, who will have a new

addition to the book-stack monitor stands.

Thank you to the team at Apress: Joan Murray, Jill Balzano, and Laura Berendson, as

well as the book’s technical reviewer, Phil Nash.

Thanks to Addy Osmani, Jake Archibald, John Papa, and many others in the PWA dev

community. We’ve never met, but you’ll never know how much you’ve taught me.

Thank you to my family for instilling in me a love of books growing up. Thank you to

Violet, Cameron, and Betsy Sheppard for always inspiring and motivating me.

And finally, thank you, Reader. With all of the videos and blogs and tutorials available

on the Internet today, a tech book isn’t always an easy purchase. Thank you for having

faith. I hope you learn a lot and have a little bit of fun.

A note on the use of certain images: the browser icons used in Chapter 1 were

designed by Pixel Buddha from Flaticon, the iPatch app’s pirate icon first introduced

in Chapter 6 was created by freedesignfile.com, and Peggy the Parrot’s image first

introduced in Chapter 7 was created by Freepik.

PART I

Intro to PWAs and Tooling

3
© Dennis Sheppard 2017
D. Sheppard, Beginning Progressive Web App Development, https://doi.org/10.1007/978-1-4842-3090-9_1

CHAPTER 1

Introduction
to Progressive Web Apps
When was the last time you visited an app’s mobile web site rather than its native app

counterpart? Was it an enjoyable experience? What did you like about it? What could

have been better?

Possibly one of the things you liked was the convenience. You didn’t have to go to

an app store to download the app and you didn’t have to worry about the app being

unavailable for your particular phone. You weren’t forced to install anything to clutter up

your phone’s home screen with another app icon.

Was there anything you didn’t like? Was the web app slower to load than you

would’ve liked? If you didn’t have a solid 4G Internet connection, data might not have

displayed quickly or correctly. Maybe you would’ve liked to receive notifications of an

alert in the app. Perhaps you don’t mind the home screen clutter and would have liked

the option to save the app to your home screen so you wouldn’t have to type in the URL

again next time.

For most mobile web sites you visit today, these are some of the tradeoffs you have

to make. The Web has significant reach; no need for the latest iPhone just to get content.

From your grandma’s 10-year-old computer to a five-year-old Android tablet to the most

cutting edge phone, the Web is everywhere. No one can deny its reach. Unfortunately,

depending on your Internet connection, it can be slow and clunky.

Over time, there have been improvements. Processors got faster, browsers got

smarter, and blog posts about performance tips and tricks are only a Google search

away. Unfortunately, though, all of that wasn’t enough. The Web could still be slow

on poor connections. Sites had no way to notify you of something going on in the app.

And the idea of a web app working with little or no connectivity was crazy. It seemed

like after all was said and done, native apps were not only a clear winner, but really the

only logical choice for app developers. In fact, a 2015 report from comScore noted that

4

smartphone users spend 87 percent of their time in apps (www.comscore.com/Insights/

Presentations-and-Whitepapers/2016/The-2016-US-Mobile-App-Report); see

Figure 1-1.

Figure 1-1.  Apps take up all our time, according to comScore

Yikes! What are you doing reading a book about web apps, then? Let’s learn about

Swift and Kotlin! Well, don’t ditch this book just yet! It’s true that users love their apps.

The deepest engagement is in apps. But good luck getting that level of engagement.

Another 2015 report, this time Forrester’s US Consumer Technographics Behavioral

Study from October 2014 to December 2014, noted that smartphone users spend 84

percent of that time in five apps. It’s a different top five for most users, but unless you’re

Facebook, Snapchat, Instagram, or Google, there is a great chance you aren’t cracking

that top five. Back away from the Swift book!

In fact, because most users cling tightly to their favorite five apps, mobile web

actually gets more eyeballs than apps do, as you can see in Figure 1-2.

Chapter 1 Introduction to Progressive Web Apps

http://www.comscore.com/Insights/Presentations-and-Whitepapers/2016/The-2016-US-Mobile-App-Report
http://www.comscore.com/Insights/Presentations-and-Whitepapers/2016/The-2016-US-Mobile-App-Report

5

After the most popular apps, there’s a steep drop off of mobile app usage. So if you’re

producing the 912th most visited mobile web site, you’re going to get around three times

more visitors than if you’re producing the 912th most used mobile web app. That is

significant. No one can doubt the Web’s vast reach.

So what does this mean for those of us who aren’t developing for billion dollar

companies (or at least those of us who aren’t developing for billion dollar companies

that produce a user’s top five apps)? It means that the little bit of user’s time we can

capture on the Web had better be good.

And that’s where Progressive Web Apps swoop in to save the day.

�What a Progressive Web App Actually Is
Let’s forget about simply visiting a web app for a moment. Have you ever tried to build a

mobile web app? Did it perform as well as you would’ve liked? Did you try it on a really

old Android phone? Were you able to alert your users of new content or a new message

from your app? Unless you had the opportunity to implement features of Progressive

Web Apps, it’s possible that your users had a suboptimal experience.

Figure 1-2.  But mobile web takes up all our eyeballs, according to comScore

Chapter 1 Introduction to Progressive Web Apps

6

Progressive Web Apps aren’t built using a singular, specific technology. They’re not

a new framework, and they’re not a new language. Instead, PWAs are a set of strategies,

techniques, and APIs that allow developers to give users the native mobile-like

experience they’re used to.

Progressive Web Apps are

•	 Fast, often rendering something on the user’s device in less than a

couple of seconds.

•	 Reliable, even without a solid data connection, and even on old

devices.

•	 Engaging, because by enabling notifications, even on the Web, users

can be alerted to whatever is happening in your app, even if the

browser isn’t open. Users can even install a Progressive Web App

right to their phone’s home screen. Developers can choose the icon

and even set up a splash screen.

Possibly the best part of Progressive Web Apps, though, is inherent to the platform:

their reach. There are 6.4 BILLION devices connected to the Internet. That’s a lot of

devices, and a lot of reach. You don’t need to learn Objective-C or Swift or Java or Kotlin

to reach every one of those 6.4 billion devices. You can use the tools you likely already

know: HTML, CSS, and JavaScript.

So now let’s get down to the nuts and bolts of what makes up a Progressive Web App.

A Progressive Web App, first and foremost, works everywhere. Even if it’s a small

subset of features, to be a true PWA, your app needs to have some kind of functionality

on the most basic device. Maybe it’s just a static page that shows up on a five-year-old

Android phone. But it works. It’s not just a blank screen or a bunch of error messages.

As your user’s browser gets more modern, more features become available to your

user. This is known as progressive enhancement. Figure 1-3 shows that the same code

that displays as a plain website grows into a powerful application as browser support

improves. That’s where the true power of PWAs comes in: your users’ experiences get

progressively better as their browsers get better. The experience improves via a collection

of features that gives your app depth to engage users, reliability regardless of the quality

of the Internet connection, and enough speed so that it doesn’t make anyone wait

around for your content to load. I’ll cover each of those features in depth later on, but so

that you’re not left hanging, let’s talk about a few of them at a high level.

Chapter 1 Introduction to Progressive Web Apps

7

Offline support: The main page of your app loads even while the user is offline. This

is accomplished with service workers. I’ll show how to use service workers to accomplish

what you see in Figure 1-4: how to cache your app’s assets so that even if your users don’t

have the best Internet connection (or a connection at all), they still get to soak in your

sweet, sweet content.

Figure 1-3.  Progressive enhancement

Figure 1-4.  Offline support via caching

Performance: (Yes, performance absolutely is a feature!) The app’s first page

load is fast, even on slow 3G connections. There are a few things I’ll cover that go into

making that a reality, but an important one is having an app shell. I’ll go over creating

an app shell that renders almost instantly while the rest of your app is loading. Another

important feature for performance is web workers that allow you to make other parts of

your app do the heavy processing that would normally slow down your UI.

Home screen icon and a splash screen: Your app can be added to the user’s home

screen so they don’t have to navigate to a URL every time they want to use your app. And

at the app’s launch, instead of a blank white screen while your app is loading, you can

Chapter 1 Introduction to Progressive Web Apps

8

have a splash screen just like those fancy native apps. You’ll use the app manifest to take

care of all that.

Notifications: If there’s anything going on in your app that the user should know

about while they’re not actively using it, the app can notify them with push notifications.

I’ll cover the web notifications and the Push API so you can remind your users about that

aforementioned content.

�Current and Future PWA Support
PWAs are exciting. But let’s throw in a little dose of reality. One of the biggest downsides

of the Web that has been a struggle since the beginning of time is browser support.

Ugh, browsers. There are so many, and each one doesn’t always support the latest and

greatest awesome technology. Alas, such is the case for PWAs. Remember, though, one

of the most important tenets of PWAs is that they should provide a progressively better

experience for your users as their browsers’ capabilities increase. So just because a

browser doesn’t support a feature you’re really looking forward to implementing doesn’t

mean you should abandon all hope, nor does it mean that the browser might not support

it in the future. Plus, if a user is checking out your app on a browser that does support

most or all PWA features, that user is in for an excellent World Wide Web experience.

For the most part, we’ll be focusing on five major browsers: Chrome, Safari, Firefox,

Opera, and Edge. Because PWAs are such a focus of Google’s lately, it should come as no

surprise that, as you can see in Figure 1-5, Chrome has the most robust support for every

PWA feature, followed by Firefox and Opera, with Safari and Edge trailing the others

fairly significantly in their support.

Chapter 1 Introduction to Progressive Web Apps

9

Note T here are other browsers that have solid usage, depending on where in the
world you live. A couple of the more popular ones are UC Browser, which is widely
used in Asia, and Samsung Internet Browser, which has a large share of the market
in Europe. Both have solid PWA support that’s almost on par with Chrome.

Let’s go over some of the individual features we’ve talked about and look at their

current support.

Service workers: On the desktop, Chrome fully supports service workers and has

had some level of support since early 2015. The same goes for Firefox and Opera. As of

mid-2017, Edge supported service workers, but not by default; they had to be enabled

via a setting in the browser. As of Edge 16, however, they’re enabled by default. In a great

coup for PWAs and service worker domination, Safari announced in August of 2017 that

service worker support was under development. By the time you’re reading this, Safari

should (hopefully) support service workers like a boss. On the mobile side, the story is

similar. Android supports service workers through Chrome, while iOS has no service

worker support right now, but it is on the way!

Figure 1-5.  Browser PWA support hierarchy

Chapter 1 Introduction to Progressive Web Apps

10

Web workers: Web workers have the best browser support of just about any PWA

feature. Every major browser fully supports web workers on both desktop and mobile.

Push API and Notification API: The story here is similar to service workers. On the

desktop, Chrome, Firefox, and Opera all support both the Push API and web notifications

(I’ll dive into the differences in Chapter 6). While Safari supports web notifications, it has

a custom implementation for push notifications. Edge supports web notifications, but

has no Push API support. On the mobile side, iOS has no support for either feature, while

Android supports just the Push API.

Web app manifest: Again, Chrome and Opera come out as clear winners here. The

app manifest is supported in those two browsers and on Android. Unfortunately, no

other browsers support the app manifest, yet. Edge and Firefox, however, are currently

working on implementing support, and as of mid-2017, Firefox did support a handful of

web app manifest features. Safari is taking the web app manifest under consideration.

IndexedDB: Almost every major browser supports IndexedDB on both desktop and

mobile browsers. The lone exception is Edge, which has partial support.

Please keep in mind that support for these technologies will only improve (until

something better comes along). So if you’re reading this far into the future, do a little

research to see if a particular feature is supported in different browsers. The Mozilla

Developer Network and www.caniuse.com are both great resources to find out what web

features are compatible with various browser versions.

�Looking Ahead
In this book, you’ll learn how to implement all these features (and others) to make your

web apps super powered. Along the way, you’ll learn how to measure your app to make

sure it’s not missing any PWA features that could take your app to the next level. And

once you’ve learned all of that, you’re going to take a real-world “traditional” application

and turn it into a blazing fast PWA with all of your newfound knowledge. If you’re a React

dev or you’re an Angular dev (no framework wars, please!), you’re covered there, too.

I’ll go over how to start off on the right foot with your new app built in a lot of the most

popular JS frameworks around today. Then, in case your app needs just one more extra

nudge, I’ll go over a few more essential performance items that will really help your users

forget about native apps. Let’s get started!

Chapter 1 Introduction to Progressive Web Apps

http://www.caniuse.com/

11
© Dennis Sheppard 2017
D. Sheppard, Beginning Progressive Web App Development, https://doi.org/10.1007/978-1-4842-3090-9_2

CHAPTER 2

Tools to Measure
Progressive Web Apps
Before you go too far down the path of learning how to implement PWA features, it may

help to know exactly what goals you’re trying to achieve, and how to measure your apps

against those goals. I’ve already mentioned the core principles of Progressive Web Apps,

but there are a lot of other little things I haven’t touched on. Most of them wouldn’t

warrant a discussion all on their own; they’re just simple things you should do to make

your app all it can be.

How do you know what those little things are? There’s a PWA checklist that Google

helpfully provides at https://developers.google.com/web/progressive-web-apps/

checklist. This is a great list of goals, and even breaks them up into “Baseline” and

“Exemplary” goals. Reading this list will give you a good idea of what you can do as a

developer to build really great web apps. Even better, though, would be if you could see

certain sites in action and easily compare them to your list of goals to see if even big-

name sites can cross everything off that list. This is where Lighthouse comes in.

�A Light to Keep You Off the Rocks
Google’s Lighthouse tool evaluates a site to see how well it complies with Progressive

Web App principles. There are three ways to use Lighthouse: through the CLI, via the

Audit tab in Chrome DevTools, and through the Chrome plugin. Let’s go through the

plugin installation as well as the process to run a report in DevTools to see exactly what

you can measure.

To install the plugin, open Chrome and go to the Chrome Web Store and search for

Lighthouse (or simply search Google for Chrome Lighthouse). Install the extension and

you should have a new icon in your list of extensions.

https://developers.google.com/web/progressive-web-apps/checklist
https://developers.google.com/web/progressive-web-apps/checklist

12

Now, let’s navigate to a site. Here we’ll look at Reddit.com, but feel free to try something

else. Once the site loads, open Lighthouse and you’ll see a Generate a Report button. Once

you click that, you will see what Lighthouse options are available to you, as in Figure 2-1.

Figure 2-1.  Lighthouse options

Currently there are four different categories you can ask Lighthouse to test for:

•	 Progressive Web App

•	 Performance

•	 Accessibility

•	 Best Practices

Leave all of them checked so you’re able to see everything Lighthouse tests.

Click the Generate Report button. As soon as you do that, Lighthouse is going to start

doing things to that browser tab. It will resize it and reload it and lots of other things. Let

it work for a minute, and soon it will generate a report.

There are a lot of results. Results for Reddit show scores of 45/100 for Progressive

Web App, 45/100 for performance, 94/100 for accessibility, and 85/100 for best practices.

I’m not going over each of these results because a) that’d take forever b) you

might not be that interested in every one of them and c) the results come with handy

Chapter 2 Tools to Measure Progressive Web Apps

13

explanations because each item is expandable. Let’s take a few minutes to talk about

what a few of the most important items are and why they’re important. I’ll get into fixing

any issues with these items throughout the book.

Let’s start with the PWA section in Figure 2-2.

Figure 2-2.  Lighthouse results: Progressive Web App section

Here, you can see that Reddit does not register a service worker. Thus, the site won’t

load anything when you have no connection, and items won’t be cached with the Cache

API for fast retrieval on subsequent page loads.

Now let’s take a look at something Reddit passes, and something I haven’t talked

about yet. Reddit uses HTTPS. HTTPS is an extremely important security measure for

web apps to help prevent malicious attacks. Long gone are the days when only sites that

handled financial or medical data and the like needed to secure their apps.

Feel free to explore the other sections of the PWA score for the site you chose. For

now, let’s move on to the Performance section.

The interesting sections here to note are the First meaningful paint and the First

Interactive. These are the times in which your users see your content for the first time.

There are numerous studies showing engagement rates based on how long it takes a site

to load. Faster is better. You’ll look at various ways to increase your score on this metric,

but Lighthouse gives a few suggestions of its own, including reducing the number of

Chapter 2 Tools to Measure Progressive Web Apps

14

blocking resources. These are resources such as stylesheets or scripts that need to load

before your page renders on the screen. That results in a perceived longer load time for

your app. Also notice in Figure 2-3 the pretty handy series of screenshots Lighthouse

provides of the different loading states of your app.

Figure 2-3.  Lighthouse results: Performance section

Chapter 2 Tools to Measure Progressive Web Apps

15

Also interesting to note here is Avoids an excessive DOM size. The more intricate

your app’s layout is, the longer it will take to render. Sometimes a complex layout is just

inherent to your app’s design, but it’s something to consider when you’re thinking about

performance.

Onward to the Accessibility section. Accessibility is a very large topic, and for the

most part it’s out of the scope of this book. There are many wonderful resources you can

seek out to find ways to make your site accessible to anyone. That’s what accessibility is

all about: ensuring your app’s content and functionality is available to anyone who wants

it, particularly those with a physical impairment that could otherwise make accessing

your app difficult. Take a few minutes to read through this section of Lighthouse and

you’ll get an idea of what you should keep in mind while developing your application.

These aren’t difficult guidelines to follow, and most developers simply need to be made

aware that they exist in order to implement them.

The last section of the Lighthouse report is Best Practices. Obviously that’s a pretty

broad term, so let’s take a look at some of the metrics. Here you’ll find Uses HTTPS again

just like in the PWA section. Two for the price of one; let’s take it. You should also see

somewhere in there Avoids Application Cache and Avoids WebSQL DB. Both of these

technologies are deprecated in favor of service workers and IndexedDB, respectively,

and I’ll cover those newer, better technologies later on. You should take a few moments

to read over each of them, but the last one we’ll look at together is Avoids requesting the

notification permission on page load. That’s an easy one to pass if your app doesn’t have

notifications. However, if you do plan on implementing notifications for your app, there

are better ways to ask the user for notification permission than blasting them in the face

as soon as the app loads. I’ll cover more of that in Chapter 7.

That’s Lighthouse. Each section has a corresponding explanation and a lot of

material to go along with it, provided by Google. It’s worth spending some time on

each of them, but until you’re at a good spot in building your PWA, it might not be that

helpful. So for now, let’s move on.

�Chrome DevTools
Lighthouse is the primary PWA measurement tool, but there are other tools that can help

you create better PWAs. A big one is Chrome DevTools. Browser developer tools have

come a long way since the Firebug days of Firefox. They’re for more than inspecting the

DOM or debugging JavaScript. Chrome DevTools are a boon to the productivity of

front-end developers.

Chapter 2 Tools to Measure Progressive Web Apps

16

It is absolutely worth taking some time to really learn the ins and outs of DevTools.

I’ll talk about some things in there that might be particularly helpful for building PWAs.

The first big item has to do with simulating offline behavior. I’ve already talked a lot

about offline capabilities being a big part of PWAs, and you can test those capabilities

by opening DevTools, navigating to the Network tab, and clicking the checkbox that says

Offline, as you can see in Figure 2-4. In doing so, the particular site you have open will

behave as though you have no Internet connection. Very handy!

Figure 2-4.  Offline mode in Chrome DevTools

Another handy feature is right next door to offline mode: Throttling. This setting will

make the site you have open behave as though your Internet connection is limited to

whichever option you choose, most of which are visible in Figure 2-5. One of the core

tenets of PWAs is that your app loads reasonably fast (under 10 seconds) on 3G. This is a

good way to test that scenario.

Figure 2-5.  Throttling settings to test slow connections

Underneath the Application tab of DevTools, you’ll find an option at the top left for

viewing your app’s manifest file. Take a look at Figure 2-6. Here you can see the app’s

name, short name, the start URL, the theme color, background color, app orientation,

favicons, and more. I’ll look at the app manifest in more detail in Chapter 6, but now

you already know how to view it!

Chapter 2 Tools to Measure Progressive Web Apps

17

Immediately below the Manifest option underneath the Application tab, you’ll see

a section called Service Workers where you can see all the service workers installed for

the current app. As in Figure 2-7, you’re presented with the status and information of

the service worker and presented with options such as unregistering the service worker,

options to fire a sync event to test the background sync API, and updating the service

worker. From here you can even send a test push notification. I’ll get into why you might

use these options in the next chapter on service workers.

Figure 2-6.  App Manifest section of DevTools

Figure 2-7.  Service Worker section of DevTools

Chapter 2 Tools to Measure Progressive Web Apps

18

Going just a little further down that left column under the Application tab, you’ll see a

section for IndexedDB where you can see the key value pairs stored in IndexedDB. I’ll cover

this in more depth in Chapter 5, but you can see what the section looks like in Figure 2-8.

Figure 2-8.  IndexedDB section of DevTools

The last piece of Chrome’s DevTools we’ll look at is the Cache section, which is also

under the Application tab. If you expand the Cache Storage item, as in Figure 2-9, you’ll

see the service worker cache for the app, which will display all the items currently in the

cache on the right. From there, you can delete or refresh items in the cache.

Figure 2-9.  Cache Storage section of DevTools

�Webpagetest.org
The last tool to cover is an oldie but a goodie. Webpagetest.org is an open source tool

maintained by Google and is a much more performance-focused tool than an all-around

PWA-focused tool. But a very large part of PWAs has to do with performance. So it’s still a

very valuable tool to have on your belt.

Chapter 2 Tools to Measure Progressive Web Apps

19

Because Webpagetest is open source, you can actually install a local, private version

of Webpagetest or navigate to the site and run tests that way. For details on how to do so,

check out the documentation because it’s a great resource for making sure you’re able to

use the tool to best meet your development needs. For your purposes, you’ll stick to the

website.

Navigate to the page, and input any site you want in there. Because I already picked

on Reddit for the Lighthouse example, I’ll use mobile Twitter here for comparison’s sake.

There are a lot of options you can play with here, and the app provides solid

documentation if you have any questions. For your purposes, stick with the Chrome

browser and the rest of the default options. After you click Start Test, it will run for a while

before you see some results, as in Figure 2-10.

Figure 2-10.  Webpagetest.org

Chapter 2 Tools to Measure Progressive Web Apps

20

Here you’ll have information about page loads, screen shots, charts, and stats

to show how your page is rendering. In the top right corner of the results page are

optimization grades for the app, including time to first byte, if the app is using

compression for data transfers and images, if static content is being cached, and a few

other things.

If you click on the grades, you’ll get quite a few more details about each of those

sections.

There is a wealth of information on Webpagetest.org. It will be well worth your time

to play around in there, read the documentation, and use the tool on your PWAs.

�Looking Ahead
You’ve gotten a nice overview of PWAs and the tools you can use to measure them. Now

it’s time to start implementing some of these features. You’ll start with the backbone of

PWAs: service workers. Let’s get to coding!

Chapter 2 Tools to Measure Progressive Web Apps

PART II

PWA Features

23
© Dennis Sheppard 2017
D. Sheppard, Beginning Progressive Web App Development, https://doi.org/10.1007/978-1-4842-3090-9_3

CHAPTER 3

Service Workers
How’s your cell phone signal right now? Are you on a capped data plan? Is your WiFi

spotty? Maybe your roommate is torrenting movies and taking all the bandwidth.

Perhaps you’re commuting on a train, and your cell provider’s coverage map claims the

whole route is blanketed in LTE, but all you see is a perpetually spinning circle of no

Internet and you start to question what you’re even paying for. But take deep breaths.

Whatever the reason for your lack of a great Internet connection, there’s no reason to be

ashamed. It’s not your fault.

There are a number of capabilities that service workers bring to the Web, but the

biggest one is offline functionality. There have been attempts in the past to make the Web

more offline-friendly, but they’ve had various issues that service workers attempt to solve.

Note  You may have heard of or are even familiar with using AppCache. And if
so, you deserve a sticker. The many drawbacks of AppCache are legion and well
documented, so I won’t kick a technology while it’s down. Just know that all of that
is over, and service workers are here for you.

A service worker is a script that runs in the background of your web application.

It doesn’t need the DOM and in fact doesn’t even have access to the DOM. Service

workers run in a separate thread from the UI, so they don’t block or freeze the UI while

they process. The whole point of a service worker is that it acts as an intermediary

between your app and the Internet. It then performs whatever function you’ve set it up

to perform, and finally communicates some result back to your app by passing messages.

You can see this service worker architecture in Figure 3-1.

24

If intercepting network requests and then potentially passing back something

different sounds nefarious, you’re right. This basically sounds just like a man-in-the-

middle attack. For that reason, service workers require a secure connection to function.

All traffic for the app must run over HTTPS to prevent such nefarious activities.

In the next chapter, I’ll cover the non-nefarious things we can accomplish with

service workers, such as

•	 Caching assets like images, scripts, or styles

•	 Caching entire pages

•	 Syncing an app that was offline once its Internet connection comes

back to life

•	 Push notifications

There are a number of other potential benefits to using service workers that I won’t

get into in this book because the specifications for them aren’t quite ready, or they’re just

potential ideas that fit well into the service worker architecture. But some of them are

really exciting, such as periodic sync, processing gyroscope data, and performing certain

actions based on a date and time.

I’ll also talk about the life cycle of service workers:

•	 Registration and downloading

•	 Installation

•	 Waiting (sometimes)

Figure 3-1.  Service worker architecture

Chapter 3 Service Workers

25

•	 Activation

•	 Updating

You’re probably super excited, and rightfully so! But there are a couple of things to

cover before we dive in. Service workers make heavy use of promises. If you’re already

familiar with promises, feel free to skip that section. But they’re so vital to the use of

service workers, so I’ll spend a little time covering the basics of how to use them. There

are ample resources online to go deep into the inner workings of promises if your

curiosity is piqued.

I also need to briefly cover the Fetch API for making API requests. This won’t take

long, though. As soon as you learn the prerequisites, you’ll be creating service workers in

no time.

For all the examples in the book, try following along in your own dev environment.

Explore, play with the values, try to enhance the examples, and break the examples. For a

lot of the code we’ll be using, you can use a jsfiddle from jsfiddle.net or a plnkr from

plnkr.co.

Let’s get started!

�Promises
JavaScript is single threaded. So when your app makes an API request, it’s going to move

on to the next line of code, not waiting for that request to finish. But you need some kind

of mechanism to process the result of that API request. In the past, you’d use callback

functions to accomplish this. But they can be pretty clunky and hard to read when they

end up being nested several times, leading to callback hell.

Promises fix this problem by telling the asynchronous method that it “promises” to

call a given function as soon as the async one is finished. In Figure 3-2, function1 could

make an API call and then go right on to call function2, even though function3 appears

next sequentially. Once the asynchronous function is finished, then function3 will

execute.

Chapter 3 Service Workers

26

It does so in a very readable and self-explanatory syntax. Let’s take a look (https://

jsfiddle.net/fyx8oufs/2/):

function myAsyncFn() {

 const everythingWentWell = true;

 return new Promise(function(resolve, reject) {

 // do something in here

 // usually an ajax call

 // or other async function

 if (everythingWentWell) {

 resolve('Success!');

 } else {

 reject('Things did not go well :(')

 }

 });

}

Figure 3-2.  Execution order when using promises

Chapter 3 Service Workers

https://jsfiddle.net/fyx8oufs/2/
https://jsfiddle.net/fyx8oufs/2/

27

function init() {

 myAsyncFn().then(function(response) {

 alert(response);

 })

 .catch(function(err){

 alert(err);

 });

}

init();

Here are two functions. One is named myAsyncFn and it creates a promise to make an

asynchronous call and returns the result. A promise can either be resolved or rejected. In

this case, you set a Boolean called everythingWentWell to true and resolve the function

inside the promise. The entire promise object is returned to the calling function.

So the init function calls myAsyncFn and then calls an anonymous function that

alerts the response that’s passed into it. That response is the string you put in the resolve

that was inside the myAsyncFn.

Note  A function that returns a promise is sometimes referred to as a thenable
function.

If you change the everythingWentWell Boolean to false, you can see the promise

get rejected. In that case, the init function will call myAsyncFn and the then call gets

skipped. Instead, you catch the rejection error.

While there may be occasions where you’ll need to create promises, most of the time

the code you’ll be writing will be consuming promises, which is what the init function

in this example is doing.

There are times when you may need to chain promises. Maybe an asynchronous call

has to wait for another one to finish before it can run. In that case, you can simply call

then again (https://jsfiddle.net/fyx8oufs/3/):

function myAsyncFn() {

 const everythingWentWell = false;

 return new Promise(function(resolve, reject) {

 // do something in here

Chapter 3 Service Workers

https://jsfiddle.net/fyx8oufs/3/

28

 // usually an ajax call

 // or other async function

 if (everythingWentWell) {

 resolve('Success!');

 } else {

 reject('Things did not go well :(')

 }

 });

}

function secondAsyncFn() {

 return Promise.resolve('This second function is much more concise');

}

function init() {

 myAsyncFn()

 .then(secondAsyncFn)

 .then(function(response) {

 alert(response);

 })

 .catch(function(err){

 alert(err);

 });

}

init();

Here you add a secondAsyncFn that is called in the first then inside of init. That

secondAsyncFn also returns a resolved promise (but notice the shorthand: you didn’t

have to new up a promise just to resolve it; you can just call the resolve method on a

static promise object). Once the secondAsyncFn returns, you can call then on that as

well.

For the purposes of learning service workers, this is all you really need to know about

promises. Next, you’ll take a quick look at the Fetch API.

Chapter 3 Service Workers

29

�Fetch
You may be familiar with making AJAX requests from jQuery, other frameworks and

libraries, or even the old school XMLHttpRequest object from the web development days

of yore. Fetch is a native web platform API that allows you to make network requests that

return promises. Let’s take a look (https://jsfiddle.net/fef98bg6/1/):

(() => {

 fetch('https://opentdb.com/api.php?amount=1')

 .then((response) => {

 return response.json();

 })

 .then((data) => {

 alert(data.results[0].question);

 alert(data.results[0].correct_answer);

 })

 .catch((err) => {

 alert(err);

 });

})();

This is a bit different from the last example, but it’s still using promises. You don’t

need a separate function for the async call because that’s essentially all you’re doing.

You also don’t need to create a promise this time; the fetch call does that.

Along with those changes, I snuck in some new syntax, too. You’re not going to call

init anymore. You’re just using an IIFE.

Note  An IIFE is an immediately invoked function expression. It’s just a function
that calls itself. Notice the open and close parenthesis at the end.

Finally, you’ve dropped the function keyword in place of arrow functions.

Chapter 3 Service Workers

https://jsfiddle.net/fef98bg6/1/

30

Note  Arrow functions are available in all modern browsers. If you’re not familiar
with them, they’re essentially just a shorthand notation for a function. Any time you
see the arrow, think of the word “function” and move the parenthesis to the other
side of it.

The first thing you do in this example is make a fetch call. You can substitute in

your own API endpoint, but this example borrows one from the Open Trivia Database.

Because fetch returns a promise, the next line after making the fetch call, you have a

then. Fetch sends the promise results into the then function, via the response object.

The response from a fetch comes back as a ReadableStream type. Before you’re able to

use it, you need to call json() on the response.

Note  There are other functions you can call on ReadableStreams, depending on
whether you’re expecting text (response.text()), a blob (response.blob()),
or something else. In this case, you expect a JSON response.

The json method returns a promise of its own. So you return that promise and chain

then functions, just like you did before. The json method parses the ReadableStream

as JSON, which could be an object, a string, a number, or anything else JSON could

represent. In this case, there’s a results array. At this point, you can do anything you want

with those results; this example is a very rudimentary trivia game thanks to the Fetch

API, promises, and the Open Trivia Database.

There are a few nuances to fetch that I can cover as we run into them. For now, if

you play around with the example above, you should have plenty of fetch knowledge in

order to finally move on to your first service worker!

�Service Workers
There are three main parts of the service worker lifecycle. To kick things off, you just

need to register the service worker. If that goes well, the service worker is installed and

finally activated. You can see a visual of this process in Figure 3-3. There are cases where

this path takes a few detours when you update the service worker, but follow along and

you won’t get lost.

Chapter 3 Service Workers

31

�Register the Service Worker
The first thing you do to create your first service worker is register it. This will download

your service worker script. You can put this code anywhere, but I want the service worker

in this example to run on page load. So you create a JavaScript file that runs on page load

and put your registration code in an IIFE inside of a file called script.js:

Figure 3-3.  Service worker lifecycle

Chapter 3 Service Workers

32

Note  You can find the files for this example in the chapter3-example-
1-register-and-activate branch of github.com/dennissheppard/pwa.

(() => {

 if ('serviceWorker' in navigator) {

 window.addEventListener('load', () => {

 �navigator.serviceWorker.register('service-worker.js').

then((registration) => {

 console.log('registered');

console.log(registration);

 },(err) => {

 console.log(err);

 });

 });

 } else {

 alert('No service worker support in this browser');

 }

})();

Then in a script called service-worker.js, you listen for the install and activate

events, the other two parts of the lifecycle:

self.addEventListener('install', (event) => {

 console.log('service worker installed', event);

});

self.addEventListener('activate', (event) => {

 console.log('service worker activated', event);

});

Finally, you just need to reference your script in an index.html file:

<html>

 <head>

 <link rel="stylesheet" href="style.css">

 <script src="script.js"></script>

Chapter 3 Service Workers

33

 </head>

 <body>

 <h1>Hello PWAs!</h1>

 </body>

</html>

Let’s start by breaking down the original script.js file and working through it.

Because servicer worker support isn’t universal, you want to check first if the

navigator object has a property called serviceWorker. If not, that browser doesn’t

support service workers. If it does, you’re in business!

Next, you need to listen for the load event on the window object to know when to

register the service worker. If you wanted to register it based off some other event, you

certainly could do so.

The next line is where the actual service worker registration happens. Call

navigator.serviceworker.register and pass in the path to the service worker file.

Call it service-worker.js and pass that path as a string into the register function. The

register method returns a promise, so you can call then on it.

The function in the then method receives a registration object from register. Log

that out and take a look in a moment.

If anything goes wrong with script registration, log out that error.

Moving on to the service worker itself, it’s pretty concise. The worker executes code

by listening to events. The first two events you’re concerned with are the install event

and the activate event. For now you’ll just log out those events.

That’s all the code you need to set up your first service worker!

Note  If you pulled down the repo from github.com/dennissheppard/pwa,
switch to the chapter3-example-1-register-and-activate branch and
run npm install in the root directory to install the http-server module. After
installation is complete, you can run the example by typing http-server in the
terminal from the root of the project. This will start a server on port 8080, so that
you can navigate to http://localhost:8080. If you typed the code manually
or copied and pasted into your own project, you’ll need some type of webserver to
run the code.

Chapter 3 Service Workers

34

Run that code and let’s take a look at Chrome DevTools. Go to the Application tab.

On the left, you should see an option that says Service Workers. Click that, and you’ll

see all of your service worker information. Also, make sure your console is open at the

bottom. Your DevTools should look something like Figure 3-4.

Figure 3-4.  Service Workers section of DevTools. Notice what’s logged in the
console at the bottom.

Chapter 3 Service Workers

35

Looking at the console, the first thing you want to see is the registration object

in your script.js file. There are some pretty interesting things in there that you’ll be

playing with later. The first thing you see is a property of type ServiceWorker called

active. If you expand it, you can see that it has a few of its own properties, notably

state. Your service worker’s state right now is “activated.” You’re doing great so far!

Further examination of this object shows that there are objects of type PushManager

and SyncManager. Those are probably not completely useless, but you’ll find out later.

The last important thing here is scope. The scope of your service worker is how

much of the application it is allowed to control. Scope is impacted by where you place

your service worker. If it’s placed and referenced at the root of your application, it has

access to your entire application. If you put the service worker in a subdirectory, say

scripts/trivia, then the service worker only has the scope to control everything in the

trivia directory. More specifically, this means that the service worker is installed and

will receive network events for every page that loads within the trivia directory. You

may specify a scope as a second parameter of the register function, but it must be a

subdirectory of where your service worker lives. Figure 3-5 shows the different scopes

allowed depending on where you place your service worker.

Chapter 3 Service Workers

36

Figure 3-5.  Service worker scope

Chapter 3 Service Workers

37

In the chapter3-example-2-sw-scope branch, for example, your service worker

can’t live in the /scripts/trivia directory while also having a scope of the whole

/scripts directory:

(() => {

 if ('serviceWorker' in navigator) {

 window.addEventListener('load', () => {

 navigator.serviceWorker.register('scripts/trivia/service-worker.js',

{scope: 'scripts'}).then((registration) => {

 console.log(registration);

 }, function(err) {

 console.log(err);

 });

 });

 } else {

 alert('No service worker support in this browser');

 }

})();

Notice the scope object as the second parameter of the register method. If you run

this example, you’ll get an error that looks something like this: The path of the provided

scope (‘/scripts’) is not under the max scope allowed ('/scripts/trivia/'). Adjust the scope,

move the Service Worker script, or use the Service-Worker-Allowed HTTP header to allow

the scope.

The last option of that error is saying that you can add a header to the service worker

script’s response to allow the service worker to be used anywhere. For your purposes,

you’re going to just make sure your service worker isn’t trying to take over more scope

than it’s allowed to.

If you wanted to, you could put the service worker in the /scripts directory but

set the scope to cover just the /scripts/trivia directory. That’s a valid scope. You’re

not actually using that directory, though, so to fix the scoping error, let’s just move the

service worker back to the root directory, and completely remove the scope object.

Once you run this again, take another look at Chrome DevTools. You should see your

“service worker installed” and “service worker activated” events in the console, like in

Figure 3-6.

Chapter 3 Service Workers

38

If you run the example with the bad scope, at the top of the DevTools page you’ll

see a service worker with the scope error I mentioned. Below that is your activated and

running service worker with the correct scope.

�Updating the Service Worker
Now, let’s make a little tweak to the service worker script so you can see how to update

the service worker. Let’s just change the first of the console statements. This change is

reflected in the chapter3-example-3-updated-sw branch.

console.log('updated service worker installed', event);

Figure 3-6.  Service worker with updated scope

Chapter 3 Service Workers

39

Just a simple change so that the browser sees an updated service worker. Save it and

refresh your browser. If you look in DevTools, you’ll see the same service worker. The

console shows that it was registered again, but there’s no install or activate events logging

anything. What’s up with that?

The changes to the service worker script file in this instance won’t be visible for up to

24 hours, or until all of the clients controlled by that service worker have been terminated.

But we’re devs and know ninja tricks that regular users don’t. So click the Update

link over on the right. Once you press that, you should see a second service worker that’s

labeled as “waiting to activate.” As in Figure 3-7, in the console you’ll see the “updated

service worker installed” log statement, but no activated log statement.

Figure 3-7.  A “waiting” service worker. Notice there’s no “activated” log statement.

Chapter 3 Service Workers

40

Because the label says it’s “waiting,” it makes sense you don’t have the activated

log statement. But why is it in this “waiting” state? The browser does this so that only

one version of your service worker is running at a given time. The new service worker is

registered and installed, but it wants to wait until the original service worker is booted out.

Note  As I’ve talked about, service workers deal a lot with data, be it caching or
syncing or pushing. You can imagine some of the issues that can pop up if you
have two different service workers in two different tabs trying to manage that data
in different ways.

Again with the ninja tricks, you can click the “skip waiting” option. When you do

this, the ID and timestamp of the running service worker will update. You now have your

latest service worker running, and looking down at the console, you see the “service

worker activated” log statement in Figure 3-8.

Chapter 3 Service Workers

41

If you want to bypass the safety check of making sure your app only has one service

worker controlling a page a time, you can force the update in code as well, with the

skipWaiting() method. This immediately removes the existing service worker and

activates the new one, skipping the normal waiting state:

self.addEventListener('install', (event) => {

 self.skipWaiting();

 console.log('updated service worker installed', event);

});

Figure 3-8.  Service worker updated and activated

Chapter 3 Service Workers

42

self.addEventListener('activate', (event) => {

 console.log('updated service worker activated', event);

});

If you make that update and refresh, nothing new appears to happen. Remember, it’s

still holding onto your previous service worker that didn’t have your new code in it until

you close all the open tabs of your app and reload, or until you manually update through

DevTools. So let’s click Update again. This time, the service worker should have both

installed and activated, since you skipped the waiting state.

�Other DevTools Options
While you’ve got DevTools open, let’s take a quick look at a couple of the options shown

in Figure 3-9.

Figure 3-9.  Service Workers DevTools options

The Offline option makes the app act as though you have no Internet connection.

You’ll be using this a lot in the next chapter.

After that is the Update on reload option. This forces your service worker to update

when you make changes to it in code. This keeps you from having to click that Update

link every time you make a change to your service worker. With this option checked,

each page of your app you go to refetches the service worker script, and the install

and activate events fire. So no more needing to reload the page twice or manually skip

waiting or anything.

You’ll likely want this option checked for development.

Next is an option labeled Bypass for network. This basically turns off your service

worker so none of your CSS or JavaScript is cached during development.

Chapter 3 Service Workers

43

Finally, the Show all option will show you every service worker installed in your

browser for various sites you’ve visited. If you’re a PWA or service worker nerd, it’s pretty

interesting to see which sites and apps are using service workers.

�Browser Compatibility
I’ve laid the groundwork to really get into the amazing things service workers are capable

of. Until mid-2017, service workers were limited by browser compatibility. Service

workers are best supported by Chrome and Firefox, followed closely by Opera. But

Edge is enabling service worker support by default as of version 16, and the last major

remaining holdout, Safari, has undertaken development for service worker support. We

love you, Safari! There’s a site dedicated to the browser support of service workers at

https://jakearchibald.github.io/isserviceworkerready/.

�Service Worker Recap
This chapter covered a lot, so let’s take a minute to recap. Service workers

•	 Are scripts that live between your app and the network

•	 Only work on HTTPS

•	 Are the PWA mechanism for caching, background syncing, push

notifications, and more

•	 Install using register

•	 Listen for install and activate events

•	 Enter a waiting state on updates to ensure there is only one running

at a time

�Looking Ahead
Next, you’re going to apply all of this knowledge to create some service workers that do

a lot more than just log things out to the console. You’ll look at caching your resources

to speed up your page loads and reduce bandwidth usage. I’ll also walk through how to

make an app work with no Internet connection at all. Sound good? Let’s go!

Chapter 3 Service Workers

https://jakearchibald.github.io/isserviceworkerready/

45
© Dennis Sheppard 2017
D. Sheppard, Beginning Progressive Web App Development, https://doi.org/10.1007/978-1-4842-3090-9_4

CHAPTER 4

Caching and Offline
Functionality with
Service Workers
Now that you know what service workers are and how to implement a very basic one, in

this chapter you’re going to go beyond the basics. We want apps to be fast, reliable, and

work offline whenever possible. So now I’m going to talk about the Cache API that lets

us return items we specify from the cache instead of making the whole journey to the

server.

�The fetch Event
Before you can cache anything, you need to be able to intercept network requests. That’s

trivial using your service worker. Every network call originating from the domain in

which the service worker has scope will fire the fetch event:

self.addEventListener('fetch', (event) => {

 event.respondWith(fetch(event.request));

});

So you just need to listen for it in the service worker. Here, you catch the event and

simply respond with whatever would have come back anyway. In Figure 4-1, you can

see the service worker catching the fetch event, making its own call to the API. Once

that data is returned to the service worker, you can pass that back to the calling script,

manipulate it somehow, or do nothing at all.

46

If you pull down the chapter4-example-1_fetch_event branch from github.com/

dennissheppard/pwa and run npm install and http-server, then the site will be

accessible on http://localhost:8080. Once you go there, you’ll see a pretty great site

dedicated to pirates, as shown in Figure 4-2 (no need to judge how it looks; this isn’t a

book about CSS!).

Figure 4-1.  The fetch event listener intercepts the API request

Figure 4-2.  The site returns normally if you just intercept fetch and respond with
the same fetch

Chapter 4 Caching and Offline Functionality with Service Workers

47

As far as the service worker goes, this isn’t very helpful or practical because you’re

just using it as a pass through. It’s like you aren’t doing anything. But think of the

implications. What if we were pirates who wanted to hijack a site and had the ability to

slip a rogue service worker onto someone’s site? Arrgh!

self.addEventListener('fetch', (event) => {

 event.respondWith(new Response('arrrgh!'));

});

If you throw that code in your service worker and run it (remembering to either click

Update in the Service Worker section of DevTools or check Update on reload), Figure 4-3

shows what you would have.

Figure 4-3.  Pirates have taken over your site!

You’re able to do this by creating a new Response object and responding with that

text. Then any fetch event just responds with that. So instead of any HTML pages or

images or anything, you simply have “arrrgh!” Which is pretty fun!

You could also respond with a fully-fledged HTML file announcing that your site is

under maintenance or really whatever you want.

So you’ve started off by listening for the fetch event, and you know you can intercept

network requests and return anything you want. But you didn’t come here to be a pirate;

you came here to see what the cache can do for you.

�The Cache API
Caching is going to be your new best friend. Using it, you can make your app significantly

faster, and you can even make the app usable with no Internet connection at all, because

you can just respond with items you’ve previously saved. Let’s start with a quick example

that saves items to the cache. Let’s add the following code to service-worker.js:

self.addEventListener('install', (event) => {

 if (!('caches' in self)) return;

 event.waitUntil(

Chapter 4 Caching and Offline Functionality with Service Workers

48

 caches.open('version1').then((cache) => {

 return cache.addAll(

 [

 '/pirates.html',

 '/styles/pirates.css',

 '/styles/pirates.tff',

 '/images/i-love-pirates.jpg'

]

);

 })

);

});

Go ahead and clear out the fetch event; you’ll bring it back in a moment. Now you

have your install event back. You can add items to the cache on the install event.

Note T he 'caches' property is actually also available on 'window'. That
means you can technically cache items from anywhere in your app. Try some of
these examples in other parts of your app, perhaps based off of user interactions
that would make sense to cache items. Maybe you can even give your user the
option to save certain resources for offline use.

First, check browser compatibility for caching. Add in the check for the caches object

on self to make sure the current browser supports it, and if not, let’s just get out of here.

Assuming you’re using a fully supported modern browser, add in this new method:

event.waitUntil. This method takes a promise, which extends the lifetime of install

until the promise resolves. This is useful because you don’t want the event to complete

until you’ve cached your files. Plus, if the caching fails for some reason, the promise is

rejected and the service worker isn’t installed.

Next you have the caches object. To create a new cache, call open and give it a name.

Note that open returns a promise, so you can call then on it and then add an array of files

by using the addAll method on the cache object returned from the promise.

Chapter 4 Caching and Offline Functionality with Service Workers

49

If you have a sample project with an HTML file, a CSS file, and maybe an image,

add those files to an array in a service worker like above. Or, pull down the chapter4-

example-1_caching branch from github.com/dennissheppard/pwa.

You now have a pretty amazing site dedicated to pirates. Let’s open DevTools and

load the site. You can see what the Network tab tells you in Figure 4-4.

Figure 4-4.  Network requests after creating the cache

All of your files are being fetched like you’d normally expect. You’ve created the

cache of your files, but you haven’t told the service worker to use the cache yet. You can

see what you’ve cached by going to the Application tab in DevTools and expanding the

Cache Storage item on the left. You may have to right-click on it and tell DevTools to

refresh the cache before it will show up. Now you should see your version1 cache with

the items you told your service worker to cache, as in Figure 4-5.

Figure 4-5.  The newly created version1 cache

Chapter 4 Caching and Offline Functionality with Service Workers

50

So now you have the triumphant return of your fetch event. Using that, let’s go

ahead and tell the service worker to use the cache you’ve created:

self.addEventListener('fetch', (event) => {

 event.respondWith(

 caches.match(event.request)

);

});

Now you’re listening for the fetch event once again, which will intercept any

network request the service worker has control over. You respondWith items in your

cache that match the same URL as the network request. In your case, that should be four

out of five files. Figure 4-6 shows this happening.

Figure 4-6.  Retrieving cached items

So now you should add that snippet to your service worker. Make sure the Update

on reload option is checked in the Service Worker section of the Application tab in

DevTools.

Now if you look at your Network tab, like in Figure 4-7, you can see that the items

you told the service worker to cache are being fetched “from ServiceWorker” in the Size

column.

Chapter 4 Caching and Offline Functionality with Service Workers

51

You’ll notice that one lovely image is failing to return. That’s because you haven’t

cached that file and you have no backup. You told the service worker to intercept those

requests and return what’s in the cache. If a particular request isn’t in the cache, that

match fails. So if there’s a file you don’t want to cache, or you might have files you haven’t

cached before, you need to tell the service worker to go ahead and fetch that file using

the network instead of the cache. Luckily, the match method on the caches object returns

a promise with the response. And you’re actually kind of decent at handling promises

by now.

self.addEventListener('fetch', (event) => {

 event.respondWith(

 caches.match(event.request).then((response) => {

 return response || fetch(event.request);

 })

);

});

Wait for the promise to return from the match method, then call a function that gets

the response. If that file wasn’t found in the cache, response is undefined, so go ahead

and call the fetch method to make the request from the network.

If you add that to your service worker and refresh, now all the items in the Network

tab should be returning from ServiceWorker.

Figure 4-7.  Items returned from cache

Chapter 4 Caching and Offline Functionality with Service Workers

52

This is pretty solid, except having to manually add items to your service worker isn’t

that cool. What if once you fetch the items from the network if you didn’t have them in

the list, you can go ahead and add them to the cache? For this trick, you’ll use the put

method, which takes the request and the response objects:

self.addEventListener('fetch', (event) => {

 event.respondWith(

 caches.match(event.request).then((response) => {

 return response || fetch(event.request).then((response) => {

 console.log('fetched from network this time!');

 return caches.open('version1').then((cache) => {

 cache.put(event.request, response.clone());

 return response;

 });

 });

 })

);

});

As you’ve seen before, fetch returns a promise. You call then on fetch passing in the

response from the network. In that function, you can open up the version1 cache again,

and this time you’ll put the request and its corresponding response in the cache. You

have to call clone on the response because the original response isn’t kept in memory.

Once it’s read once, it’s gone. But you still need to return the original response, as well

as save it in the cache. So to do so, you just call clone on it. Figure 4-8 may help you

visualize that process.

Chapter 4 Caching and Offline Functionality with Service Workers

53

If you run this code, you again should see everything returning from the ServiceWorker

in the Network tab. Look at the console, and you can see that an item was fetched from the

network, because you slipped that console.log line in the then on the fetch call.

Refresh the page one more time, and that line is gone from the console. Switching

over to the Application tab and looking at the Cache Storage section, you have a new item

added in! Your cache is doing work!

�Going Offline
You now have everything you need to make your app offline capable. This is just a small

sample app, but as long as you cache what is necessary for your app to function, what

we’ve covered here will scale well for all your fetching needs.

It can, however, be helpful to let the user know that there’s currently no connection,

in case something isn’t in the cache and appears broken. Figure 4-9 illustrates the

workflow of checking for a connection, and returning cached resources if so or returning

an offline page if not.

Figure 4-8.  Retrieve items from cache, or fetch if they’re not in the cache, and then
save in the cache for next time

Chapter 4 Caching and Offline Functionality with Service Workers

54

This example shows a special offline landing page that does just that:

self.addEventListener('install', (event) => {

 event.waitUntil(

 caches.open('version1').then((cache) => {

 return cache.addAll(

 [

 'index.html',

 '/pirates.html',

 '/styles/pirates.css',

 '/styles/pirate.ttf',

 '/images/i-love-pirates.jpg',

 'offline.html'

]);

 })

);

});

self.addEventListener('fetch', (event) => {

 if(!navigator.onLine && event.request.url.indexOf('index.html') !== -1) {

 event.respondWith(showOfflineLanding(event));

Figure 4-9.  Service worker checks for network connection, and if there’s no
connection, returns an offline page or message

Chapter 4 Caching and Offline Functionality with Service Workers

55

 }

 else {

 event.respondWith(pullFromCache(event));

 }

});

function showOfflineLanding(event) {

 return caches.match(new Request('offline.html'));

}

function pullFromCache(event) {

 return caches.match(event.request).then((response) => {

 return response || fetch(event.request).then((response) => {

 return caches.open('version1').then((cache) => {

 cache.put(event.request, response.clone());

 return response;

 });

 });

 });

}

Here are two functions that are called from within the fetch event listener. The first

one is called if the browser has no Internet connection. You can check for this using

navigator.onLine.

Note  navigator.onLine isn’t 100% accurate in its ability to know if there’s
a network connection. There are some browsers that don’t implement it correctly,
and some where it will return true as long as there’s an internal network
connection, but no Internet connection. So in production apps, you may not want to
solely rely on this method of determining the user’s Internet connection state. Here,
it’s just an example to show how you might respond with an offline page.

Chapter 4 Caching and Offline Functionality with Service Workers

56

If you’re offline and the request is for index.html, you know you want to display your

special offline landing page. So you respond to the fetch event by looking in the cache

for a request that would match offline.html. If you look up at the install event, you’ll

see that this is a file that you added to the cache. So your offline.html page will be

returned in place of your traditional index.html. Thus, if you run this code once, turn off

your WiFi, and refresh, you should be presented with something like Figure 4-10.

Figure 4-10.  Your special offline landing page, only seen when there’s no Internet
connection

If you aren’t looking specifically for index.html, just call the pullFromCache function

that does the same thing you’ve already covered: looks in the cache for each request,

and calls fetch if it can’t find it. Additionally, if there’s a connection, that resource is

automatically added to the cache.

You now not only have an app that can load resources without a network connection,

but can also show different screens and load different resources without a network

connection.

�Different Caching Strategies
I’ve covered the most common and helpful caching scenario you’re likely to need: using

the cache first, and using the network as a backup.

There are other combinations of caching and fetching you can use in your

applications, though.

Chapter 4 Caching and Offline Functionality with Service Workers

57

Note  Most of these examples you’ll find in the chapter4 branches of
www.github.com/dennissheppard/pwa/branches, but if it helps you to type
them in manually, by all means do that!

For instance I’ve also covered two others, network-only, in which case the service

worker is just a pass through, and cache-only, where you look for files in the cache and

anything not there simply fails.

Those aren’t the most helpful caching options, because network-only behaves as

though the service worker isn’t even there, and cache-only loads just the resources that

are in the cache. That means anything not in there you can’t fetch from the network. So

some resources will be missing, and it’s possible that the items that are available in the

cache could be quite old.

One improvement to this strategy is called stale-while-revalidate. This tells the

service worker to request both the cache and network, return the cached version to the

caller, and save the network response in the cache to use for next time. This allows the

cache to be updated while still delivering the fast, cached content to the user. Let’s take a

look at how you could implement something like this:

self.addEventListener('fetch', (event) => {

 const version = 'version1';

 event.respondWith(

 caches.open(version).then((cache) => {

 return cache.match(event.request).then((response) => {

 let fetchPromise = fetch(event.request).then((networkResponse) => {

 cache.put(event.request, networkResponse.clone());

 return networkResponse;

 });

 event.waitUntil(fetchPromise);

 return response;

 })

 })

);

});

Chapter 4 Caching and Offline Functionality with Service Workers

http://www.github.com/dennissheppard/pwa/branches

58

With this code, you’re looking for your cached resource and returning it. But

before you return it, you also fetch the same request and use cache.put to save the

networkResponse in the cache.

You could also ask for both the cached resource as well as the network resource, and

whichever one is faster is the one that gets to respond to the request. This sounds great

in theory, because if you have a slow Internet connection you can just use the cache.

But if you already have items in the cache, it can be a waste of bandwidth to ask for

the network to return your resources. Just ask the cache to start with. Only in very few

circumstances would the network be faster than the cache, mainly with super old hard

drives. But if you’re curious about how that could work, take a look at Figure 4-11.

Figure 4-11.  “Fastest” caching strategy: both the cache and API (or resources/
assets) are fetched. The fastest one back to the service worker wins and is used.

Let’s take a look at the code you need to do this:

function setupPromises(promises) {

 return new Promise((resolve, reject) => {

 promises.forEach(promise => promise.then(resolve));

 });

};

self.addEventListener('fetch', function(event) {

 event.respondWith(setupPromises([

 caches.match(event.request),

Chapter 4 Caching and Offline Functionality with Service Workers

59

 fetch(event.request)

]));

});

Here you create a function that takes an array of promises. That function returns a

new promise that resolves as soon as the promise passed in resolves. So basically you

pass in both the cache and fetch calls, and both are used in the respondWith function.

If you run this and open your DevTools Network tab as in Figure 4-12, you’ll see that

each asset is actually requested twice: once from the service worker and once from the

network.

Figure 4-12.  Each asset is requested twice

As you can imagine, there are additional patterns you can use with caching. Maybe

you’d like to try the network first and fall back to the cache if that call fails, as in Figure 4-13.

Chapter 4 Caching and Offline Functionality with Service Workers

60

In that case, your fetch call would just have a catch function on it that then looks for

a match in the cache:

self.addEventListener('fetch', function(event) {

 event.respondWith(

 fetch(event.request).catch(function() {

 return caches.match(event.request);

 })

);

});

You could also display nice error messages for offline scenarios. Perhaps there’s a

request for something that isn’t in the cache while the user has no network connection.

In that scenario, you can configure your service worker to return a placeholder image,

or even a message explaining that the user is offline right now, but next time they have a

connection, that resource will be available:

self.addEventListener('fetch', (event) => {

 const version = 'version1';

 const placeholderAssetURL = 'placeholder';

 event.respondWith(

 fetch(event.request).catch((e) => { // fetch fails

Figure 4-13.  Network first, with cache as fallback

Chapter 4 Caching and Offline Functionality with Service Workers

61

 return caches.open(version).then((cache) => {

 return cache.match(placeholderAssetURL);

 });

 })

);

});

Whatever option you go with for caching will depend upon the needs of your

application. You should spend some time experimenting and coming up with other

potential solutions using caching and fetching resources to ensure your user has the

most pleasant experience possible.

Of course, just because you have items returning from the cache doesn’t mean

everything is great. Oftentimes a user’s cache can contain old files that your app doesn’t

use anymore. It’s your job to tell the service worker to clean those up.

�Updating the Cache
Since you’re going to be caching lots of things while also updating your app regularly,

some of the stuff in the cache can become stale. Maybe you updated that old pirate

image with a sweet new one, and you don’t want that being displayed to the users

anymore.

Where might be a good place to clean up an old cache? That’s right, the activate

event! If you remember, the activate event fires once there are no more old service

workers controlling your app. That sounds like a great time to clear out an old cache.

Figure 4-14 shows the theory, and then you’ll look at the implementation.

Chapter 4 Caching and Offline Functionality with Service Workers

62

self.addEventListener('activate', (event) => {

 const CURRENT_CACHE = 'version2';

 event.waitUntil(

 caches.keys().then((cacheKeys) => {

 return Promise.all(

 cacheKeys.map((cacheKey) => {

 if (cacheKey !== CURRENT_CACHE) {

 console.log('Deleting cache: ' + cacheKey);

 return caches.delete(cacheKey);

 }

 })

)

 })

);

});

You need to label your current cache so that it doesn’t get wiped out when the

service worker is activated. That wouldn’t do you much good.

Then you get all of the different cache keys and delete any of them that have a

different name than CURRENT_CACHE.

Figure 4-14.  Updating the cache by deleting the old one (version1) and creating
the new one (version2)

Chapter 4 Caching and Offline Functionality with Service Workers

63

If you run this code, make sure you update any call to caches.open with whatever

you’re naming your CURRENT_CACHE, or you’re going to keep recreating the cache you’re

trying to delete. Once you update that, add in the snippet above and run it. You should

see something similar to Figure 4-15 in the Application tab in DevTools.

Figure 4-15.  You made the version1 cache walk the plank, and version2 now lives!

You may need to right-click on Cache Storage on the left pane in DevTools and

choose Refresh Caches before you can see your version2.

Now you have a brand new cache!

But if you’re thinking, “This looks easy if you have a dumb static site about pirates.

What about a real-world application with dozens of files?” you wouldn’t be wrong.

Manually configuring service workers and caching as your project grows can be

complex. And that’s when two tools from Google can really help you out: sw-precache

and sw-toolbox.

�sw-precache
I haven’t covered build processes, as that’s out of the scope of this book. But if you

are familiar with and use Gulp or Grunt, or any other JavaScript build process (like

Webpack), sw-precache can be a game changer. It is a node module that you integrate

Chapter 4 Caching and Offline Functionality with Service Workers

64

into your build process that will generate a service worker for you and set up caching for

certain resources that you specify. Because this is handled at build time, these are likely

to be the more static assets of your app, like your index.html, images that are on most or

all pages, global stylesheets, etc. (basically your app shell, which I’ll cover in more depth

later on). It will handle versioning and caching strategies for you as well.

sw-precache is also available via the command line, and that’s what I’ll briefly cover

here.

Go ahead and install sw-precache like this:

npm install --global sw-precache

If you want to see what sw-precache is capable of, just run it from the root of

your project:

sw-precache

This will take a moment but should generate a file called service-worker.js. While

running it with the last example in this chapter, you have a service worker that will cache

1587 resources, because the entire node_modules directory is included.

That’s not super helpful, but without a build system, and without telling sw-precache

what you want included, this result is expected.

Instead, let’s create a config file that tells sw-precache exactly what you want and call

it sw-precache-config.js, placing it at the root of your project:

module.exports = {

 staticFileGlobs: [

 'styles/**.css',

 'styles/**.ttf',

 'images/**.*',

 '**.html'

],

 skipWaiting: true,

 cacheId: 'version2'

};

Here you’re giving sw-precache a list of all the static resources you want cached.

You can also tell it to include a call to skipWaiting, and give your cache an ID. There

are numerous other options you could use, with a full list available at the sw-precache

Chapter 4 Caching and Offline Functionality with Service Workers

65

documentation: https://github.com/GoogleChrome/sw-precache#options-

parameter.

Now you can run sw-precache again, specifying your config file:

sw-precache --config=sw-precache-config.js

If you look at what this generates, it’s a much more reasonable file, caching seven

resources. Of course, in larger apps, that number will be greater, but using patterns in

your file list should make this fairly easy.

If you look at the generated file, you’ll see a lot of code. But in there is the familiar

install, activate, and fetch events. There’s a lot of additional code to handle path

matching and other options that you could put into your config.

Again, sw-precache is geared more toward your static files, but even in larger

apps you’ll likely want to point the config to files in a dist folder, or some equivalent,

assuming you have some kind of build process.

�sw-toolbox
I talked about some of the caching strategies you can use with the Cache API and

we looked at code to handle a few. But if you don't want to worry about manually

writing code to take those on, sw-toolbox will provide helpers to do it for you. While

sw-precache is more useful for your app shell, sw-toolbox is better for handling your

dynamic content.

Note I f “dynamic content” seems a little too vague, just think about that as data
returned from an API that can vary based on parameters or user interactions. For
example, in the trivia game example, the questions you fetch from that API are
dynamic content.

Let’s install sw-toolbox first, just like you did sw-precache:

npm install --save sw-toolbox

This will give you a companion.js and a sw-toolbox.js file in the node_modules/

sw-toolbox directory. You can either use that path, or move those files to the root of your

app. To make things easier for you, go ahead and move them.

Chapter 4 Caching and Offline Functionality with Service Workers

https://github.com/GoogleChrome/sw-precache#options-parameter
https://github.com/GoogleChrome/sw-precache#options-parameter

66

Now you can register your service worker like you have before, or you can use a

shortcut. Since you already know how to register the service worker the other way, let’s

use the shortcut this time.

In your index.html, you just need to include a reference to the companion file and

point to your service worker:

<script src="companion.js" data-service-worker="service-worker.js"></script>

Note T he benefit of using this shorthand method is purely brevity. If you need to
add in additional logic around installing service workers, this probably isn’t the way
you want to implement yours.

Next, you’ll need to reference that sw-toolbox.js file you moved. For that, just add it

to the service-worker.js file with importScripts:

importScripts('sw-toolbox.js');

After those are in place, you’re set up to use sw-toolbox. This will work much like

the fetch events you’re used to, except in the place of a fetch, sw-toolbox will intercept

routes and perform caching, based on an option that you specify. Those options are the

ones I discussed a few pages back.

Let’s take a look at an example that implements the “fastest” caching strategy for all

of your image files (calling both the cache and the network and using whichever comes

back the fastest):

importScripts('sw-toolbox.js');

self.addEventListener('install', (event) => {

});

toolbox.router.get('/images/*', toolbox.fastest, {

 cache: {

 name: 'sw-toolbox-version1',

Chapter 4 Caching and Offline Functionality with Service Workers

67

 maxEntries: 20,

 maxAgeSeconds: 60 * 30

 }

});

You’ve imported sw-toolbox.js, and you don’t need anything in your install event

right now.

To tell sw-toolbox you want images cached in a certain way, you use “Express” style

routing, using a URL pattern with a syntax similar to Express.js.

Note Y ou can also route using regular expressions if you’re more familiar
with them.

Passing in your images URL to the toolbox.router.get is the first step. Then you

specify which strategy you want to use, fastest in this case. Next, you have options for

your cache: name, maxEntries (how many entries will be cached before the oldest one is

deleted), and maxAgeSeconds (which will cause the cache to expire at the specified time;

yours is set at 30 minutes).

Of course, you can use different routes and different caching strategies if you’d like.

You’ll also say you want everything in your styles directory to use cacheFirst and to

expire those after a week:

toolbox.router.get('/styles/*', toolbox.cacheFirst, {

 cache: {

 name: 'sw-toolbox-version1',

 maxEntries: 20,

 maxAgeSeconds: 60 * 60 * 24 * 7

 }

});

Go ahead and run this and see what you get. Close any previously opened tabs, open

up DevTools, and navigate to the home page and then to a content page.

In the Application tab, go to the Cache Storage section on the left. You may need to

right-click and choose Refresh Caches to see the latest stuff in there, as shown in

Figure 4-16.

Chapter 4 Caching and Offline Functionality with Service Workers

68

In a bonus surprise, Figure 4-17 shows that if you go up to the IndexedDB section on

the left (again, you might need to right-click and choose Refresh IndexedDB), you’ll see

how sw-toolbox is managing those cache expiration times.

Figure 4-16.  Hey, that’s your stuff! Those are your images and files in the styles
directory.

Figure 4-17.  That’s your stuff, too! This time with expirations on it. And in a
different place!

Chapter 4 Caching and Offline Functionality with Service Workers

69

�Dynamic Page Caching
All of your static content is cached and working great. But what if you added a page that

displays items dynamically, based on an API call? Just caching the HTML file isn’t going

to do you much good.

Let’s go ahead and create this page and see what you can do. If you’re able, pull

down the chapter4-example-6_sw-toolbox branch from github.com/dennissheppard/

pwa. In there, you’ll see a new file called pirate_books.html. The actual HTML portion

of this file consists of just a couple of lines:

<body>

 <h1>Books About Pirates</h1>

 <ul id="pirateList">

</body>

Because your list of books is going to be generated dynamically based on results of

an API call, you’re not going to get away with just caching pirate_books.html. You’ll

also need to cache that API call.

Take a look at the <script> section of that same file, and you can see what API call

you’re using and how you generate the list items:

<script>

 let pirateBooks = [];

 �let bookSearchUrl = 'http://openlibrary.org/search.

json?q=pirate+history';

 fetch(bookSearchUrl).then((response) => response.json()).then((data)

=> {

 pirateBooks = data.docs;

 generatePirateBookList();

 });

 function generatePirateBookList() {

 let pirateList = document.getElementById('pirateList');

 for (let i = 0, book; book = pirateBooks[i]; ++i) {

 let pirateItem = document.createElement('li')

Chapter 4 Caching and Offline Functionality with Service Workers

70

 �pirateItem.innerHTML = book.title + (book.author_name ? " by " +

book.author_name[0] : '');

 pirateList.appendChild(pirateItem);

 }

 }

 </script>

The book list data comes from openlibrary.org, and you can make that call with

just a few lines like in the script block above. It’s a simple fetch call, where you assign

the results to an array. Then just loop over the array, generating list items with the book

title and author. Finally, append each item to your pre-existing ul.

You need to cache the response from that fetch call so you can still use the page

while offline. So let’s go ahead and add a couple of new routes to your service worker:

toolbox.router.get('*.html', toolbox.cacheFirst, {

 cache: {

 name: 'sw-toolbox-version1',

 maxEntries: 20,

 maxAgeSeconds: 60 * 60 * 24 * 7

 }

});

toolbox.router.get('/*', toolbox.networkFirst, {

 origin: 'openlibrary.org',

 cache: {

 name: 'sw-toolbox-version1',

 maxEntries: 20,

 maxAgeSeconds: 60 * 60 * 12

 }

});

That first route is to cache your HTML files, which you just haven’t done to this point.

The second one is the important one for your dynamic data. You tell sw-toolbox to look

at all content from the origin (openlibrary.org) since the call originates from a different

domain than your app. Notice also that you’re telling sw-toolbox to use the networkFirst

strategy. This is because API data should typically be fresher than your static content.

This is also why if you look at your cache expiration for this route, you’re specifying that

Chapter 4 Caching and Offline Functionality with Service Workers

71

you should expire this cache in 12 hours. Of course, that value will vary based on your

needs, but typically dynamic data should stay relatively fresh.

So now you have a dynamic page, you’re caching the page, and the response that

holds the data to generate the content on that page.

Close all of your open clients in the browser, open a new browser tab and its

DevTools, and navigate to the main page. Navigate to both pages to let the content make

its way to the cache.

Now in DevTools, choose the Offline option in the Service Workers section of the

Application tab.

Navigate around the app, and you should see everything operating perfectly

normally. In case you’re skeptical about the functionality of that Offline option in

DevTools, try navigating to google.com or somewhere else on the Web to insure you have

no Internet connection for that browser tab. You could also just turn off your WiFi.

Head on back to arrrrguably the best pirate site on the Web, because it’s fully offline

capable!

Whew, that was a lot of material, but who even needs an Internet connection now?

�Looking Ahead
I’ve covered how to save things for offline use (or to just make everything speedier by

going to the cache instead of the Web) when you need to fetch them, but what about

when you need to update data on the server? That’s what background sync does: holds

on to your requests while you don’t have a stable network connection and then sends

them off into the great big Internet once you do. Let’s take a look at that next!

Chapter 4 Caching and Offline Functionality with Service Workers

73
© Dennis Sheppard 2017
D. Sheppard, Beginning Progressive Web App Development, https://doi.org/10.1007/978-1-4842-3090-9_5

CHAPTER 5

Background Sync
for Offline Apps
with Service Workers
Most of the Pirate app is fully offline-capable. There’s one glaring weakness remaining,

though, as far as functionality without a connection goes. If you need to make an API call

while you don’t have a connection, there’s no mechanism in place to do that. This Pirate

app is so great, we’d love for people to be able to leave comments about it. Or even have

pirate-based conversations! But what if you happen to like posting Internet comments

when you’re out at sea where your Internet connection is choppy? That’s where the

Background Sync API is going to help!

�The Background Sync API
Background Sync will hold onto your API call until there’s a stable Internet connection.

Even better, as the “background” part of the name implies, the app will make the API call

even if your app isn’t active and running. Service workers are so cool.

�Registering for sync
The way you’re gonna make this happen is by registering for a sync event, and then

listening for it, just like you do with install, activate, and fetch. You’re an old hand at

this by now, so the setup for this is going to be a breeze. To start, you’ll allow users to post

a message on your site: either “Ahoy!” or “Arrrgh!” You need to post that message to your

74

API so you can fetch it later. And because you want to allow that to work while offline too,

you’ll go through a sync event.

function postComment(comment) {

 navigator.serviceWorker.ready.then((sw) => {

 return sw.sync.register(comment);

 });

 }

This is how you register for the sync. When a user is ready to post a comment, you

check if the serviceWorker object is ready. If so, you get a reference to the service worker

passed into the function in your then method. You call sync.register on that object

and pass in a string key. This is the key you’ll look for in your service worker. In your case,

you pass in the string representation of whichever button the user pressed.

�Listening for sync
In the service worker, the string key you registered for will be referred to as a tag. Let’s

take a look at that code:

importScripts('sw-toolbox.js', 'pirate-manager.js');

self.addEventListener('sync', (event) => {

 const data = pirateManager.setupCommentData(event.tag);

 event.waitUntil(pirateManager.postComment(data));

});

In the service worker, you listen for the sync event. This event holds a tag property

that will let you know which button was pressed, because that’s what you registered

earlier on the button press in script.js. You take that tag and post it as the comment by

sending it to the pirateManager.postComment method. Of course, just like before, you

want the event to wait for you to finish your work before completing.

You’ve put the implementation of the postComment method inside of an object

called pirateManager because you may want to be able to post comments outside of the

service worker, too (remember, service workers are progressive enhancements; you still

want your app to work even when service workers don’t). So that you don’t duplicate

code, you have a few helper functions in the pirateManager. You’ll look at that file in

Chapter 5 Background Sync for Offline Apps with Service Workers

75

a bit. For now, it’s important to know that the postComment method returns a promise.

When that promise resolves, the sync is finished. If the promise is rejected, another sync

event may fire later on.

�Implementation Details of Using sync
Let’s take a look at the implementation of postComment as well as the whole

pirateManager object, saved in a file called pirate-manager.js.

Note A ll of the code in this chapter can also be found on the book’s GitHub site at
github.com/dennissheppard/pwa in the branches starting with chapter5.

The pirateManager object will take care of fetching your comments as well as

posting them:

var pirateManager = (() => {

 return {

 getComments: getComments,

 postComment: postComment,

 setupCommentData: setupCommentData

 };

 function getComments() {

 return fetch('https://pirates-b74f7.firebaseio.com/commentList.json')

 .then((response) => response.json())

 .then((data) => {

 this.commentList = data;

 return this.commentList;

 });

 }

 function postComment(commentData) {

 let data = JSON.stringify(commentData);

Chapter 5 Background Sync for Offline Apps with Service Workers

76

 �return fetch("https://pirates-b74f7.firebaseio.com/commentList.

json",

 {

 method: "POST",

 body: data

 })

 .then((response) => {

 response.json();

 });

 }

 function setupCommentData(comment) {

 const d = new Date();

 const date = (d.getMonth() + 1) + "/" + d.getDate() + "/" +

d.getFullYear() + " " + d.getHours() + ":" + d.getMinutes() + ":" +

d.getSeconds();

 const data = {

 commentText: comment,

 date: date

 };

 return data;

 }

})();

There are three relatively straightforward methods here. The only details you need to

know for background syncing are that the postComment method returns a promise via the

fetch method, and that you’re taking in the comment from the service worker to POST it

to the API.

Note T his file is using the revealing module pattern. Notice at the top of the file
there is a return statement that contains an object with properties referencing
every function that other parts of the app might need. These functions are
accessible through those properties.

Chapter 5 Background Sync for Offline Apps with Service Workers

77

You can see the high-level architecture for how you’re going to use this manager file

and how it fits into the rest of the app in Figure 5-1.

Figure 5-1.  App architecture using sync with a “manager” or service layer file

Now in the script.js code, you tie everything together:

(() => {

 document.addEventListener('DOMContentLoaded', init, false);

 function init() {

 registerServiceWorker();

 addListeners();

 getComments().then((commentList) => renderComments(commentList));

 }

 function registerServiceWorker() {

 if ('serviceWorker' in navigator) {

 window.addEventListener('load', () => {

 �navigator.serviceWorker.register('service-worker.js').

then((registration) => {

 console.log(registration);

 }, function (err) {

Chapter 5 Background Sync for Offline Apps with Service Workers

78

 console.log(err);

 });

 });

 } else {

 console.log('No service worker support in this browser');

 }

 }

 function getComments() {

 return pirateManager.getComments()

 .then((commentList) => commentList);

 }

 function postComment(comment) {

 const data = setupCommentData(comment);

 if (navigator.serviceWorker) {

 navigator.serviceWorker.ready.then((sw) => {

 return sw.sync.register(comment)

 .then((args) => {

 �appendComment(document.getElementById('comments'),

data);

 })

 .catch((err) => {

 console.log(err);

 });

 });

 } else {

 �pirateManager.postComment(data).then(() =>

appendComment(document.getElementById('comments'), data));

 }

 }

 function addListeners() {

 �document.getElementById('arrghBtn').addEventListener('click', () =>

postComment('Arrrgh!'));

Chapter 5 Background Sync for Offline Apps with Service Workers

79

 �document.getElementById('ahoyBtn').addEventListener('click', () =>

postComment('Ahoy!'));

 }

 function resetElements() {

 let comments = document.getElementById('comments');

 comments.innerHTML = "";

 }

 function renderComments(commentList) {

 resetElements();

 let comments = document.getElementById('comments');

 Object.keys(commentList).forEach((key) => {

 let comment = commentList[key];

 appendComment(comments, comment);

 });

 }

 function appendComment(commentsEl, comment) {

 let commentElement = document.createElement('p');

 �commentElement.innerHTML = comment.commentText + " - " + comment.

date;

 commentsEl.appendChild(commentElement);

 let hrElement = document.createElement('hr');

 commentsEl.appendChild(hrElement);

 }

})();

Again, nothing too complex here, and I already covered the code that registers the

sync event. One thing to note is that you’re still registering the service worker like you

always have before. This code registers the button click handlers, fetches comments that

Chapter 5 Background Sync for Offline Apps with Service Workers

80

have already been posted, and renders the comments on the page. The last thing to do to

run this is to make some minor markup changes from the examples in the last chapter:

<h1>Comments</h1>

<div id="comments">

</div>

<div style="display: flex; flex-direction: row">

 <button id="arrghBtn">Say Arrrgh!</button>

 <button id="ahoyBtn">Say Ahoy!</button>

</div>

This is where you place posted comments and your two buttons for posting the

user’s message of choice. Once you have all this, run the code and post a couple of

messages. These will fire the sync event and post to the Firebase API (you may even see

other readers’ previous messages from their own pirate ships across the sea, so say Ahoy!

to them!).

�Testing for Offline Sync
To test the background sync functionality, turn your Internet connection off. Don’t

worry, it’s just temporary. The Offline mode of the browser isn’t quite sufficient for this

test.

Once your connection is off, post another message. You’ll see that it shows up right

away. That’s because in your script.js code, you’re manually appending the comment

to your list of comments as soon as you register for the sync event. But nothing was

posted to the API. Put a breakpoint in DevTools on the sync listener in the service

worker, and maybe another in the pirateManager.postComment method. If you turn your

Internet connection back on, your breakpoint should be hit, and the actual comment

will post to the API! You can see a high-level overview of this process here in Figure 5-2.

Chapter 5 Background Sync for Offline Apps with Service Workers

81

�Making Improvements
If you refresh the page on the messages you just synced while offline, you may have

noticed that the timestamp of your message was different. That’s one drawback to the

implementation here. You update the UI as soon as the user clicks the button, regardless

of whether the post was made. So in the offline scenario, the post doesn’t actually make

it to your API until the user is back online, which could be seconds or hours later.

A better user experience would be to let the user know that there is no connection

and that their message will be posted as soon as connectivity returns. Once the message

is actually posted, you can update the list of messages.

Also, wouldn’t it be better if the user could post his or her own message instead of a

precanned one? That’s a little more difficult than you may think. If you’re offline, you’d

need to store that message somewhere so that the service worker still has access to it

when the sync event fires when the user is back online. After all, the sync event will

fire even if the app is no longer running in the foreground, which means the message

wouldn’t be in memory anymore.

You can make both of these improvements by using a data storage library.

Figure 5-2.  No connection, so the script.js file is on its own. Then the connection
returns and sync is fired. The service worker calls the pirate-manager.js file to
update the API.

Chapter 5 Background Sync for Offline Apps with Service Workers

82

�Data Storage
For some front-end devs, databases can be a little intimidating. Most relational database

work is unlike anything we do on the front end. But the storage solution you’ll be using is

not a relational database. You don’t need to be a DBA, and you don’t need to know SQL.

�IndexedDB vs. localForage
IndexedDB is a large-scale, client-side storage solution. You can use it to store large

amounts of data. But unlike relational databases, there aren’t tables. Instead, you

typically write to object stores that can hold numbers, strings, JavaScript objects, blobs, or

files. You can use it to store, search, get, and update data, and even makes use of indexes

for fast data retrieval. Additionally, IndexedDB uses transactions to ensure database

integrity. A transaction is a wrapper around an operation that will fail if any part of

the operation fails. This lets the database maintain its state before the transaction was

attempted. See Figure 5-3 for a high-level look at IndexedDB.

Figure 5-3.  IndexedDB structure

Chapter 5 Background Sync for Offline Apps with Service Workers

83

If all of this sounds pretty great, let’s take a quick look at a code example, but don’t

worry about too much about the details (you won’t be using this code, and it likely

doesn’t actually work; this is for illustrative purposes only!):

(function() {

 // different browsers have prefixes

 �window.indexedDB = window.indexedDB || window.webkitIndexedDB || window.

mozIndexedDB || window.msIndexedDB;

 �window.IDBKeyRange = window.IDBKeyRange || window.webkitIDBKeyRange ||

window.msIDBKeyRange;

 if (!window.indexedDB) {

 window.alert("Your browser doesn't support IndexedDB");

 }

 // Open the DB

 var request = window.indexedDB.open("pirates", 1);

 request.onupgradeneeded = function(event) {

 var db = event.target.result;

 // Create object store for this database

 var store = db.createObjectStore("comments", { autoIncrement : true });

 store.createIndex('date', 'date', { unique: false });

 };

 function addComment(commentObj) {

 var tx = db.transaction('comments', 'readwrite');

 var store = tx.objectStore('comments');

 var req;

 try {

 req = store.add(commentObj);

 } catch (err) {

 throw err;

 }

Chapter 5 Background Sync for Offline Apps with Service Workers

84

 req.onsuccess = function (evt) {

 console.log("adding comment successful, arrrgh!");

 };

 req.onerror = function() {

 console.error("something went wrong", this.error);

 };

 }

})();

That’s a lot of code just to create a database and write something to the store.

IndexedDB can be complex. So you need a simpler way to use it, as well as having

built-in fallback support. And that’s where localForage comes in. Before I talk about

localForage, let’s look at a similar code sample that creates a database and writes a

comment to it:

var store = localforage.createInstance({

 name: "pirate"

});

store.setItem('comment', {"comment": "ahoy!"}).then(() => {

 return localforage.getItem('comment');

}).then((value) => {

 console.log(value);

}).catch((err) => {

 console.log(err);

});

Well now, that’s a lot less code. In fairness, this can only save one value at a time,

while the prior example can save multiple. But hopefully you get the point. You are more

than welcome to use old school IndexedDB if you would like, but from here on out, the

pirate app (and any future examples that need some type of storage) will use localForage.

localForage is available via npm. So install it with

npm install --save-dev localforage

and make sure you add it to index.html like so:

<script src="node_modules/localforage/dist/localforage.min.js"></script>

Chapter 5 Background Sync for Offline Apps with Service Workers

85

If you run the pirate app again (make sure you clear out any cached files and old

service workers), you can actually paste the localForage example code above into the

DevTools console. If you do this, then go to the Application tab in DevTools and down to

the IndexedDB section on the left, you can see the result of this operation (you may need

to right-click on IndexedDB and choose Refresh IndexedDB), as in Figure 5-4.

Figure 5-4.  The comment is saved in IndexedDB.

So you’re able to store items in IndexedDB with few lines of code. What is this

spooky magic? localForage is a third-party library created by the Mozilla team. It

essentially wraps IndexedDB (or WebSQL, though this is a deprecated technology)

and automatically uses localStorage for a fallback. If you’re familiar with localStorage,

you may notice that the syntax of localForage in the setItem line of the example is very

similar to localStorage.

Chapter 5 Background Sync for Offline Apps with Service Workers

86

�Using localForage For Better Offline Support
Now we’ll want to use this special magic to improve the pirate app’s offline support and

make the commenting feature a little more robust overall. Take a look at the overall

architecture of the new plan that utilizes localForage in Figure 5-5.

Figure 5-5.  Pirate app architecture using localForage. The UI saves the comment
to localForage. When the sync event fires, the service worker calls pirate-manager.
js, pirate-manager.js fetches the comment from the data store and once the API call
is made, the service worker handles the promise, which has the data. From there,
though, we currently have no way to update the UI from the service worker.

The complete example using localForage is in the chapter5-example-2_

localforage branch of the www.github.com/dennissheppard/pwa repo if you just want

to follow along with all of the code pre-written.

If you want to type out the code, go ahead and add a textarea element to your

HTML view, and change the two buttons to just one comment button:

<textarea id="comment-text" cols="40" rows="10"></textarea>

<div style="display: flex; flex-direction: row">

 <button id="commentBtn">Leave a comment</button>

</div>

Chapter 5 Background Sync for Offline Apps with Service Workers

http://www.github.com/dennissheppard/pwa

87

That will allow your users to say hello in whatever way they choose. You’re able to

store that comment using localForage. Let’s go ahead and do that as soon as the user

presses the Leave a comment button and before you register your sync event in the main

script.js file:

function postComment() {

 document.getElementById('commentBtn').innerHTML = "Posting...";

 �localforage.setItem('comment', document.getElementById('comment-

text').value)

 .then(() => submitPost());

 }

Here you’re saving whatever the user entered into your offline store with the key

comment. The setItem method will return a promise. You need to wait until you’re sure

the value is stored before you register for sync or make the API call. Then you can call

submitPost, which will register your sync if the browser supports it, or just make the API

call if not:

function submitPost() {

 if (navigator.serviceWorker) {

 navigator.serviceWorker.ready.then((sw) => {

 return sw.sync.register('post-comment')

 .then((args) => {

 offlineTimeout = setTimeout(() => {

 localforage.getItem('comment').then((val) => {

 �document.getElementById('no-connection-

message').style.display = "block";

 �document.getElementById('commentBtn').

innerHTML = "Leave a comment";

 �document.getElementById('comment-text').

value = "";

 });

 }, 3000);

 })

 .catch((err) => {

 console.log(err);

 });

Chapter 5 Background Sync for Offline Apps with Service Workers

88

 });

 } else {

 pirateManager.postComment().then((data) => {

 document.getElementById('comment-text').value = "";

 �document.getElementById('commentBtn').innerHTML = "Leave a

comment";

 �document.getElementById('no-connection-message').style.

display = "none";

 appendComment(document.getElementById('comments'), data);

 });

 }

 }

The submitPost function has kind of a lot going on, so I’ll break it down. First, you’re

checking to see if you have service worker support. If not, you just make the call to the

API and update the UI. If you do, things are much more interesting.

You register sync once you get an instance of the service worker. You changed the

name of the sync key to post-comment. Now you don’t need to register the sync based

off what the user enters. Regardless of the message, you’ll always sync with the

post-comment key.

Once the sync is registered, set a timeout to give the API a few seconds to make its

POST. If the POST isn’t successful by that point, you assume the user is either offline or

has a poor Internet connection. So, show an offline message and wait for the sync to fire

again to retry the POST. If the POST is successful, you’ll clear the timeout later. You’re

declaring that timeout at the very top of this file, but that declaration is not shown in the

above snippet.

Over in pirate-manager.js, retrieve the comment text from your data store so that

you can make the POST to the API. Because you saved the comment into storage as soon

as the user clicks the button, this will work for both when you’re on and offline:

function postComment() {

 return localforage.getItem('comment').then((val) => {

 let d = new Date();

 let data = {

 commentText: val,

Chapter 5 Background Sync for Offline Apps with Service Workers

89

 date: (d.getMonth() + 1) + "/" + d.getDate() + "/" +

d.getFullYear() + " " + d.getHours() + ":" + d.getMinutes() + ":" +

d.getSeconds()

 };

 �return fetch("https://pirates-b74f7.firebaseio.com/commentList.

json",

 {

 method: "POST",

 body: JSON.stringify(data)

 }).then(() => {

 localforage.removeItem('comment');

 return data;

 });

 });

 }

Notice that the getItem call to retrieve your comment from the data store returns

a promise. Here you need it to get the value, package it up with a date stamp, stringify

it, and send it off to your API. You also want to remove the comment from your local

database because it’s safe and sound in your remote database. No need to hold on to it.

Also, go ahead and return that packaged-up data after the POST because you’ll need it to

update your UI.

At this point, the user can POST their own comment even if they’re offline.

Since you’re supporting a nice offline message for the offline user, let’s just add

that simple message to your view HTML above your textarea (and no judgement for

that inline styling; it’s purely to illustrate that you want to hide that message until you

determine the user is offline):

<div id="no-connection-message" style="display: none;">

 <h2>Arrrgh! Looks like you have no connection. We'll try posting

your message again when you're back online!</h2>

</div>

You’re just about finished! The app lets users post comments, whether or not they

have a connection because you’re using a web data store, and you can display a message

to the user if they post when they’re offline. The last thing you’d like to do is update the

UI once the user regains a connection.

Chapter 5 Background Sync for Offline Apps with Service Workers

90

If you noticed the architecture diagram (Figure 5-5), though, you know that you don’t

have anything in place to do that. To this point, pirate-manager knows nothing of the

DOM, and script.js knows nothing of the API. Nice, clean separation. You don’t want

to mess that up. So how do you let your UI file (script.js) know that the call is finished?

If you were using a library like RxJS or any other Pub/Sub type of library, this would

be pretty straightforward. There is a similar way to accomplish this, though, with a built-

in feature of service workers.

�The message Service Worker Event
There are times you need the service worker and its clients to communicate back and

forth. This is done via a message event that you can listen for in either the service worker,

the client, or both. Let’s take a look at the syntax before applying it to the app:

navigator.serviceWorker.controller.postMessage("Hey Mr. Service Worker,

whattya say?");

From script.js, you can send a message back to the service worker. On the service

worker side, you just need to set up a listener to catch the message:

self.addEventListener('message', (event) => {

 console.log("This was received by the service worker: " + event.data);

 event.ports[0].postMessage("Hey Mr. Client, what do YOU say?");

});

You register for an event like you’ve done a hundred times before. The message

is contained in the event argument passed in. You can even have the service worker

respond by posting a message on the event’s port that was opened when the client sent

the message.

If you want to communicate in the reverse direction, the syntax is mostly the same.

And that’s what you need to do for the pirate app. In your case, the service worker is the

one calling the POST method to save your comment, and your POST method returns a

promise that you can handle in your service worker. So the service worker just needs to

send a message to the client once the POST comment call is finished.

Once pirate-manager is finished POSTing, let the UI know to update

function notifyClient(msg){

 self.clients.matchAll({'includeUncontrolled': true}).then((clients) => {

Chapter 5 Background Sync for Offline Apps with Service Workers

91

 clients[0].postMessage(msg);

 });

}

Slip that function right into your service worker code at the bottom. It takes all of

the service worker’s connected clients and passes them into a promise. If there were

multiple tabs open, all running the same service worker, you could selectively send

messages to different clients. In your case, you only have one, and you can reference it

directly and post a message to it using clients[0].postMessage. Way back up in your

sync listener in the service worker, you can call this notifyClient function when your

POST is finished:

self.addEventListener('sync', (event) => {

 if (event.tag == 'post-comment') {

 event.waitUntil(pirateManager.postComment().then((data) => {

 notifyClient(data);

 }));

 }

});

You can see that after you call pirateManager.postComment(), you have a promise

that has a data object in the then function. That’s the data returned from postComment.

If you remember, that’s your comment text and a date stamp packaged up for you. You

send that to the notifyClient function, and that should send your data to the client. But

you still have to listen for it over in script.js. However, that’s straightforward:

function addListeners() {

 �document.getElementById('commentBtn').addEventListener('click', ()

=> postComment());

 if (!navigator.serviceWorker) {

 return;

 }

 navigator.serviceWorker.addEventListener('message', (event) => {

 clearTimeout(offlineTimeout);

 document.getElementById('comment-text').value = "";

 �document.getElementById('commentBtn').innerHTML = "Leave a

comment";

Chapter 5 Background Sync for Offline Apps with Service Workers

92

 �document.getElementById('no-connection-message').style.display

= "none";

 appendComment(document.getElementById('comments'), event.data);

 });

 }

Registering for the message event is as simple as calling addEventListener on the

serviceWorker object. As soon as the client receives the message event, you should clear

the timeout that checks to see if you should show the offline message. You’ve already

received word that the POST is complete, so obviously you have a connection. If the

offline message was displaying, you can go ahead and clear it because now you have

data to show and you’re back online. The last thing you need to do is append your new

comment to your list of comments. You passed that data from the pirateManager, and

you have access to it via event.data. This message pattern is a much cleaner way of

allowing the service worker and the UI to communicate. Take a look at Figure 5-6 to see

this updated architecture.

Figure 5-6.  Updated architecture using the message event to send the user’s
comment to the UI

Chapter 5 Background Sync for Offline Apps with Service Workers

93

You should now be able to post comments while online. Try it out. Also, kill your

network connection and try to post a comment. You’ll get the offline message, with

your comment safely tucked away in your offline data store. If you bring your network

connection back to life, after a moment the offline message will disappear and your

comment will be appended to the end of your comment list.

Congratulations, matey! You have a fully capable offline app!

�Looking Ahead
Three chapters’ worth of service workers is a lot, so next we’ll shift a bit. There are things

we can do with mobile web apps now that weren’t possible just a few years ago. The next

chapter will dive into what makes some of these features a reality: the web app manifest.

Chapter 5 Background Sync for Offline Apps with Service Workers

95
© Dennis Sheppard 2017
D. Sheppard, Beginning Progressive Web App Development, https://doi.org/10.1007/978-1-4842-3090-9_6

CHAPTER 6

Adding your App
to the Home Screen
with Web App Manifest
To this point, everything you’ve done could be applied to both a “traditional” web app

you’d visit on your laptop or desktop computer as well as on a mobile device. In fact,

offline capabilities are likely going to be needed more often on a mobile device than on a

laptop. But the web app manifest is a PWA feature that is really mobile-focused. With it,

you can specify details about your app that help devices give your users the best possible

experience.

Because of this, you’re going to be testing all of these features on an Android phone.

If you don’t have an Android phone, there are several emulators you can download to

play around with to get Chrome installed and follow along.

Each thing I cover here really is best experienced on a device. For example, with a

web app manifest, you can specify icons the device will use when a user saves your app

to the home screen. You can specify visual themes and launch URLs and app names that

show up under the app icon on a device home screen. There are options to change the

browser’s chrome to allow your app to appear as if it’s not even running in a browser. And

you can even specify a splash screen that launches as soon as your app does to avoid that

couple of seconds of a blank white screen if you’re fetching the app from the network

instead of the cache.

96

Even better is that all of this is really easy and straightforward. You simply specify

your options in a JSON file and reference it in your HTML files. Let’s take a look at the

manifest file you’ll use:

{

 "name": "iPatch",

 "short_name": "iPatch",

 "start_url": "index.html",

 "display": "standalone",

 "theme_color": "#000",

 "background_color": "#000",

 "description": "The best pirate app on the high seas! Arrrgh!",

 "icons": [{

 "src": "images/app-icon48.png",

 "sizes": "48x48",

 "type": "image/png"

 }, {

 "src": "images/app-icon72.png",

 "sizes": "72x72",

 "type": "image/png"

 }, {

 "src": "images/app-icon96.png",

 "sizes": "96x96",

 "type": "image/png"

 }, {

 "src": "images/app-icon144.png",

 "sizes": "144x144",

 "type": "image/png"

 }, {

 "src": "images/app-icon168.png",

 "sizes": "168x168",

 "type": "image/png"

 }, {

 "src": "images/app-icon192.png",

 "sizes": "192x192",

 "type": "image/png"

Chapter 6 Adding your App to the Home Screen with Web App Manifest

97

Table 6-1.  Web App Manifest Properties

Property Description

name The name of your application. This will display under the app icon.

short_name A fallback for the name, used anywhere the full name isn’t.

start_url The landing page for your users. Useful, for example, if your app is hosted on

www.iheartpirates.com but you want your readers to go to

www.iheartpirates.com/login.html when they launch.

display Available display options are

Fullscreen: Takes up the entire screen, and nothing of the web browser is

visible. Probably preferred for games.

Standalone: Most browser elements are hidden, like navigation, but some

items might still show.

minimal-ui: Essential UI elements of the browser are still visible, like

navigation buttons.

Browser: Just your normal old browser.

theme_color Specifies what color to tint the browser elements, such as the browser’s toolbar.

background_

color

Displays a color of your choosing as the background of your app before the

style sheets have had an opportunity to load.

(continued)

 }, {

 "src": "images/app-icon512.png",

 "sizes": "512x512",

 "type": "image/png"

 }],

 "prefer_related_applications": false,

 "related_applications": [{

 "platform": "play",

 "url": "com.arrgh.pirates"

 }],

 "orientation": "portrait"

}

Most of this is self-explanatory, but Table 6-1 provides explanations just in case.

Chapter 6 Adding your App to the Home Screen with Web App Manifest

http://www.iheartpirates.com/
http://www.iheartpirates.com/login.html

98

Table 6-1.  (continued)

Property Description

description Just what your app does.

icons The icon of your app.

Size: You can specify an icon size (even multiple sizes that are space-

separated). It’s important to include icons of different sizes as there are a

variety of screen sizes your app should support

Src: The path to the image.

Type: The media type, so the browser can ignore the image if it doesn’t

support the file type

prefer_

related_

applications

You can specify related applications (in the next property), and this value tells

the device OS to let the user know other applications are recommended over

this one. That seems silly, but a good example of this is if your PWA is related

to a native app that the user needs to perform a particular operation, and the

feature just doesn’t exist on the Web.

related_

applications

A list of native applications related to your PWA. Could allow the browser to

prompt a user to open the native version of your app.

orientation Set your app to work only in landscape or only in portrait. You can also include

any as a value, but this is the default.

dir This is the text direction for the name, short_name, and description

properties. By default, this will be ltr or “left to right,” but for languages that

are written right to left, put rtl here.

lang This specifies the language for the name and short_name properties. This

should be a string containing a single language. By default, this is 'en-US'.

scope Much like the service worker scope from previous chapters, this property

specifies which directories and files the web app manifest affects. This value

should be a string representing a valid path of your application. If you don’t

specify this path, everything that is in the directory of the manifest and all

subdirectories are included in the scope.

Chapter 6 Adding your App to the Home Screen with Web App Manifest

99

Now that I’ve covered what the manifest contains and what it does, you need to make

sure you include it in your app. The following is just a one-liner to pop into each

HTML page:

<link rel="manifest" href="manifest.json">

You have the manifest created, and you have it inside index.html and your other

HTML pages. If you navigate to the app in Chrome and open DevTools, you can see the

Manifest option on the left side of the Application tab like in Figure 6-1. In there, you

have details about your app manifest and can even test the prompt to add your app to

the home screen. So let’s give it a shot.

Figure 6-1.  App manifest details in DevTools

Chapter 6 Adding your App to the Home Screen with Web App Manifest

100

�Installing the App to the Home Screen
If you visit the page in Chrome on Android, it’s still hitting your local dev server, so

the pages won’t be served over HTTPS. That is one of the requirements for Chrome to

prompt a user to install your app to the home screen. Later on you’ll deploy your app so

that it will be served over HTTPS, and I’ll go over how to run an HTTPS server locally. For

now, you can use the Add to Homescreen button in DevTools to test the pop-up, which

I’ll talk about in just a moment.

The other criteria for Chrome prompting users to install your app are the name and

short_name properties in your app manifest, a start_url property that works while the

user is offline, a png icon that’s at least 144px, and the user needs to visit the site twice, at

least five minutes apart. This list is in a bit of flux, though, and is frequently updated. It’s

best to test your app frequently if this prompt is something that’s important to you.

It’s up to Chrome as to when the user will have the opportunity to respond to a

prompt. However, when the prompt does show up, there are some things the browser

will allow you to do to exercise more control over the user’s experience.

�Handling Installation Events
You may have analytics or other tracking tools that would be nice to use when it comes

to how users respond to the installation prompt. To do this, you can listen to the

beforeinstallprompt event anywhere that you have access to the window object:

window.addEventListener('beforeinstallprompt', (event) => {

 event.userChoice.then((result) => {

 console.log(result.outcome);

 if(result.outcome === 'dismissed') {

 console.log('The app was not added to the home screen');

 } else {

 console.log('The app was added to home screen');

 }

 });

 });

Once the event fires, the userChoice object on the event returns a promise with the

result. From there you can check whether the user dismissed the installation dialog.

Chapter 6 Adding your App to the Home Screen with Web App Manifest

101

Additionally, you can stop the prompt from happening and store it to display to

the user at a later time. This is useful because users tend to be wary about pop-ups and

prompts to do things. So it’s a best practice to show the prompt once the user either

asks for it or has a positive experience with your app, rather than seemingly randomly

asking them to add the app to the homescreen. You can do that by calling event.

preventDefault(); and assigning the event to a variable for later usage:

var deferredPrompt;

window.addEventListener('beforeinstallprompt', (event) => {

 event.preventDefault();

 deferredPrompt = event;

});

document.getElementById('install-to-home-screen').addEventListener('click',

() => {

 if(deferredPrompt) {

 deferredPrompt.prompt();

 deferredPrompt.userChoice.then((result) => {

 console.log(result.outcome);

 if(result.outcome === 'dismissed') {

 console.log('The app was not added to the home screen');

 } else {

 console.log('The app was added to home screen');

 }

 });

 delete deferredPrompt;

 }

});

�Manually Adding the App to the Home Screen
Of course, all of this assumes Chrome prompts the user, which is not guaranteed. Luckily

for us devs, we can test adding the app to the home screen via DevTools (see Figure 6-1)

and users can manually add the app to their home screen from Chrome’s menu, shown

in Figure 6-2.

Chapter 6 Adding your App to the Home Screen with Web App Manifest

102

If you launch the app, you can go ahead and tap Add to Home screen. Like in

Figure 6-3, Chrome will present you with a pop-up showing your app icon and an input

box pre-filled with the name of the app. Users are welcome to change the name to

whatever they’d like.

Figure 6-2.  Adding the app to the home screen

Chapter 6 Adding your App to the Home Screen with Web App Manifest

103

Once the user chooses a name and taps ADD, Figure 6-4 shows how the app gets

added to the home screen.

Figure 6-3.  Icon and name of app

Chapter 6 Adding your App to the Home Screen with Web App Manifest

104

This is fantastic! Your app is available for launching right there on the device. It is

worth noting, however, that the app really is just on the home screen. If you go looking

for it in the app drawer, you’re not going to find it.

�The App Splash Screen
In the early days of having web apps launchable from an icon on the home screen, the

experience was fairly janky. The user would launch and see a white screen for several

seconds before any content was visible. Now, of course, you’ve cached everything, and

your app loads very quickly. But in case of super slow connections, or if you’re less

aggressive in your caching, Chrome has the ability to show the user a splash screen at

launch, rather than just waiting for content to load. The best part about the splash screen

is that it’s automatically shown based on properties you’ve already put in your app

manifest.

Figure 6-4.  The app on the device home screen

Chapter 6 Adding your App to the Home Screen with Web App Manifest

105

The splash screen is generated from name, background_color, and the icon in the list

of icons that is closest to 128dp, with a minimum of 48dp for the icon to show.

Note I f the dp is a unit you’re not familiar with, 1dp is the same thing as 1px on
a screen with a density of 160dpi. The Samsung Galaxy S7, for example, has a dpi
of 576. So an image of 128dp would need to be a 460px image. In the example
manifest, the highest resolution image is 192px. This is the equivalent of 53dp.
That’s on the small side, but workable for this particular device. Anything smaller
than 192px, though, and Lighthouse will penalize you!

Now that you have your PWA added to the home screen of the device, go ahead and

launch the app using the icon. As it launches, you should see your app icon with the

name of the app right below it, along with the background color specified in the app

manifest, just like in Figure 6-5.

Figure 6-5.  Splash screen

Chapter 6 Adding your App to the Home Screen with Web App Manifest

106

�The display Property
The display property in the example app manifest is set to fullscreen, which means

that none of the web browser will show. That means your PWA will look like a native app

to the user. In this case, the Pirate App is “designed” (using the word in the loosest sense)

to look like a web app, not a mobile app. But if your app has a very mobile look and feel,

getting rid of the browser chrome around the app will really give the app a native feel.

Take a look at Figure 6-6 to see what a PWA would look like on a mobile device without

any browser chrome.

Note W hen referring to the “chrome” of the browser, this is not a reference to the
Chrome browser. Instead, a browser’s chrome consists of its visible features, such
as the address bar, navigation buttons, menu options, etc.

Figure 6-6.  No browser chrome is visible with the fullscreen option

Chapter 6 Adding your App to the Home Screen with Web App Manifest

107

Note I f you try making changes to your app manifest, make sure to clear out
your mobile device’s browsing data. Remember, you’re caching a lot of things now,
so it can be frustrating when you make a change and don’t see it reflected in the
app. Most of the time, simply clearing browser data and opening the app in a new
tab will do the trick. Also, when testing changes having to do with adding the app
to the home screen, don’t forget to delete the app you have already added to the
home screen.

Try a few different settings for display to see which one you prefer for your app.

�The start_url Property
You initially set the start_url of the manifest to index.html, which is the default main

entry point of your app anyway. Feel free to tweak that to other pages of the app to see

that the app launches to the set start_url. This seems like a small feature, but think of

the flexibility this affords developers for web apps. With the combination of a fullscreen

display, a different manifest with a different start URL, your PWA could actually consist

of numerous apps. Maybe you want an app dedicated solely to pirate books. In that case,

you could reference a different manifest on pirate_books.html with a start_url of

pirate_books.html so that when a user installs it with no browser chrome, the entire

app consists of just that page. That’s pretty powerful for a simple old web app.

It’s also possible to track certain metrics in your PWA by adding query string params

to the start_url. With that, you can track whether a user installed your PWA and when

and how often the app is launched.

�Looking Ahead
You’re now able to bring your apps closer and closer to their native counterparts. Your

apps work offline, load super-fast with the cache, and users can launch them from the

home screen. Next, I’ll talk about giving your users the capability to stay engaged with a

web app like never before by using push notifications.

Chapter 6 Adding your App to the Home Screen with Web App Manifest

109
© Dennis Sheppard 2017
D. Sheppard, Beginning Progressive Web App Development, https://doi.org/10.1007/978-1-4842-3090-9_7

CHAPTER 7

Notifications
This chapter is going to cover something that has become a little bit controversial

recently. While push notifications on the Web are a powerful feature that inches the Web

ever closer to native apps, some developers have started to transform them into trite

annoyances that have conditioned users to ignore notifications or turn them off outright.

How often do you give an app the okay to send you notifications on your phone? On the

Web? There’s a good chance you’re pretty stingy with which apps you give permission to

send you notifications. So before we dive in to the technical aspects of this feature, let’s

examine the responsibility that will be bestowed upon you.

Imagine, if you will, that you walk into a store. Maybe it’s a clothing store or a

grocery store, doesn’t matter. And the second you walk in the door, an employee of the

establishment is in your face, asking if he or she can call you regularly. Or text you. Or

mail you something or even show up at your house.

Best case, you’ll try a nifty spin move to get around this crazy person and get to the

shopping you desire. Worst case, you’re going to turn around and just leave the store.

No one wants to be harassed in this way. Perhaps you think this is overstating the

problem. A push notification never hurt anyone, right? True, but they can be a nuisance,

and a good way to drive away users if they’re not done correctly. As an example, just in

doing some research about this very topic, you might run across a site that looks like

Figure 7-1.

110

Within seconds of arriving on this page (that shall remain unidentified), the user is

bombarded with a request for notifications and to sign up for a newsletter. Take it easy,

site; we just met! If you haven’t even had a chance to show users what your app is or what

it’s offering them, there’s very little chance a user is going to automatically sign up for

your notifications.

I could talk about opt-in statistics by industry and platform, and that Android users

are more likely to allow an app to send push notifications than iOS, or that both numbers

are declining in general. I could talk about engagement rates and how they go up once a

user does accept push notifications. But all of those stats miss the point that waiting for

the right opportunity to ask your users if they would like you to send them notifications

is the real key. And that opportunity is not the very second they land on your page!

The opportunity will vary from app to app. Ideally, though, you’ll want to wait until

the user has done something that indicates an interest in whatever the push notifications

Figure 7-1.  Overly aggressive engagement attempts—pretty meta

Chapter 7 Notifications

111

are about. Maybe you even wait for the user to click a big button that says Enable Push

Notifications. Whatever the opportunity is, remember to treat your users how you’d like

to be treated.

Now that the PSA portion of the chapter is out of the way, let’s look at how you might

(responsibly) engage with your users via notifications!

�Web Notifications
This chapter will cover two different types of notifications: web notifications and push

notifications. The former is done entirely using front-end code, with no need for a server

to be involved. If a user has your app open on a desktop browser, web notifications are

a possible option. If, however, you need to send your user a notification even when the

browser tab is closed or the device is in a pocket, push notifications are your only option.

They originate from a server and use a web notification to notify the user even if the app

isn’t active.

Of course, while the “push” flavor of notifications is more powerful, it also is quite a

bit more complex. So let’s start with web notifications to ease our way in here.

�Requesting Permission to Notify
What would a pirate app be without a parrot? So Figure 7-2 introduces… Peggy the

Parrot!

Figure 7-2.  Say hi to Peggy the Parrot.

Chapter 7 Notifications

112

Peggy gets hungry a lot, and once you visit her, it’s your responsibility to feed her. It’d

be helpful if you got a notification reminding you to feed her, lest she get cranky and fly

away. If that happened, you might have to walk the plank for losing the Captain’s bird. So

let’s create that notification:

document.addEventListener('DOMContentLoaded', initPage, false);

function initPage() {

 if (!('Notification' in window)) {

 // this browser does not support notifications

 } else if (Notification.permission === 'denied') {

 // the user denied notification permission!

 } else if (Notification.permission === 'granted') {

 // setup UI to show notifications already enabled

 }

 notificationsBtn.addEventListener('click', () => {

 Notification.requestPermission();

 });

}

Create a peggy_parrot.html file, or download the repo from the Chapter7-

example-1_web_notifications branch. You can just tuck your script into that file for

now.

Once the DOM is finished loading, you can get started with your initPage function.

You want to check a few things first. Does this browser support notifications? Just about

every modern desktop browser does nowadays. But if this user’s doesn’t, you can display

a message when you check if window has the Notification object. You also can go ahead

and check if permission for notifications has already been denied or granted, and you

can adjust the UI accordingly.

If after making the initial checks the user’s browser is good to go, and permission

hasn’t been granted or denied, you have to ask for it. You do that by calling

requestPermission on the Notification object. That method returns a promise, so if

you want to do anything after permission is granted, this is the place. For now, you don’t

need anything in there, so you’ll leave the then function off.

Chapter 7 Notifications

113

�Sending a Notification
Next, go ahead and create your function that sends a notification to the browser:

function sendNotification(opacityRemaining) {

 let options = {

 �body: 'Peggy wants a pretzel! You have ' + (opacityRemaining * 10 * 3)

+ ' seconds to feed her!',

 icon: 'images/peggy_parrot.jpg'

 };

 let notification = new Notification('Peggy says', options);

}

Notifications take an options object. The options object has a lot of properties you

could set on it, including an icon the notification can display, actions (which is an array

of actions the user has to interact with the notification), body for text the notification

displays, vibrate (which allows a vibration pattern on mobile devices), and a lot more.

For now, you’re going to keep things simple and just have an icon and body text. Feel

free to experiment with some of the other notification option properties. You can find a

list of all of them here: https://developer.mozilla.org/docs/Web/API/Notification/

Notification.

To send the notification, you just make a new Notification object, passing in a

title (which is just a string) and your options object. You can do some things with the

Notification object that is returned, such as closing it after a certain amount of time, or

listen for events about the notification such as an error if the notification couldn’t sent

for some reason or a click event if the user interacts with the notification. But it’s not

required to do anything with that returned object.

The opacityRemaining variable is linked to how hungry Peggy is before she

disappears. Let’s go ahead and make Peggy the Parrot hungry. That will be represented

symbolically by having Peggy fade from the user’s view over 30 seconds. When Peggy is

halfway faded, you should notify the user that they need to feed the bird. Feeding the

Chapter 7 Notifications

https://developer.mozilla.org/docs/Web/API/Notification/Notification
https://developer.mozilla.org/docs/Web/API/Notification/Notification

114

bird, in this case, simply consists of the user pressing a button that resets the bird image’s

opacity to 1.0:

function makeParrotHungry() {

 let parrotPic = document.getElementById('parrot');

 let interval = setInterval(() => {

 parrotPic.style.opacity -= .1;

 if (parrotPic.style.opacity <= 0) {

 clearInterval(interval);

 // Peggy has flown away to find food

 } else if (parrotPic.style.opacity < .5) {

 sendNotification(+parrotPic.style.opacity);

 }

 }, 1000 * 3);

}

function feedParrot() {

 let parrotPic = document.getElementById('parrot');

 parrotPic.style.opacity = 1.0;

}

Every three seconds, you decrement the opacity on the image by .1. When

the opacity gets under .5, you want to send the browser a notification, so call the

sendNotification function. To display how many seconds the user has to feed Peggy,

you have to pass sendNotification the remaining opacity. If the opacity gets down

to zero, you can clear out the interval because by that point, it’s too late. The bird has

abandoned you from lack of love and care.

To get this going, you need the image of the parrot in your HTML view, along with a

button to enable notifications and a button to feed Peggy:

<button id="enable-notifications">Enable Notifications</button>

<button id="feed-parrot">Feed Peggy</button>

Go ahead and run this if you’ve been typing along or you’ve pulled down the branch

Chapter7-example-1_web_notifications from github.com/dennissheppard/pwa. If

you’re simply typing along, that branch has some items you might need, like the picture

of Peggy and a couple of other assets. You could also apply something similar to your

Chapter 7 Notifications

115

own app. When you load the peggy_parrot.html page, you should see our beautiful

bird. Wait a few seconds, and you’ll get a notification! Depending on your OS, the

notification should look something like Figure 7-3.

Figure 7-3.  Notification you created letting you know to feed Peggy

This is pretty great. That’s all it took to get a notification.

But wait another few seconds, and you’ll see your notification change to 9 and then

another few seconds 6, etc. Because you send a notification on every interval once the

opacity reaches a certain point, you’re getting a little bit clogged up.

Imagine if you had an app that sent a notification every time a new message arrived.

If your user is a popular person, all of those notifications could stack up really quickly.

Take Figure 7-4, for example.

Figure 7-4.  Notifications stacking up!

Chapter 7 Notifications

116

�Tagging Notifications
To alleviate this problem, you can use the tag property. The tag property should contain

any string that you would like to identify a notification. When you tag a notification, the

browser will pick up that the notification was already sent and will replace the older

notifications with the ensuing notifications. Just change the options object to include a

tag property:

function sendNotification(opacityRemaining) {

 let options = {

 body: 'Peggy wants a pretzel! You have ' + (opacityRemaining * 10 * 3)

+ ' seconds to feed her!',

 icon: 'images/peggy_parrot.jpg',

 tag: ‘feed-peggy’

 };

 let notification = new Notification('Peggy says', options);

}

Now if you neglect to feed Peggy, you should see just the most recent notification.

This is great for the Web, but pretty basic. The biggest drawback is that this will only work

on desktop browsers. If you try to run the preceding code on a mobile device, you’re not

going to get anything. On a mobile device, the browser tab won’t stay active to notify

you. Instead, you’d need to move the notification to the service worker level. You knew

service workers were going to get involved sooner or later! Let’s take a look at how you’d

do this and how you can improve the interactivity of the push notification to help your

users feed Peggy.

�Web Notifications with Service Workers
When you get service workers involved with notifications, they’re called persistent

notifications. It really just means you’re going to use a service worker to handle your

notifications. Service workers remain persistent in the background of the app, whether

it’s running or not.

Almost all of your code is going to be the same as before. You’ll just tweak the line

that actually sends the notification in the sendNotification function and add an

actions property to the options object:

Chapter 7 Notifications

117

function sendNotification(secondsLeft) {

 let options = {

 �body: 'Peggy wants a pretzel! You have ' + (secondsLeft * 10 * 3) + '

seconds to feed her!',

 icon: 'images/peggy_parrot.jpg',

 actions: [

 {

 action: "feed", title: "Feed Peggy"

 },

 {

 action: "wait", title: "Wait to Feed Peggy"

 }

]

 };

 navigator.serviceWorker.ready.then((sw) => {

 sw.showNotification('Peggy says', options);

 });

}

First, let’s look at that actions property. You have an array with two objects in it.

Both have an action property and a title property. The action property is essentially

an ID that you’ll use to know if the user clicked that action. The title property is the text

you’ll show the user.

Note T he actions property is currently quite limited in its browser support.
Only Chrome supports it. If you’d like to use it, make sure it’s a progressive
enhancement, and that your entire app doesn’t rely on it.

The next change is at the bottom of the function. You need to wait until the service

worker is ready, and once it is, you can call showNotification on the registration object

passed in via the promise, called sw. Other than that, it’s the same idea.

You’ll actually be able to listen for user interaction events on the notification so that

you can detect if a user selected Feed Peggy or Wait to Feed Peggy. You listen for those in

the service worker, though, and since you’ll need the service worker to set up your whole

push notification feature, let’s circle back to listening for those events.

Chapter 7 Notifications

118

�Push Notifications
Now that you’ve laid some groundwork for notifications by requesting permission,

sending a notification from the browser, and setting up some actions for use while

wiring up the service worker, you can get down into the weeds of push notifications. As

mentioned, these notifications originate from a server, so the browser doesn’t even need

to be open to receive these notifications.

The process (also viewable in Figure 7-5) in which this works is as follows:

	 1.	 After the user grants permission to receive notifications, the app

asks a web push service for a PushSubscription object. Each

browser is in charge of implementing that web push service. You

don’t particularly care what that service is, as long as you can

request a PushSubscription and it returns one.

	 2.	 The web push service returns the PushSubscription object to the

browser.

	 3.	 The app sends the PushSubscription object to your app server for

safe keeping.

	 4.	 When some action requires a push notification, the app server

tells the web push service to send a notification based on a set of

keys (more about those in a bit).

	 5.	 The web push service sends the notification to the browser, where

it’s handled by the service worker.

Chapter 7 Notifications

119

That’s a lot of steps, but I’ll make sure to cover each one. As mentioned, however, this

part does get significantly more complex. Here be dragons.

�Subscribing a User to Push Notifications
To send a push message to a user, you need a PushSubscription object from the

browser. That object contains all the information the server needs to identify your

browser and send a push message. So as soon as you get the PushSubscription object,

you can send it off to your own server, and the battle is half won. Let’s go over how to

subscribe the user.

The first thing you need are Voluntary Application Server Identification (VAPID)

keys, also known as application server keys. This is a set of alphanumeric strings that

identifies your application on the web push server. Using them, the server will know

who is requesting the push and who will receive it. This is a security precaution to make

sure there’s nothing iniquitous happening between the application and the server,

such as the push service reading message data rather than it being private to the end

user or someone sending you push notifications that shouldn’t be. Imagine spam push

notifications… Yuck.

Figure 7-5.  Push notification architecture

Chapter 7 Notifications

120

This set of keys contains a public key and a private key, one that you can share,

another that you shouldn’t. You can generate a set of keys a couple of different ways, but

the easiest is by visiting https://web-push-codelab.appspot.com/. This is a site created

by Google and is pretty self-explanatory. Just hit the Refresh Keys button to get a public

and private key. Keep that page open, because you’re about to use the public key.

In pirate-manager.js, let’s throw the public key at the top of the file and assign

it to a variable called publicServerKey. Then add a reference to a method you’ll call

subscribeToPush. Then you just need to create that method to subscribe the user to

push notifications.

var publicServerKey =

'BIPFAXHI5YOZQFIU4bUyyKgKxqPWJJMf7WHZkMg1u7XeljjeNpwad5fvJXwtb0EN7

cvEA_6pzwjYsY9_gLQFnRs';

return {

 getComments: getComments,

 postComment: postComment,

 registerServiceWorker: registerServiceWorker,

 subscribeToPush: subscribeToPush

 };

......

function subscribeToPush() {

 const options = {

 userVisibleOnly: true,

 applicationServerKey: urlB64ToUint8Array(publicServerKey)

 };

 navigator.serviceWorker.ready.then((reg) => {

 return reg.pushManager.subscribe(options);

 })

 .then((subscription) => {

 console.log('subscription: ', JSON.stringify(subscription));

 return subscription;

 });

 }

Chapter 7 Notifications

https://web-push-codelab.appspot.com/

121

 function urlB64ToUint8Array(base64String) {

 const padding = '='.repeat((4 - base64String.length % 4) % 4);

 const base64 = (base64String + padding)

 .replace(/\-/g, '+')

 .replace(/_/g, '/');

 const rawData = window.atob(base64);

 const outputArray = new Uint8Array(rawData.length);

 for (let i = 0; i < rawData.length; ++i) {

 outputArray[i] = rawData.charCodeAt(i);

 }

 return outputArray;

 }

Let’s get that 600lb gorilla out of the way. That urlB64ToUint8Array function is

ridiculous. Don’t even look at it. Okay, fine, take 10 seconds because you know you’re

going to. Done? Alright, yes, it’s ridiculous, and it’s borrowed directly from Google’s

push notifications repo on GitHub: https://github.com/GoogleChrome/push-

notifications/blob/master/app/scripts/main.js. You need it because the push

subscription needs the public server key as a UInt8Array. So you’ll use that function to

get it into the appropriate format and be on your way. Thanks, Google!

Looking above that crazy function, the subscribeToPush method has an options

object. One of the options is userVisibleOnly, which has to be set to true and has to

be included. There was a plan once upon a time to allow devs to send users silent push

notifications in case they wanted to update the app or do something without bothering

the user with a visible notification. A sneaky dev could use that for shady purposes, so for

now only visible pushes are allowed.

Note T hat silent push notifications plan is now encompassed in the Budget API,
which allows limited background work without notifying the user, like a silent push
notification. Each site will be given a “budget” of resources to use to limit how
much happens in the background without the user being notified.

Chapter 7 Notifications

https://github.com/GoogleChrome/push-notifications/blob/master/app/scripts/main.js
https://github.com/GoogleChrome/push-notifications/blob/master/app/scripts/main.js

122

The next option is your applicationServerKey that you’re converting. Once you

have them, you need a reference to your service worker registration object that has

access to the pushManager that has a subscribe method on it. You pass in your options

and wait for a successful then that should have your PushSubscription object.

Note  You may be wondering what actually happens in that subscribe method
on the pushManager. The browser is making a call to a push service with your
public server key to register your app with an endpoint. That endpoint will be
returned to you in the PushSubscription object. Each browser has a different
push service, but lucky for us the API is all the same. The only thing you need
concern yourself with is sending off your key to the subscribe method.

Add a call to pirateManager.subscribeToPush in the peggy_parrot script on

the check to see if notifications have been enabled. That way if the user had granted

permission on a previous page load, you can just subscribe to push right away. If

permission wasn’t granted before, you want to make a call to subscribe to them down in

the enableNotifications function.

document.addEventListener('DOMContentLoaded', initPage, false);

 function initPage() {

 if (!('Notification' in window)) {

 // this browser does not support notifications

 } else if (Notification.permission === 'denied') {

 // the user denied notification permission!

 else if (Notification.permission === 'granted') {

 pirateManager.subscribeToPush();

 }

...

function enableNotifications() {

 Notification.requestPermission().then((result) => {

 pirateManager.subscribeToPush();

 });

}

Chapter 7 Notifications

123

You can go ahead and run this, and if you have DevTools open, you should see

something like Figure 7-6.

Figure 7-6.  PushSubscription returned from subscribe call

Slaying these dragons one step at a time. You can now check to see if your user has a

subscription before making a call to subscribe:

function subscribeToPush() {

 const options = {

 userVisibleOnly: true,

 applicationServerKey: urlB64ToUint8Array(publicServerKey)

 };

 navigator.serviceWorker.ready.then((reg) => {

 return reg.pushManager.getSubscription().then((subscription) => {

 if (subscription === null) {

 return reg.pushManager.subscribe(options);

 } else {

 let promise = new Promise((resolve, reject) => {

 resolve(subscription);

 });

 return promise;

 }

 });

 })

Chapter 7 Notifications

124

 .then((subscription) => {

 console.log('subscription: ', JSON.stringify(subscription));

 return subscription;

 });

}

When you get your registration object once you check if the service worker is ready,

you can make a call to getSubscription on the pushManager object. If the subscription

exists, you can just return that in your own promise; you don’t need to subscribe the user

again. If that subscription does not exist, you can call subscribe, passing in your options

just like before. In either case, you will still hit the then function at the bottom of the

code snippet with a subscription object passed in.

Note  Checking if the user is already subscribed is also good practice so that you
can update your UI accordingly. For example, if you have a button asking the user
to subscribe to push notifications, checking beforehand can allow you to disable
the button or let the user know they’re already subscribed.

�Saving the PushSubscription Object
Your next step is to save that subscription information on your own back-end server. You

might be thinking, I don’t have a server. You’re right. You don’t have a server. Now what?

Build one?

You’ll be using a very simple Express server to handle your server-side push

notifications. If you haven’t worked with Express before, don’t panic. Don’t let your eyes

gloss over. Just another dragon to slay.

To get a full understanding of what’s happening with push notifications, try to follow

along with the server-side code. There are a few parts that are particularly relevant to

push notifications that will be called out. If you’d really like, though, you can ignore

most of this server-side code and just use this file. When it comes time to implement

push notifications on your own projects, though, the pattern and steps will largely be the

same, but there is logic specific to the pirate app. Just change the endpoints to whatever

you need, and update the timing of when you want the push notifications to show.

First, in your terminal run, type

npm install --save express web-push body-parser

Chapter 7 Notifications

125

This will install your necessary libraries, including web-push. That’s a library

that’s going to make your life significantly easier by handling all of the necessary

authentication and security protocols with the VAPID keys.

Now, create a directory in the root of your app and call it server. Inside there,

create a blank JavaScript file. You’ll use server.js in this project, but feel free to call

it whatever you’d like. I’m going to cover what goes in that file in chunks so it’s not too

overwhelming.

let express = require("express");

let webPush = require('web-push');

let bodyParser = require('body-parser');

let app = express();

let subscriptions = [];

let timeLeft = 15;

let timer;

At the top of the file, declare some variables. You need to bring in both ExpressJS

and the web-push libraries. You also need to bring in a package that allows you to grab

the body of whatever you post to your server’s endpoints. That’s what the body-parser

package does.

You create an instance of Express, an array that will hold your PushSubscription

objects, and then some variables to deal with the timing for how long it takes Peggy to

fade out.

If you were really setting this up to be accurate, most of the logic for managing

Peggy’s state would live on the server. As it stands, the logic is a little spread out and

leads to some inconsistencies that you’ll see. But for the purposes of push notifications,

you just need to know when to show them. So I’ve moved just enough logic to the server

to be able to handle that.

app.use(bodyParser.json());

app.use(function(req, res, next) {

 res.header("Access-Control-Allow-Origin", "*");

 res.header("Access-Control-Allow-Headers", "Origin, X-Requested-With,

Content-Type, Accept");

 next();

});

Chapter 7 Notifications

126

Here you’re telling your Express app to use the body parser. Then you need to add

in a block of code for cross-origin resource sharing (CORS). This allows you to hit your

API from a different domain. You need that because your server will be running on a

different port than the front end of your code. You don’t have to set it up this way. If you’d

like, Express can serve all of your front-end code as well. For now, though, you’re sticking

with your original dev server for the front end, and Express will live one port higher.

You’ll see that code in a bit.

const vapidKeys = {

 publicKey:

'BCi3AfGJVfxoDOB3JGMbvyAzOBJ8KiqRrUn6OhYaWsfUrwOq6h9hI1x464AQaVyaNFhAGNi0

thYCtSxRmy0P8SI',

 privateKey: 'tjl2sNdpoiLYqUhR_TjSSZNq1U2fcBNw2LT76C_nCOM'

};

webPush.setVapidDetails(

 'mailto:dennissheppard+pwa@gmail.com',

 vapidKeys.publicKey,

 vapidKeys.privateKey

);

Here is a code block that’s particularly relevant to push notifications. Remember

those VAPID keys you created? You need to send those off to the web-push library. You

also have to include some kind of link that includes a mailto email address in case the

third-party push server needs to contact whomever is sending the messages:

app.post('/register', (req, res) => {

 if (!req.body || !req.body.endpoint) {

 // Invalid subscription.

 res.status(400);

 res.send('Invalid subscription');

 return false;

 }

 console.log('Subscription registered ' + req.body.endpoint);

 const found = subscriptions.some((sub) => {

 return sub.endpoint === req.body.endpoint;

Chapter 7 Notifications

127

 });

 if (!found) {

 subscriptions.push(req.body);

 }

 if (!timer) {

 setPushTimer();

 }

 res.sendStatus(200);

});

Here’s another section that’s pertinent to notifications. Remember that you have to

save your subscription on the server? This is the main part of step three in the overall

architecture from Figure 7-5.

This chunk of code sets up an endpoint with which you can POST that subscription

to from the front end. The route to the endpoint is just /register, and it will take

your pushSubscription object on the body of the POST. That object needs to have the

endpoint property on it so the push server knows where to send the notification. If any

of that stuff is bad, you return a 400 error telling the front end that the subscription is

invalid.

If everything went well, you will want to add the subscription object to your array

of subscriptions. There’s some code in there to ensure you’re not saving duplicate

subscriptions. In your production apps, you’ll likely want to save that subscription to a

database for future sessions, but let’s stay focused on the task at hand here.

After saving the subscription in your array, if you haven’t already set the timer in

motion, you do so with setPushTimer(). Let’s look at that function next:

function setPushTimer() {

 timer = setTimeout(() => {

 console.log('timeleft: ', timeLeft);

 subscriptions.forEach(sendNotification);

 }, 1000 * timeLeft);

}

Chapter 7 Notifications

128

This is pirate app-specific logic. After a certain amount of time, you want to send the

notification. In your case, it’s about half-way through the time it takes Peggy to fade out.

In your apps, that logic will be up to whatever rules you have to show the notifications.

For this app, it’s a simple timeout. Once the timeout executes, you want to send the

notification for each subscription you have. Again, this will vary depending on the app.

Now, let’s look at what it takes to actually send that notification.

�Triggering the Push Notification
This is the code that will actually send the notification to the push server, which will then

contact your browser. This is step four and five of the flow we went over before. Step five

is taken care of for you by the web-push library and the push server, but triggering all of

that is up to you.

function sendNotification(subscription) {

 timer = null;

 const notificationText = 'Peggy wants a pretzel! You have ' + timeLeft + '

seconds to feed her!';

 webPush.sendNotification(subscription, notificationText).then(function() {

 console.log('Notification sent');

 }).catch(function(error) {

 console.log('Error sending Notification' + error);

 subscriptions.splice(subscriptions.indexOf(endpoint), 1);

 });

}

Once you’re ready to send the notification, you can kill your timer. Then, whatever

data you want to send with the push notification along with your subscription object

you passed in to this function is included in a sendNotification method on the webPush

object. That returns a promise you can use to do something after the notification was

sent or to handle errors. In your case, if for some reason the notification didn’t send,

the subscription is no good, so you want to remove that subscription object from your

array of them.

At this point, your notification is sent! The cycle is complete.

You’re not quite done yet, though. What happens when or if the user feeds Peggy?

You need to reset the timer and notify them again later. So you need something that the

front end can use to update that timer. Again, this is an item that’s really specific to this

Chapter 7 Notifications

129

particular app, but you’ll see later how you can use the following logic to enable users to

interact directly with notifications:

app.post('/feed', (req, res) => {

 timeLeft = 15;

 if (!timer) {

 setPushTimer();

 }

 res.sendStatus(200);

});

This is a very simple endpoint the front end can POST to that resets the timer. This

way if the user does feed Peggy, you can send off another notification when she’s hungry

again:

app.listen(8081, function() {

 console.log(`Listening on port 8081`);

});

The last thing you need to do on your server is just start it up. As mentioned, you’re

running it one port above where your front-end server is running, but configure your

ports and where your server is running however you’d like.

To get the server running, go to a new terminal window or tab, navigate to the root of

your app and run

node server/server.js

and you should see something like in Figure 7-7.

Figure 7-7.  When you run the server, it should let you know that it’s running and
listening on whatever port you configured it to use

Chapter 7 Notifications

130

Now that the server is running, you can hit one of your new endpoints to make sure

the timer is resetting when you feed Peggy. So you need to hop back over to the front end

to update your feedParrot function inside peggy_parrot.html:

function feedParrot() {

 let parrotPic = document.getElementById('parrot');

 parrotPic.style.opacity = 1.0;

 fetch('http://localhost:8081/feed', {

 method: 'post'

 }).then(() => {

 console.log('fed and posted');

 });

}

The front-end code should now be hitting your locally running API, though you may

need to change the URL in the fetch call to your local IP address instead of localhost.

Once that’s in, whenever the user clicks the Feed Peggy button, the server will be

updated to reset the timer that controls when a push notification will show.

And that’s it for the server! If you’d never worked with Express or node before, you’re

basically an expert now. Time to move back to the service worker, because you need to

catch those notifications that the push server is now sending your way. And remember,

these will notify the browser even if your particular app was closed. What makes that

possible is your wonderful service worker. Let’s take a look!

�Catching Push Events in the Service Worker
Your service worker is the part of your app that will handle displaying the push

notifications when it receives the push event from the push server. That means all of the

notification logic will live in the service worker and run when it receives the event:

self.addEventListener('push', function(event) {

 console.log(`Push received with this data: "${event.data.text()}"`);

 const title = 'Peggy says:';

 let options = {

 body: event.data.text(),

Chapter 7 Notifications

131

 icon: 'images/peggy_parrot.jpg',

 actions: [

 {

 action: "feed", title: "Feed Peggy"

 },

 {

 action: "wait", title: "Wait to Feed Peggy"

 }

]

 };

 event.waitUntil(self.registration.showNotification(title, options));

});

When you catch the push event, you have your familiar options object with your icon

and actions and body. Before, you were configuring that body text on the front end. You

can still do that if you’d like, but this example shows that you can just as easily display

text that you sent from your server. You can configure the server to send other data too,

but in your case it is a simple text string you want in the body of the notification.

You don’t want the push event to end until you’ve had a chance to actually show the

notification. So you throw your showNotification method inside the event.waitUntil

function. showNotification lives on the self.registration object and requires your

title and the options object, which is how you’ve been showing notifications all along.

You’re finally ready to run all this code! Your server should already be running. Make

sure your front-end server is still going. At this point, it’d probably be helpful to clear

out anything from before. In DevTools in the Application tab, there’s an option to clear

application data (see Figure 7-8). Let’s do that and make sure you don’t have anything

cached that would mess us up.

Chapter 7 Notifications

132

When this runs, navigate to the peggy_parrot.html page. If the button is visible,

enabling you to show notifications, do so and accept permission. If you’ve done that

previously, it’s likely that the button won’t be there.

Wait about 15 seconds (or however long you set the timer for in server.js code) and

you should see a notification. It will look different depending on your OS, but not only

should you see a notification, but you’ll also have options with which to interact with the

notification, like in Figure 7-9.

Figure 7-9.  Notification from the server with action options

Figure 7-8.  Clearing application data

In fact, you should even be able to close the browser tab and still see the notification!

Maybe even more impressively, you can turn off your phone’s screen in that

15-second window and receive the notification there as well, but not before setting up

the ability to connect an Android device to the dev server via port forwarding.

Chapter 7 Notifications

133

�Testing Push on Mobile
As previously discussed, service workers are only allowed on secure connections. The

exception to that is for using localhost. You can hit your development server from a

mobile device (if both are on the same internal network) by using the IP address, but

unless you set up TLS for your dev server, the service worker isn’t going to install when

you run your app on mobile.

The good news is that the desktop version of Chrome allows you to set up remote

debugging for your Android device by using port forwarding.

Connect your Android to your computer using a USB cable. On your Android device,

make sure the connection mode isn’t set to Charge Only. You may be presented with a

list of options on your device that looks like Figure 7-10.

Figure 7-10.  Changing your Android connection from Charge Only

Chapter 7 Notifications

134

Either of the Transferring options will work.

Now open DevTools on Chrome and at the bottom next to the console, you should

see an option that says Remote Devices, as in Figure 7-11.

Figure 7-11.  Remote devices option on DevTools

Figure 7-12.  Push notification on mobile

In Settings, you’ll see a an option that says Port forwarding. Click Add rule and in

the left textbox, enter whatever port you’d like to use on your Android device to connect

to your dev server. This example uses port 3000, but put in whatever you’d like. In the

right textbox, enter the address you would like Android to connect to when you use

localhost:3000. In your case, that’s the machine’s localhost on port 8080.

Now you should be able to open a Chrome tab on Android, navigate to

localhost:3000, and you’re hitting your dev server’s localhost:8080. The service worker

will install, and everything should work as expected, with a push notification on the

mobile device, just like in Figure 7-12.

Chapter 7 Notifications

135

Your last step is to enable those buttons on the notification to actually do something.

For that, you turn to your trusty service worker.

�Handling Notification Click Events
Just like you listened for the push event in the service worker, so too can you listen to a

notificationclicked event. And because you put the action property on your actions

array on the notification options, you can also know if the user clicked on one of the

buttons or anywhere else. This gives you a lot of flexibility depending on what you want

your app to do or what purpose you want your notifications to serve. In this case, you can

feed Peggy without ever having to open your application. Let’s see how:

self.addEventListener("notificationclick", (event) => {

 let promise = new Promise((resolve) => {

 event.notification.close();

 if (event.action === "feed") {

 fetch('http://localhost:8081/feed', {

 method: 'post',

 headers: {

 'Accept': 'application/json',

 'Content-Type': 'application/json'

 }

 }).then(() => resolve());

 } else if (event.action !== 'wait') {

 self.clients.matchAll().then((clients) => {

 if (clients.length > 0) {

 �clients[0].navigate("http://localhost:8080/peggy_parrot.

html?feed=true");

 } else {

 �self.clients.openWindow("http://localhost:8080/peggy_parrot.

html?feed=true");

 }

Chapter 7 Notifications

136

 resolve();

 });

 }

 });

 event.waitUntil(promise);

});

In the service worker, you listen for the notificationClick event. Because you don’t

want that event to finish until you’re done with everything, at the bottom of this function

you’ll see event.waitUntil(promise);. Because of that, you’re wrapping everything you

do here in a promise, and when you resolve it will depend on what action the user takes.

The first thing you’ll do is to close the notification regardless of what action the user

takes. That’s done with event.notification.close().

If the user clicked the button to feed Peggy, event.action should equal “feed.” If the

browser supports the action property, you can make a call to your feed endpoint, which

will update the timer on the server. As soon as that endpoint is finished, you can resolve

your promise. Remember, though, not all browsers support action, so have a backup

plan for your app in case event.property returns undefined due to a lack of browser

support.

If, however, the user clicked the button that says to wait to feed Peggy, you don’t

actually need to do anything. The notification will just close.

Your last check is whether or not the user clicked somewhere else on the notification.

When that happens, you want to take the user to your page. So you can check if the page

is running by looking at all of the clients the service worker has control of. If there some

are running, you can just navigate those clients to the appropriate page. If the browser

tab has been closed and there are no active clients, you’ll want to open a new window

with self.clients.openWindow.

This example includes a query string parameter on that route. This is just to show

how you might pass data from the notification event into your page.

Note  You may remember that a couple of chapters ago you used messaging
events to send information from the service worker back into your client. This is
just another way to do so.

Chapter 7 Notifications

137

You aren’t actively doing anything with that param, but you could take that data and

update the UI accordingly. Maybe based on what gets passed in there, you could set the

appropriate fade level of the image (or whatever else you might want to do in your future

apps).

Once the user has landed on the page, you can resolve the promise, and you’re all

done!

�Looking Ahead
Now that you’re getting ever closer to catching up with native apps and features

that were previously exclusive to native, the next chapter is going to shift focus

back to another area that native apps have traditionally been ahead in: app loading

performance.

As soon as you’ve digested push notifications, let’s go make your app load super-fast!

Chapter 7 Notifications

139
© Dennis Sheppard 2017
D. Sheppard, Beginning Progressive Web App Development, https://doi.org/10.1007/978-1-4842-3090-9_8

CHAPTER 8

App Shell Architecture
and Loading Performance
One of the most important things you can do for your users is to give them the content

they’re looking for as soon as possible. When you launch a native app, you’re usually

presented with a splash screen, and then you can see something in the app within a

second or two. On the Web, though, oftentimes we’re stuck with a white screen for

several seconds. Progressive web apps are here to help you change that with app shell

architecture.

One of the interesting things about the app shell is that you’ve been using it all along

and you’ve already implemented it. That’s how sneaky fast it is!

�What an App Shell Is
The app shell is just the bare minimum of UI you need to show the user something. That

could be a navbar, a menu, some tabs, whatever. It’s important that the user isn’t staring

at a blank white screen questioning if he or she really wants to be waiting for your app

to finish loading. Then, once this skeleton of your app is visible, you can pull in your

dynamic content.

The architecture part comes in when it’s time to decide how you’ll separate your

static content (the app shell) from your dynamic content. App shell architecture is a

natural fit for any front-end—heavy app that uses AJAX for dynamic content. Even when

using front-end frameworks (which you’ll see in a couple of chapters), you’re able to

utilize this architecture because those types of apps are already set up to separate the

static content (the shell) from the dynamic content.

140

If, however, your app relies on the server sending full rendered pages and postbacks

when responding to user input, you have a lot of architectural re-work to do.

Note  If you’re unable to separate your static from dynamic content because
you’re exclusively using server-rendered pages, the app shell is probably not
appropriate for your app.

To this point, our pirate app has already pretty much looked like a skeleton. There’s

really not that much content, and almost no styling, because we’ve focused on PWA

concepts. So for this chapter, I’ve given iPatch a very corporate and grown-up makeover to

illustrate what a proper app shell might look like, as you can see in Figures 8-1a and 8-1b.

Chapter 8 App Shell Architecture and Loading Performance

141

Admittedly, this app doesn’t have much more content than this anyway. But if you

can get this much on the page in under a second (depending on connection, device,

etc.), the user at least knows that, much like winter, more content is coming, as in

Figures 8-2a and 8-2b.

Figures 8-1a and 8-1b.  App shells for mobile and web

Chapter 8 App Shell Architecture and Loading Performance

142

Figures 8-2a and 8-2b.  Once the dynamic content loads

Chapter 8 App Shell Architecture and Loading Performance

143

�Caching the App Shell
The most important part of app shell architecture, though, is that you need to cache your

app shell. Which makes a ton of sense, because your app shell doesn’t change often. And

if it does, you can easily clear the cache by updating your cache version when you deploy

your UI changes.

In case you don’t remember how to cache, you can use sw-precache if you are

using a build system (or use it from the command line), or sw-toolbox, or you can just

manually cache resources. You’ve actually been doing this all along with sw-toolbox, but

in case you dropped into this chapter from the sky, let’s take a look at how you’re doing it.

In the service-worker.js file, you cache the app shell like so:

toolbox.router.get('/images/*', toolbox.cacheFirst, {

 cache: {

 name: CACHE_NAME,

 maxEntries: 20,

 maxAgeSeconds: 60 * 30

 }

 });

 toolbox.router.get('/styles/*', toolbox.cacheFirst, {

 cache: {

 name: CACHE_NAME,

 maxEntries: 20,

 maxAgeSeconds: 60 * 60 * 24 * 7

 }

 });

 toolbox.router.get('*.html', toolbox.cacheFirst, {

 cache: {

 name: CACHE_NAME,

 maxEntries: 20,

 maxAgeSeconds: 60 * 60 * 24 * 7

 }

 });

Chapter 8 App Shell Architecture and Loading Performance

144

I’ve named the CACHE_NAME to some string somewhere else, but name it whatever

you’d like. Notice you’re using the cacheFirst strategy for the app shell. That’s kind of

the whole point here is that you want the app shell as soon as you can possibly get it.

This method of caching will add to the cache whatever items the browser requests

from your images or styles directories, as well as any HTML files. So once the user loads

the app once, all subsequent visits to the site will use the cache instead.

Note R emember, if you would like to pre-cache any files that user hasn’t
requested yet, you can do so with pre-cache. For example, you’ll cache everything
the user requests from index.html, and for the app shell, that’s enough. But,
once the user hits the index page, if you want the browser to cache other HTML
files your app uses before the user visits them, you can do that with pre-cache.

At the top of the service worker, there are a few files you need access to in the service

worker, namely the one that makes the toolbox object available:

importScripts('sw-toolbox.js', 'pirate-manager.js', 'localforage.min.js');

Once the service worker is registered (if you don’t know how to do that, go back to

Chapter 3!), the cache will be filled with all of the files necessary to build the app shell.

Now, to the extent you want to optimize rendering, you could even drop the styles

directory from the cache and inline style the app shell for another notch of performance.

You could fairly easily insert all styles into a <style> tag in the <head> of index.html.

Of course, there are obviously trade-offs in performance vs. maintainability as well as

impacts to your caching strategy. If you inline styles you actually need elsewhere in your

application, those styles won’t be cached. Play around with various tweaks to inlining

and caching to see what works for you. If you’d like to see any differences in rendering

speed by moving around the styles, give it a shot and post a comment on the pirate

comment board to let us know. As for this instance of iPatch, keep your separate CSS files

for now.

Note  In another chapter you’ll see if you can have the best of both worlds with
HTTP/2 server push.

Chapter 8 App Shell Architecture and Loading Performance

145

Being able to pull these resources from the cache (or even inlining them) instead

of making a trip across the wires to a server can result in great performance benefits, as

well as enable your app to show the application shell even while the user doesn’t have an

Internet connection.

�Measuring App Shell Performance
In the case of the current pirate app iteration, caching the app shell took page load

times on a laptop with a fast broadband connection from about 1.75 seconds on average

without cached assets, down to about .75 with the cache, with some loads finishing in

under .4 seconds! Again, this is not a very content-heavy site, but a 57% decrease in load

time is still pretty fantastic.

Then, using WebPageTest with an emerging markets 3G connection on an Android

device, subsequent page visits (using the cached app shell) resulted in about a 54%

average reduction in the first page view. You can see the results at www.webpagetest.

org/result/170809_0D_FK8/ and in Figure 8-3.

Figure 8-3.  WebPageTest results with cached app shell

Keep in mind that these numbers will vary depending on what measuring tool you’re

using, what device you’re using, how heavy the network load is, what phase the moon

is in, and if you’re properly hydrated. Simply saying an app loads in under a second is

meaningless without context.

For example, Lighthouse (discussed in Chapter 2) tends to show much higher load

times than other tools like WebPageTest or browser plugins like “Page Load Time” and

“Analyze Page Performance” because Lighthouse throttles both your network connection

and your CPU to try to emulate a Nexus 5X. So if you can get your Lighthouse numbers

down to something you’re happy with, your desktop numbers should be superb!

Chapter 8 App Shell Architecture and Loading Performance

http://www.webpagetest.org/result/170809_0D_FK8/
http://www.webpagetest.org/result/170809_0D_FK8/

146

Note  You can also simulate different connection speeds using DevTools under
the Network tab. This will load your page as though your connection is limited to
whichever option you choose.

�Going Beyond the App Shell
If you’ve already pulled down the chapter8 branch from github.com/dennissheppard/

pwa, you may have noticed a couple of additional changes I haven’t discussed. There are

seemingly an infinite number of tips and tricks for performance to try to eke out another

few milliseconds. While web apps are still fighting the performance perception wars

against native apps, each blink of an eye can be important.

In Figure 8-4, let’s compare what the Lighthouse performance section looks like if

you run it with the code in the last chapter vs. the code in this chapter with the new app

shell (and other performance tweaks I’ll mention in a moment).

Chapter 8 App Shell Architecture and Loading Performance

147

Figure 8-4.  Lighthouse performance comparison

Chapter 8 App Shell Architecture and Loading Performance

148

You can see that not only did the pirate app get a UI and UX makeover, but it also got

a pretty nice performance boost! Of course, going from a 70 to an 84 doesn’t mean much

without context. Notice that the time before the app was first interactive (that a user can

actually do something on the page) was about a second and a half faster on the new

site, and the Perceptual Speed Index (which measures how quickly content lands on the

page) was almost 3 seconds faster.

So how did all this magic happen? Most of that magic is found right there in

Lighthouse. Look at the first image under the Opportunities section. Lighthouse says that

you have render blocking scripts and styles to take care of.

�Render Blocking Scripts
A render blocking script is just what it sounds like. Once the browser has HTML markup,

it begins to build the DOM by parsing the HTML. But while parsing the markup, the

browser just goes in order. So that means if the HTML references a script, it stops the

parsing to download and execute the script. As you can imagine, between fetching that

new resource, executing it, then going back to parsing, all of this could significantly delay

how fast the page loads.

Note  Stylesheets count as render blocking resources as well! If you’re
referencing stylesheets that aren’t absolutely necessary to render your app shell,
move them to the bottom of the HTML just before the </body> tag.

In order to fix this, you just need to move your scripts out of the head of your site and

into the body so that the HTML isn’t blocked. The head of the index.html file now just

contains the manifest:

<head>

 <link rel="manifest" href="manifest.json">

</head>

Whereas before, the head contained a reference to each of your scripts and the CSS file:

<head>

 <script src="node_modules/localforage/dist/localforage.min.js"></script>

 <script src="pirate-manager.js"></script>

Chapter 8 App Shell Architecture and Loading Performance

149

 <script src="script.js"></script>

 <link rel="stylesheet" type="text/css" href="styles/pirates.css"/>

 <link rel="manifest" href="manifest.json">

 <script src="companion.js" data-service-worker="service-worker.js"></

script>

</head>

Each of those resources was delaying your page from rendering. Of course, if there is

a script that is absolutely necessary to execute before you show your app shell, you can

leave that in the head. But you should keep that script as small as possible, and consider

inlining the script to keep the browser from having to fetch and download the file.

To inline a script, just put the contents of it between <script></script> tags. You’re

actually already doing this on a few of the pirate app pages, like pirate_books.html.

Of course, in that case, none of that script is necessary to render the app shell, so you

could (and probably should!) move that code to an external file and reference it near the

bottom of the HTML.

�Async and Defer
For modern browsers, there are a couple of additional options to keep your scripts from

blocking the page rendering process.

The async keyword in a script tag will tell the browser to continue rendering the

page while the resource is being downloaded, and will only pause parsing the HTML

to execute that script. This is helpful for times when you want your script to execute as

soon as possible, but don’t need it to render your app shell. The drawback, however, is

that async scripts aren’t guaranteed to execute in any particular order. So if you have

library.js and scriptThatNeedsLibrary.js, you can’t use async without additional

code to ensure the dependent script doesn’t try to execute before the browser loads and

executes script it depends on.

The defer keyword on a script tag tells the browser that the script can definitely

wait for the HTML to render. The browser will still download the file as it is parsing

HTML, but it won’t execute the script until it’s finished rendering. As a bonus, the

browser’s script execution stays true to the order in which you list the scripts. So scripts

dependent on one another will execute in the order you would expect while using

defer. Again, unless your app shell is absolutely dependent upon a script, this should be

Chapter 8 App Shell Architecture and Loading Performance

150

your go-to. While it’s support isn’t completely universal (Opera doesn’t support it), it’s

widely enough supported that you should probably always use defer. You get the best of

both worlds by putting your scripts at the bottom of your HTML file while also using the

defer keyword:

 <!-- some HTML here →
 <script defer src="https://code.getmdl.io/1.3.0/material.min.js"></script>

 <script defer src="localforage.min.js"></script>

 <script defer src="pirate-manager.js"></script>

 <script defer src="script.js"></script>

 �<script defer src="companion.js" data-service-worker="service-worker.js">

</script>

</body>

You can compare the loading timeline of async and defer to the “regular process” in

Figure 8-5.

Figure 8-5.  How the browser handles regular script tags vs. the defer tag vs. the
async tag

Chapter 8 App Shell Architecture and Loading Performance

151

�Deferring Stylesheet Parsing and Execution
So this takes care of your scripts, but what about your stylesheets? The same principles

apply here. Any CSS you don’t need to render the app shell should be referenced at the

bottom of the page. With stylesheets, however, we don’t have the luxury of the defer or

async keywords. So there are other… hacks, so to speak, we can use to defer the parsing

and execution of stylesheets.

The link tag we use to reference stylesheets takes a media attribute that tells the

browser to only parse that stylesheet if the provided media query is true. So if you give

the media attribute a media query that is always going to be false, say the string “none”

for example, the browser won’t parse that stylesheet. That doesn’t do you a lot of good if

you do eventually need the stylesheet, so step two of this… hack is to include an onload

event in the link tag that updates the media query:

<link rel="stylesheet" type="text/css" href="styles/pirates.css"

media="none"

 onload="if (media != 'all') media = 'all' "/>

This sets the media query to true, and the browser parses and executes the

stylesheet once the onload event fires.

Of course, if you do that with all of your CSS, you’ll notice the page first render on

the screen with a flicker of unstyled content, which is probably not what you want. If you

run the Chapter8-example-1_app_shell branch of the PWA repository, try adding the

media property and onload events to the link tags and you’ll see this happen. While this

could boost your rendering time in some benchmarks, it’s not very helpful to the user. So

any CSS you need to properly render your app shell you could separate out into an app_

shell.css file and include that in the head. Of course, if your app shell is dependent

upon a CSS framework, that’s much trickier because you typically wouldn’t split apart

the framework’s CSS file to pull out just what you need for the app shell. In that case, you

don’t have much of a choice but to include the CSS file in the <head> tag.

�Preloading JavaScript and CSS and Other Resources
There is a way to tell the browser that you’ll need certain resources right away, before

any of the rendering happens. This can be an important performance strategy because

it can cut down on the number of steps the browser has to perform if the CSS the page

needs is already downloaded and in place, for example. Or maybe you have a script that

Chapter 8 App Shell Architecture and Loading Performance

152

is needed for early DOM manipulation or animations that should be in place before

rendering starts. Because you request these so early in the page lifecycle, there’s less of a

chance that page rendering will be blocked.

You can preload these resources with the rel="preload" attribute. This tells the

browser you need to preload that particular resource:

<link rel="preload" href="libs/styles/material-icons.css" as="style" />

<link rel="preload" href="libs/styles/material.blue_grey-indigo.min.css"

as="style" />

<link rel="preload" href="styles/pirates.css" as="style" />

Note that you’ve added preload to the link tag, and you’ve also included the as

attribute, which tells the browser what kind of resource the file is. It also allows the

browser to properly prioritize resource loading and match any future requests that might

use that same resource.

This link, however, simply tells the browser to download the resource. To actually

use the resource, you need to reference the files again using your regular link tags as well.

You can use this feature on several types of resources, including stylesheets, scripts,

video, audio, fonts, images, and even fetches, and more.

If you include a MIME type on the resource, the browser can tell immediately if that

resource is supported by the browser, and if not, the browser won’t download a resource

it can’t use anyway:

<link rel="preload" href="libs/styles/material-icons.css" as="style"

type="text/css" />

<link rel="preload" href="videos/pirate-video.mp4" as="video" type="video/mp4" />

Note U nfortunately you won’t find a pirate video in the repo. That was just to
show a non-CSS example.

Preload has good browser support and won’t break older browsers, though if you

try to preload a resource you’re not actually using, Chrome will throw a warning in the

DevTools console that you may have preloaded a resource unnecessarily. If you would

like to preload resources you won’t use until future page navigations, you can use the

prefetch attribute instead of preload.

Chapter 8 App Shell Architecture and Loading Performance

153

Telling the browser to prefetch resources doesn’t guarantee they’re downloaded

right away. After all, you’re not going to use them immediately. Instead, it’s basically a

heads up to the browser that you think they’ll be needed in the future, and it’s up to the

browser to decide when to download them.

<link rel="prefetch" href="libs/styles/material-icons.css" />

<link rel="prefetch" href="libs/styles/material.blue_grey-indigo.min.css" />

<link rel="prefetch" href="styles/pirates.css" />

Notice that prefetch loses the as attribute of link.

�Looking Ahead
Now that you’ve optimized a fair bit on the front end, it’s time to shift focus to a server-side

technology. In the next chapter I’ll discuss HTTP/2 server push and how you might be

able achieve the best of both inlining resources as well as caching them.

Chapter 8 App Shell Architecture and Loading Performance

155
© Dennis Sheppard 2017
D. Sheppard, Beginning Progressive Web App Development, https://doi.org/10.1007/978-1-4842-3090-9_9

CHAPTER 9

Exploring HTTP/2
and Server Push
We have a lot to be thankful for from HTTP. Wikipedia calls Hypertext Transfer Protocol

the “foundation of data communication for the World Wide Web.” Established way back

in 1991, with version 1.1 coming onto the scene in 1999, HTTP has been around the

block a few times. It has allowed us to communicate with others from every corner of the

globe. It has created relationships and knowledge sharing and the ability to look at cute

puppy pictures on a whim. And for all of these things and many more, we are grateful.

But as is so common as time slips by, our beloved Hypertext Transfer Protocol has shown

its age. As the Web has grown, bandwidth has increased, and users are demanding richer

content, HTTP 1.1 (the version you’re probably most familiar with) has shown some

fundamental problems.

Chief among them are head-of-line blocking and lack of header compression. In this

chapter, I’ll briefly cover what those are and the trouble they’ve caused. But only as a

backdrop to the solution we have before us: the successor to HTTP 1.1, which is HTTP/2.

The bulk of this chapter will talk about what HTTP/2 is and how it’s going to change your

life as a developer and as a user of the Web. I’ll cover how to implement HTTP/2 and one of

the most important aspects of it with regards to PWAs and performance: server push. The

history lesson won’t be long, so if you’re really itching to get to the implementation details,

just remember what your good friend Billy Shakespeare said: What’s past is prologue.

�Head-of-Line Blocking
We teach our youngest children in school to form orderly queues and to wait their

turns. HTTP 1.1 is really good at forcing requests to stay in line and to make each one

wait its turn. This is why we have the render blocking issues discussed in the previous

156

chapter. Oftentimes, we put a lot of demands on HTTP; lots of requests to fill the rich

media needs our sites and apps require. But HTTP 1.1 is only able to handle a handful

of requests before it blocks subsequent requests, so that they have to wait for whatever

resource is at the head of the line.

Let’s take a look at our beloved pirate app and the requests it makes via HTTP 1.1 in

Figure 9-1.

Figure 9-1.  HTTP 1.1 requests forming an orderly queue after the first three
requests

Here you see that HTTP 1.1 is able to make a few requests in parallel. Eventually,

though, you can see the requests start to queue up. You can even see how long a resource

has to wait its turn before the request is fulfilled. They’re so well behaved and patient!

But when you do the same thing using HTTP/2 (with multiple useless scripts added

in just to show what HTTP/2 is capable of), you can see in Figure 9-2 that the requests

are all kicked off at the same time.

Chapter 9 Exploring HTTP/2 and Server Push

157

This is because HTTP/2 uses a single, bidirectional stream between client and server,

rather than the multiple connection architecture HTTP 1.1 uses because it’s only able to

deliver one request at a time. Multiple requests are made via this single connection. This

is called multiplexing. All of this magic allows requests to happen at the same time inside

of that one request so that any particular request isn’t blocked by others closer to the

head of the line.

Note  Multiplexing in and of itself isn’t new. In all of your additional research,
you may run across a technology called SPDY. This technology modified existing
requests via HTTP 1.1 and contained a few of the improvements that HTTP/2 has.
Multiplexing was one of those. SPDY is now deprecated in favor of HTTP/2.

Because of multiplexing, requests using HTTP/2 are much more efficient. As a
result, concatenating and bundling files, one of the big performance improvements
often utilized with HTTP 1.1, is actually an anti-pattern with HTTP/2. Instead
of a giant bundled or concatenated file that might take a couple of seconds to
download, if code is split up into smaller packages, you’re able to utilize the cache
more efficiently while not having additional requests cost anything. For example,

Figure 9-2.  HTTP/2 requests kick off as soon as the browser reaches them in the
HTML, which usually results in better load times

Chapter 9 Exploring HTTP/2 and Server Push

158

when you make a code change with one big bundle, you have to invalidate the
cache for that entire bundle and re-download the asset. If that bundle is broken
into ten files, and you need to update one of them, the remaining nine files can
remain cached. Because of multiplexing, the original ten requests didn’t cost any
more than what the one bundled file would have.

�Header Compression
If this was 30 years ago and you were going to mail a letter, there was a bunch of

additional information on the outside of that letter that let the mail carriers know where

it should go, how it should get there, and where to send it back in case something

unforeseen happened along the way.

Now imagine if you had a pen pal and you each wrote these packets of data to each

other, back and forth, and the amount of data on the exterior of each of those packets

kept adding up. Your hand would get tired from writing out the full addresses, and then

your pen pal would have to do the same. You might shudder to think that if you became

famous you would have had bags and bags of fan mail! So many requests that require an

equal number of responses.

It would’ve been more efficient if there was a way to reduce the amount of data that

the postal service required to send your actual data.

Much like the postal service in the days of yore, HTTP headers contain information

about data that’s passing across the wires, whether that data is a request to a server

or a response to a client. And sure, individually each header doesn’t require a lot of

bandwidth; just a few bytes here and there. But if your site has dozens of requests and then

dozens of responses (and remember that as good PWA devs, we’re also conscious of low-

bandwidth users!), those bytes really add up. Additionally, headers aren’t very efficient

and oftentimes header data that isn’t needed for each request is attached to all requests

anyway. So there is lots of room for improvement with header compression, which would

essentially shrink the amount of bandwidth required to transmit header data.

Even though HTTP 1.1 didn’t supply a way to reduce all of this extra data, SPDY did.

Unfortunately, that mechanism for header compression had security vulnerabilities

that led to the ability for hackers to hijack browser sessions, even for sites served over a

secure HTTPS connection. This was known as a CRIME attack, or “Compression Ratio

Info-leak Made Easy.”

Chapter 9 Exploring HTTP/2 and Server Push

159

So that wasn’t good.

Header compression, as an idea, is good, though. And that’s why HTTP/2 uses

a compression algorithm called HPACK that not only compresses headers, but also

reduces redundant header data. The details of HPACK are out of scope of what I’ll cover

here, but rest assured those security flaws are all patched up.

�Introducing HTTP/2
Now that you know some of the problems that HTTP/2 solves, and how it does it, let’s

take a step back and talk about what HTTP/2 actually is.

HTTP/2 is the first upgrade to HTTP since 1999. The primary goal of HTTP/2 is to

improve website performance and security. I talked about some of the performance

benefits, but on the security side, if you want that sweet performance boost, browsers

require TLS connections in order to use HTTP/2.

So now with HTTP/2, we have better performance with multiplexing, header

compression, and server push (more on that in a moment), and better security

with HTTPS requirements. HTTP/2 does all of this while maintaining backwards

compatibility with HTTP 1.1. Browser support for HTTP/2 is excellent, but if you’re stuck

supporting old browsers, don’t sweat it. You’re in good shape.

By now you’re probably jumping out of your seat with excitement. Enough of all this

talk; let’s actually use HTTP/2!

�Implementing HTTP/2 in Node.js
If you want to run a local dev server, you can actually implement an extremely

rudimentary one with HTTP/2 pretty easily. If you don’t have the PWA Book project, go

ahead and pull down the Chapter9-example-1_http2 branch. The completed code from

this chapter will be in server.js, so if you want to follow along, change the name of that

file and follow along with us. It’ll be fun!

First, let’s install your dependencies by running

npm install --save spdy express mz

The spdy npm package will allow you to create an HTTP/2 server with a SPDY

fallback. You’ve used Express before; you’ll use that to serve your files. And finally mz will

allow you to use some ES6 syntax like promises.

Chapter 9 Exploring HTTP/2 and Server Push

160

Now, create a new directory in the PWA Book directory. Call it http2-server. Create a

new JavaScript file in there and call it server.js or whatever you’d like. There are about

a dozen and a half lines of code that you need to create your server:

const port = 8081;

const express = require('express');

const spdy = require('spdy');

const fs = require('mz/fs');

const app = express();

const cert = {

 key: fs.readFileSync('./localhost.key'),

 cert: fs.readFileSync('./localhost.cert')

 };

app.use(express.static('../'));

app.get('*', (req, res) => {

 res.status(200);

});

spdy.createServer(cert, app)

 .listen(port, console.log('Listening on port: ' + port));

This is all the code you need to serve the pirate app on HTTP/2. First, you define your

port and bring in your dependencies. You reference Express, and then because HTTP/2

requires SSL, you need to give the server a key and cert file. If you were running this in

prod, you would need to procure an actual cert. But for local testing, you can generate

one yourself. To do so, in your terminal, navigate to the http2-server directory and run

the following command:

openssl req -nodes -new -x509 -keyout localhost.key -out localhost.cert

The result of this will be a series of questions that will be used to generate your key

and cert files. Once that’s done, you have your HTTPS site, but it won’t be trusted by the

browser. Browsers don’t like self-signed certificates. You’ll see the repercussions of that

in a moment, but for our purposes, this will work just fine.

Chapter 9 Exploring HTTP/2 and Server Push

161

After you assign your cert, tell Express to serve up the directory with all of your

front-end files in it. Next, define a route for any GET requests, returning a 200 if the

request is successful. Feel free to put code in there to handle any bad requests, but you

won’t be using this code for long, so don’t sweat it if you don’t feel like it.

Finally, you ask your spdy package to go ahead and create the web server using your

cert and app objects. That’s it. You have a working HTTP/2 server.

Head back to your terminal and if you’re still in the http2-server directory, you can

run

node server.js

Your server is now running and you can navigate to https://localhost:8081. As in

Figure 9-3, you will be greeted rather rudely by your browser.

Figure 9-3.  Don’t take it personally. Browsers don’t trust any self-signed certs.
They aren’t secure!

Chapter 9 Exploring HTTP/2 and Server Push

162

You created the certificate, so you can safely click the Advanced link (or whatever

your browser shows) and choose to proceed. Again, in production, you’ll want a cert

signed by a Certificate Authority.

Once you proceed, you should see the pirate app! Maybe that’s a little anti-climactic.

After all, you’ve seen this trifling little app for like a million chapters at this point. But in

this case, it’s not about what the app shows. Pull up DevTools and refresh the page. Go to

the Network tab.

If you don’t see the Protocol column, right-click on one of the column headers and

add it. In Figure 9-4 you will see h2 almost all the way down, indicating that your files

were served from HTTP/2. The exception here is your API call, because the API server

isn’t using HTTP/2.

Figure 9-4.  The pirate app now uses HTTP/2, as you can see in the Protocol
column.

Simply by doing this, because of multiplexing, you’ve improved the performance

of your app. But you’re not done yet. The crown jewel of HTTP/2 is a feature that takes

things a step further.

�Server Push
In the normal course of your request-response lifecycle, the client asks for an index page

and the server responds. The client parses that page and sees that there are additional

resources it needs, like CSS files or JavaScript or whatever. The client requests them and

the server responds. Request-response, request-response, and on and on it goes, as you

can see in Figure 9-5.

Chapter 9 Exploring HTTP/2 and Server Push

163

What if, though, you knew ahead of time that the client was going to request certain

resources? Couldn’t you push those resources to the client at the same time that you

delivered the original index file? That would save multiple request-response cycles and

even further improve performance. You’d be a hero! If only there was a way…

Introducing HTTP/2 server push! You can configure your server to send certain files

along with routes that you specify, thereby reducing as many round trips to the server as

files you push to the client. Compare Figure 9-5 with Figure 9-6.

Figure 9-5.  Normal request-response pattern between a client and server

Figure 9-6.  Server push pattern, where the server sends certain resources along
with the initial request

There are, of course, drawbacks. If you push files to the client that were already

cached, that’s a waste of bandwidth and could actually slow down your app. Thus,

like with most of the features I’ve talked about that deal with performance, you should

test your app and experiment with these technologies to see what works best for your

particular situation.

Chapter 9 Exploring HTTP/2 and Server Push

164

For the pirate app, try pushing your main CSS file and your pirate-manager.js

file. You, of course, could push more than this, but this is for illustrative purposes, plus

remember the caveat about pushing resources vs. caching them. Let’s take a look at how

you can implement server push with your HTTP/2 Express.js server:

const port = 8081;

const express = require('express');

const spdy = require('spdy');

const fs = require('mz/fs');

const app = express();

const cert = {

 key: fs.readFileSync('./localhost.key'),

 cert: fs.readFileSync('./localhost.cert')

 };

const index = fs.readFileSync('../index.html');

const css = fs.readFileSync('../styles/pirates.css');

const pirateManager = fs.readFileSync('../scripts/pirate-manager.js');

app.use(express.static('../'));

app.get('/home', (req, res) => {

 let cssResource = {

 path: '/styles/pirates.css',

 contentType: 'text/css',

 file: css

 };

 let pirateManagerResource = {

 path: '/scripts/pirate-manager.js',

 contentType: 'application/javascript',

 file: pirateManager

 };

Chapter 9 Exploring HTTP/2 and Server Push

165

 pushResource(res, cssResource);

 pushResource(res, pirateManagerResource);

 res.writeHead(200);

 res.end(index);

});

function pushResource(res, resource) {

 let stream = res.push(resource.path, {

 req: {'accept': '**/*'},

 res: {'content-type': resource.contentType}

 });

 stream.on('error', err => {

 console.log(err);

 });

 stream.end(resource.file);

}

spdy.createServer(cert, app)

 .listen(port, console.log('Listening on port: ' + port));

This is quite a bit more code than before, but you are doing quite amazing things

with it! Let’s break it down.

Everything up top all the way down past your cert is the same. Right after that, you need

to grab the files that you want to push. In your case, that’ll be index.html, pirate.css,

and pirate-manager.js. The server file is currently nested in your http2-server

directory, so you have to move up a level to access those files. So far so good.

Your setup to use the express static file server is the same as before. Then you set up a

route just like before, but in this case you’re changing your route a little. It’s likely that you

wouldn’t want to push the same resources to every part of your app. So here you’ve set up

a new route to your landing page, called home. You could set up a route to Peggy’s page

and call it peggy, or a route to the books page and call it books. In each of those cases,

though, it’s extremely likely that you would have already cached all of your resources, so

pushing those same ones to them might not make sense. Your mileage may vary here.

Chapter 9 Exploring HTTP/2 and Server Push

166

Inside of the route, you’re setting up a couple of resource objects that contain

information about each resource, including their path, content type, and a reference to

the files you created further up. Last, you call the pushResource function, passing in a

reference to your response object and the resource object, respond to the request with a

200, and close the response by sending your index.html file.

Note T he path here is different than the reference to the file because at this point
you’re in the context of the request, so there’s no need to move up a directory to
access the file.

Let’s now peek inside the pushResource function. response.push is the key here

because it is telling the response to push the file found at that path. You pass in header

information, check for errors, and close up the stream that is pushing the file.

You can run this server from the http2-server directory just like you did the last

version of your HTTP/2 server:

node server.js

Load up the site at https://localhost:8081/home. If you didn’t already have

DevTools up, bring them up, go to the Navigation tab and refresh the page. Look at the

Initiator column in Figure 9-7 (right-click on the columns and add it if you don’t already

see it).

Chapter 9 Exploring HTTP/2 and Server Push

167

You’re actively pushing resources to the client! You can hover over the little slice of

the bar chart for either resource that was pushed and see the breakdown of why it took

so long, like in Figure 9-8. Three whole milliseconds is just ridiculous!

Figure 9-7.  The Initiator column tells what resources were pushed to the client

Figure 9-8.  The breakdown of a pushed resource

Chapter 9 Exploring HTTP/2 and Server Push

168

�Deploying HTTP/2 and Server Push
As you’ve learned, load times without context are meaningless. Of course what you

have here is super-duper fast; you’re running your server locally. Measuring a true

performance improvement using a local server like this is basically impossible. And to

tell you the truth, it’s very rare that you would want to write your own file server like this

for anything in production. So to really see what this is capable of, you’ll need to host

your site somewhere that is HTTP/2- and server push-compatible.

There are a lot of places you can do this, but sometimes hosting services don’t make

it obvious whether they support these features. Google Cloud Platform does, but it’s

overkill for what you need. Azure supports HTTP/2, but not server push. Heroku doesn’t

support either one.

A nice sweet spot for your needs is Firebase. It will allow easy deployment and

supports HTTP/2 with server push. I won’t walk through the steps to set up a Firebase

project because its documentation does a good job of that and the steps are liable to

change.

You might be wondering, though, how you actually implement HTTP/2 and server

push if you’re not writing the server yourself. The good news is that if your hosting

provider supports HTTP/2, it will be enabled by default. And that in and of itself should

provide you some performance improvements over HTTP 1.1. Oh, multiplexing, we’re

not worthy!

Server push is obviously a little different, though. You need a way to specify which

files should be pushed and on which routes. This is a different process for different

servers. You should check the documentation for whichever server you’re using to host

your app as to how you specify files for routes and server push.

In the case of Firebase for the pirate app, there is a firebase.json that allows you to

include additional header information. In this case, you use a Link header. Link headers

tell the client to look for additional resources. In the deployment here, you’ve included a

Link header that as a value takes your script.js file as well as the pirate-manager.js

and the pirates.css resources:

"headers": [

 {

 "source": "/",

 "headers": [

 {

Chapter 9 Exploring HTTP/2 and Server Push

169

 "key": "Link",

 "value": "<scripts/script.js>;rel=preload;as=script,

 <scripts/pirate-manager.js>;rel=preload;as=script,

 <styles/pirates.css>;rel=preload;as=style"

 }

]

 }

]

You’re saying here that any route originating from your home directory, you should

push these resources. The rel=preload and as= syntax might even look familiar. This is

technically not the original intended purpose of those properties, which were intended

for the browser to download those resources immediately. But lots of servers use this

syntax now for server push. It’s what you have for now, and it works as you can see in

Figure 9-9.

Figure 9-9.  Server push when your app is deployed to Firebase

�Measuring the Impact of HTTP/2 and Server Push
To see any performance difference, you should deploy the app to an HTTP 1.1 provider

as well as an HTTP/2 provider. There might be times when HTTP 1.1 wins, particularly if

you’re more aggressive with your caching strategy.

This pirate app now lives in two places: https://ipatch.surge.sh, which is

an HTTP 1.1 hosting service, and https://ipatchpwa.xyz, which is the Firebase

deployment using server push. Figure 9-10 compares these two directly.

Chapter 9 Exploring HTTP/2 and Server Push

https://ipatch.surge.sh/
https://ipatchpwa.xyz/

170

If you haven’t read it before, you should read it now. Measuring page load speed

without context is meaningless. There are just too many variables, particularly when

using a mobile connection and comparing across different servers, etc.

So you should try it out for yourself to see which one performs better and feels better.

Try with and without server push. Check out the second page visit in Figure 9-11 with

caching and see how it performs.

Figure 9-10.  Comparing HTTP 1.1 and HTTP/2 with server push

Figure 9-11.  Comparing the repeat page visit of HTTP 1.1 and HTTP/2 with
server push and cached files

On repeat visits, you’re mostly using the service worker cache anyway, so there’s

hardly any visible difference between the two, and the load times are definitely within

any margin of error due to whatever network hiccups or randomness you might

experience.

However, the biggest difference here is one you can’t see. Using DevTools doesn’t

allow you to see that the server is still pushing files and taking up bandwidth. That’s

Chapter 9 Exploring HTTP/2 and Server Push

171

because pushed files reside in a server push cache, which is the last cache the browser

checks for files. If the browser finds files that are still eligible in the service worker cache

first, it will use those instead of the pushed ones. That means that the browser could

actually use older (but unexpired) assets sitting in the service worker cache rather than

newer assets that the server pushes.

These are trade-offs you have to consider when choosing whether to use server push.

In the pirate app example, you get a noticeable performance improvement on first load

when you use HTTP/2, but less so with server push. On subsequent page loads, because

you’re making heavy use of the cache, there isn’t a significant performance boost from

HTTP/2 over HTTP 1.1 on a broadband connection. What about over 3G, though? Check

out Figure 9-12; to the Lighthouse!

Figure 9-12.  Lighthouse results with HTTP/2 and server push

Chapter 9 Exploring HTTP/2 and Server Push

172

The Firebase-deployed HTTP/2 with server push app is now rocking a very robust

performance score of 91! Obviously if we ran this a few more times, that score could

fluctuate up or down. But it is the highest we’ve seen so far, so let’s take it and run! For

this app, it looks like HTTP/2 with server push is the way to go.

Note O f course, your app here is quite trivial, and there is a lot more to think
about regarding your app’s infrastructure and performance considerations. For
a deeper look at HTTP/2 and various points I didn’t cover here, check out Jack
Archibald’s blog post: https://jakearchibald.com/2017/h2-push-
tougher-than-i-thought/.

�Looking Ahead
Now it’s time to really apply your PWA knowledge. With the conclusion of this chapter,

the theory portion of your PWA education is complete. You’ve learned about service

workers, caching, background syncing, app manifests, notifications, app shells, push

notifications, and HTTP/2 server push. And while you’ve applied all of that theory to the

frivolous little pirate app, it might really help these concepts to sink in if you apply some

of them to an existing web app that’s just begging to be PWA-ized. That’s where you’re

headed next. Say goodbye to our pirate friends! For now…

Chapter 9 Exploring HTTP/2 and Server Push

https://jakearchibald.com/2017/h2-push-tougher-than-i-thought/
https://jakearchibald.com/2017/h2-push-tougher-than-i-thought/

PART III

Putting the Features to Use

175
© Dennis Sheppard 2017
D. Sheppard, Beginning Progressive Web App Development, https://doi.org/10.1007/978-1-4842-3090-9_10

CHAPTER 10

Turning a Real App into
a PWA
This is the moment you’ve been training for. Everything you’ve learned in the previous

chapters has prepared you for this: your first chance to take an actual application and

turn it into a PWA. None of that pirate stuff. This is the real deal. Kind of. Mostly. You’ll

be taking a fantastic open source app from GitHub that’s in need of a little PWA love.

First, you’ll check out the app’s Lighthouse scores for PWA and Performance. That’ll

give you an idea of where to start. You’ll try to get as close to a perfect Lighthouse score

as you can, but the main focus will be on making all sorts of PWA enhancements.

You’ll be adding a service worker (of course), you’ll use pre-cache for the app shell,

runtime caching to make the app work offline, an app manifest for adding an icon to

the home screen (among other benefits), you’ll implement server push, and any other

suggestions Lighthouse has for you so you can crank up those PWA and Performance

scores. Basically, you’re taking the knowledge you’ve learned throughout this book (and

maybe some things I haven’t covered yet), and applying it to an existing, open source

application. By the end of this chapter, you’ll have a real live Progressive Web App!

�The Movies Finder App
There are hundreds of thousands of open-source JavaScript projects on GitHub. After

scouring that list for an inordinate amount of time for the perfect app to transform into

a PWA, Mohammed Lazhari’s Movies Finder app (https://github.com/Lazhari/

Movies-Finder) appeared like an oasis in a desert.

You can see the current production version of the app at https://movies-finder.

firebaseapp.com/ and the version that contains our updates lives here:

https://github.com/dennissheppard/Movies-Finder.

https://github.com/Lazhari/Movies-Finder
https://github.com/Lazhari/Movies-Finder
https://movies-finder.firebaseapp.com/
https://movies-finder.firebaseapp.com/
https://github.com/dennissheppard/Movies-Finder

176

It’s an Angular application built off of the Angular CLI. If you don’t know Angular,

don’t panic. Nothing you’ve learned in this book is framework dependent, so this won’t

be any different. I’ll stop to point out any places that you might need to tweak depending

on your particular app’s setup. I’ll also stop to cover any Angular-specific concepts you

need to make this app a PWA. It’s likely, though, that you won’t even have to dive deeply

into the code, and you certainly won’t be writing any Angular code.

Note  This is not to say you shouldn’t fork either repo and experiment on your
own. As you’ll see, to really unlock the potential of this app, it’s likely that you
would need to make some functional and structural changes. Those types of
changes, however, are simply out of scope for what you’re trying to learn.

Let’s start with is a brief description of the app. Movies Finder is an app that shows

the most popular movies out right now and allows users to search for movies and view

them by category. The movie data is from The Movie Database (tmdb.org), which

provides an open API.

It’s already mobile friendly, as you can see in Figure 10-1, so thankfully you won’t

need to do any visual makeovers.

Chapter 10 Turning a Real App into a PWA

177

There’s no service worker and no caching, though. Because this is an image-heavy

app, that’s a lot of data being passed across the wires, and a big opportunity for caching.

The Angular production build process bundles and minifies the files, which is going

to save some bytes. But the main bundle weighs in at 548KB, while a few other library

files tack on another 40KB or so. Looking at Figure 10-2, you can see that the total first

load is going to cost just under 2MB. That’s a pretty hefty load, and unfortunately there’s

not a whole lot you can do to change it. It will just add to the challenge.

Figure 10-1.  Movies Finder on mobile

Chapter 10 Turning a Real App into a PWA

178

Because so many images are pulled down on that first load, performance times

are going to be tough to improve. Repeat visits should fly, in comparison, once you put

caching in place. But that first load is probably going to make Lighthouse very unhappy.

The good news is that the app is hosted on Firebase so HTTP/2 is already in place, and it

looks like those images are all getting kicked off simultaneously.

Figure 10-2.  The first page load of Movies Finder

Chapter 10 Turning a Real App into a PWA

179

Speaking of Lighthouse, let’s see the baseline (Figure 10-3).

Considering there’s almost no PWA features in place here, a 45 for PWA and 30 for

performance really isn’t bad. It looks like the first meaningful paint arrived around the 9s

mark. You’ll make your target 5s, but again because the first load is so image heavy, that’s

going to be a challenge. Repeat visits, however, should be able to get into the 2s-3s range

for mobile on 3G.

Figure 10-3.  Initial Lighthouse scores of Movies Finder

Chapter 10 Turning a Real App into a PWA

180

�The Plan to Make a PWA
There’s definitely some work to do here, but all in all you have a solid foundation to

build on. This app is using a modern framework, it’s already using HTTP/2, and the build

process already bundles and minifies, and also should make it easy to add in

sw-precache. There’s already an app shell in place because the UI is separated from the

logic; you just need to cache it. So that will be your first order of business. Once you set

up sw-precache, you’ll throw in runtime caching with sw-toolbox and make sure all of

those images are in place for subsequent visits.

After those are in place, you’ll check up on the Lighthouse scores and see

where you’re at. Then you should move on to the app manifest. That will be pretty

straightforward and will improve the PWA score a healthy amount.

Next, you’ll see if server push can cut a few ms off the load times for the main

JavaScript bundle and see if there’s anything else you can push, too. The app is already

using a CDN for Bootstrap, but you may need to tweak that some if it’s causing any

problems.

Note  A CDN is a content delivery network. In short, a CDN is able to deliver
content to users fast because the resources are distributed on a network, resulting
in files being physically close to the user. Typically you’d want to use a CDN, but
part of optimizing for performance is in experimenting to see what works.

You want the app to have a lot of offline-first capability, but there’s a lot of data here,

and it’s not practical for the entire app to have offline availability. But the app should at

least return a 200 and show something with no Internet connection.

That will cover almost every PWA and performance feature I’ve covered. Finally,

depending on where the scores are after that, you’ll see what other suggestions

Lighthouse has for you to try to get closer and closer to PWA perfection. But don’t stop

there if you want to keep going! Once you’ve reached the PWA pinnacle of perfection

with your Lighthouse score, there’s still more to do. So there will be an exercise for you

at the end of this chapter that takes the offline functionality a step further, if you’re up to

the challenge. Sound good? This is going to be fun!

Chapter 10 Turning a Real App into a PWA

181

Note  What we’re about to undertake, we’re undertaking as a team. This app
wasn’t transformed in advance, so whatever scores we come out with, we’re in
this together. It’s possible we’ll fall short of some goals, but regardless of our load
times and scores, we’ll have a proper PWA at the end.

�Getting the Code and Running It
The first thing you need to do is pull down the code for the app. As a reminder, there’s a fork

of the app available at https://github.com/dennissheppard/Movies-Finder. You’re using

a fork instead of the original repo because you’ll be creating branches each step of the way,

and I’ve upgraded this version of the app to use the latest version of Angular and the CLI

(as of September, 2017, anyway). That’s all been done for you. To get started, all you need to

do is run the following in your terminal in whatever directory you want the app to live in:

git clone https://github.com/dennissheppard/Movies-Finder.git

cd Movies-Finder

npm install

Normally in an Angular app, you would now be able to run ng serve to run the

application on port 4200 by default. However, ng serve bundles the app’s assets and runs

the app in memory. While this is fine for development of the app, you need to be able to

set up caching for resources that you’ll ultimately be deploying. For example, if you ran

sw-precache on the root of the application, it would try to cache lots of TypeScript files

that you aren’t even going to deploy. So ng serve isn’t going to do you a lot of good.

Note O ne other thing about this project. It’s written in TypeScript, a language
created by Microsoft that compiles to JavaScript. TypeScript is a superset of the
JavaScript syntax you’ve been using all along. What that means is that although every
example you’ve seen so far is just JavaScript, it is also valid TypeScript. So don’t let
TypeScript intimidate you if you haven’t used it before. It’s likely, however, that you
won’t even see any TypeScript with what you’re doing because you’re not planning
to change the actual application. Your job here is to be stealthy and tactical, trying to
upgrade the app in place and get out before anyone notices. If you end up knee deep
in TypeScript, call for reinforcements because something has gone terribly wrong.

Chapter 10 Turning a Real App into a PWA

https://github.com/dennissheppard/Movies-Finder

182

Instead of running the app with resources served from memory, you need to actually

build the app and work with the a dist directory. So at this point all of your npm

packages should be finished downloading. Run the following command in the

Movies-Finder directory:

npm run build --prod --aot

When this is finished and if all goes well, you’ll see the dist directory in the project

root. You can use your trusty http-server in this directory to run the app locally. Before

you do, though, let’s go ahead and set up sw-precache.

�Setting Up sw-precache
The first thing you need for sw-precache is to install it via npm:

npm install --save-dev sw-precache

npm install --save sw-toolbox

You’re going to be using sw-toolbox shortly, so you might as well install it while you’re

installing things. Let’s create your sw-precache-config.js file first to let sw-precache know

what you want it to cache. If you think back to Chapter 4, you did this very same thing.

module.exports = {

 navigateFallback: '/index.html',

 stripPrefix: 'dist',

 root: 'dist/',

 staticFileGlobs: [

 'dist/index.html',

 'dist/**.js',

 'dist/**.css'

]

};

Save that block in your config file in the root of the app. This is telling sw-precache

that you want any route that it can’t find to use index.html instead of that route. All of

your files are in the dist directory, so you can strip that prefix and give your config that

value for the root property. Then you want to tell sw-precache which files to cache. That

Chapter 10 Turning a Real App into a PWA

183

will include index.html as well as all of the .js and .css files. All of these files will

end up in the cache. Again, this won’t help the first load, but all repeat visits should be

much faster.

The next step is to go to the package.json file in the root of the app. This not only

contains all of the dependencies for npm to install, but it also has a list of scripts to run,

like npm start, npm build, etc. Here you can add another one to build your pre-cache

file. You need to tell sw-precache about your config file and where to build the resulting

service worker. So in the scripts object, include the following property:

"pre-cache": "sw-precache --root=dist --config=sw-precache-config.js"

When you run npm run pre-cache, this command will create the service worker file

in the dist directory and point the config file. Go ahead and type npm run pre-cache

and check out the dist directory to see what you’ve got.

If all went as planned, you should see service-worker.js in that dist folder. If you

peek in there, it’s a ton of code, very little of which you’re concerned about. But the first

line of code should show you all of the files that are going to get pre-cached.

The last step is registering the service worker. You don’t want to edit the index.html

file in the dist directory because that gets generated by the build process, which will

overwrite anything you change in there. Instead, go into the src directory to find that

index.html. Just above the ending </body> tag, let’s register the service worker like so:

<script>

 if ('serviceWorker' in navigator) {

 navigator.serviceWorker.register('/service-worker.js').then((reg) => {

 console.log('Service Worker registered');

 }).catch((err) => {

 console.log('Service Worker registration failed: ', err);

 });

 }

</script>

This isn’t anything you haven’t seen before. The only part that’s notable is the path

you’re giving to register the service worker. Remember that this file gets re-generated

and put into the dist directory, so you need to point to where that service worker will be

in relation to the dist/index.html file.

Chapter 10 Turning a Real App into a PWA

184

You should be all set to try this out. In your terminal, run npm run build --prod

--aot to generate and move the index.html file into the dist directory. Finally, building

the app again requires a rebuild of the service worker file. Run npm run pre-cache again

and you’re ready to go.

Once that’s finished, cd into the dist directory and run your http-server, then in

Chrome, navigate to http://localhost:8080. You should see the Movies Finder app!

Pop open DevTools and move over to the Application tab, then down to the Service

Workers section. There and in Figure 10-4, you should see your service worker installed

and running.

Figure 10-4.  Movies Finder now has a service worker

Chapter 10 Turning a Real App into a PWA

185

Now that you have that working, it’s worth noting that the order that you build the

app and run the pre-cache script is important. If you run pre-cache first, the bundle

file names it will try to cache are going to be incorrect once you build the app because

those files get renamed if any file in them changes. To ensure you always run these in the

correct order, set up the scripts section of package.json to run them sequentially:

"scripts": {

 "ng": "ng",

 "start": "ng serve",

 "build": "ng build --prod --aot && npm run pre-cache && cd dist &&

http-server",

 "test": "ng test",

 "lint": "ng lint",

 "e2e": "ng e2e",

 "pre-cache": "sw-precache --root=dist --config=sw-precache-config.js"

 }

Figure 10-5.  Movies Finder is caching its JavaScript, CSS, and index.html files

Moving down to the Cache Storage section, you should now see some files being

cached as well, just like in Figure 10-5.

Chapter 10 Turning a Real App into a PWA

186

This will allow you to just type npm run build in the terminal and the app will build,

sw-precache will run using the config file, the directory will change to dist, and launch

your server. Once you’re ready to deploy the app somewhere, you’ll need to edit that or

add a new command, but for the purposes of development, this should speed things up

quite a bit.

If your server is still running, stop it, go to the app’s root directory in terminal, and

type npm run build. It will take a few seconds, but at the end you should be able to

navigate to http://localhost:8080 and you’ll be all set.

�Caching All the Things
You have your app shell (and really the whole app) pre-cached. Now about all of those

images and API calls. You can cache the dynamic files with sw-toolbox. You don’t want

to edit the service worker directly, though, because it’s a generated file and you’d lose

those changes when you run precache again. Luckily for you, the sw-precache config

works well with sw-toolbox and will allow you to set up your dynamic caching without

touching the service worker file.

Open the sw-precache-config.js file and add a new property called

runtimeCaching:

runtimeCaching: [

 {

 urlPattern: '/*',

 handler: 'cacheFirst',

 options: {

 origin: 'tmdb.org',

 cache: {

 maxEntries: 100,

 name: 'movie-cache'

 }

 }

 },

 {

 urlPattern: '/*',

 handler: 'cacheFirst',

Chapter 10 Turning a Real App into a PWA

187

 options: {

 origin: 'themoviedb.org',

 cache: {

 maxEntries: 10,

 name: 'movie-cache'

 }

 }

 }

]

Once you have this in your config file, you can type npm run pre-cache in your

terminal and you should see this at the bottom of the service-worker.js file in the dist

directory:

toolbox.router.get("/*", toolbox.cacheFirst, {"origin":"tmdb.org","cache":{

"maxEntries":100,"name":"movie-cache"}});

toolbox.router.get("/*", toolbox.cacheFirst, {"origin":"themoviedb.org",

"cache":{"maxEntries":10,"name":"movie-cache2"}});

You’ve seen something like that before! This is going to cache all of your calls to

tmdb.org, which is where all of these images originate from, and calls from themoviedb.

org, which is where the movie data comes from. You didn’t make any changes to the

app’s code, so there’s no need to fully rebuild the app. If you still have the server running,

clear out the application data using the Clear Storage section of DevTools. Reload the

app a couple of times. On that second load, most of your calls should be coming from the

service worker, so your DevTools should look something like Figure 10-6.

Chapter 10 Turning a Real App into a PWA

188

You’re making steady progress. Your caching work is almost done. Open up

index.html and you’ll notice that there are two items in there that are being fetched

from CDNs: a Bootstrap file and a jQuery script.

Neither of them are going to get pre-cached, so you can add them to

sw-precache-config.js just like you did for the API calls and images, except

this time you’ll leave off the maxEntries and name options:

{

 urlPattern: '/*',

 handler: 'cacheFirst',

 options: {

 origin: 'bootstrapcdn.com'

 }

},

{

 urlPattern: '/*',

 handler: 'cacheFirst',

Figure 10-6.  The images and API calls for Movies Finder use the service worker
cache now

Chapter 10 Turning a Real App into a PWA

189

 options: {

 origin: 'jquery.com'

 }

}

With those two additions, the app should retain its styling even when your users are

offline.

It won’t do a lot of good to run a Lighthouse test on the project while you’re hosting

locally. So deploy to Firebase again to test your improvements. It’s super easy, and I’ll

walk through the steps. But feel free to choose whatever hosting provider you’d like to

deploy the app.

�Deploying to Firebase
It’s possible the steps here will change by the time you’re reading this. If that’s the case,

check out the Firebase documentation (it’s currently at https://firebase.google.com/

docs/hosting/deploying, but if the steps change, that URL could change, too, so just

google “Firebase hosting”).

The first step is to go to the Firebase console at https://console.firebase.google.com.

Hopefully it looks something like in Figure 10-7. Sign in with your Google account and click

the big Add Project button.

Chapter 10 Turning a Real App into a PWA

https://firebase.google.com/docs/hosting/deploying
https://firebase.google.com/docs/hosting/deploying
https://firebase.google.com/

190

Once you click that button, you can give your project a name. Let’s name it

movie-finder-pwa. After you name your app, you’ll be taken to an overview screen. Scroll

down a bit to see the hosting section and click GET STARTED, which will take you to

another screen with another opportunity to click GET STARTED. Firebase will guide you

through the steps of deploying your app, but the following is how Movies Finder was

deployed:

	 1.	 Open your terminal and install the Firebase CLI using npm i -g

firebase-tools.

	 2.	 Go to the app root in terminal and run firebase login, and type in

your Google credentials.

	 3.	 Delete the existing firebase.json and .firebaserc files in the root

of the project.

Figure 10-7.  The Firebase console

Chapter 10 Turning a Real App into a PWA

191

	 4.	 In the terminal, type in firebase init. Choose the “hosting”

option like in Figure 10-8. This will create a new firebase.json and

.firebaserc files.

Figure 10-8.  The Firebase CLI

	 5.	 Choose the Firebase project you created in the console.

	 6.	 Open the firebase.json file and paste in the following:

{

 "hosting": {

 "public": "dist"

 }

}

	 7.	 Back in the terminal, type firebase deploy.

Once you finish those steps, the app will be deployed to <whatever-app-name-you-

chose>.firebaseapp.com. Run the app to make sure everything is working and then get

Lighthouse going. Check out the results in Figure 10-9.

Chapter 10 Turning a Real App into a PWA

192

Figure 10-9.  Lighthouse results after adding in the service worker and caching

Chapter 10 Turning a Real App into a PWA

193

After adding the service worker in, you’ve improved the Lighthouse scores from

45 and 30 to 73 and 51. Not bad for just a little bit of work!

There’s clearly some work to do in the performance department. Looks like there is a

render blocking stylesheet. Let’s take care of that and implement server push before you

reevaluate Lighthouse.

�Moving the Render-Blocking Stylesheet
Let’s move all of the resources to the bottom of the index.html file so they don’t block

rendering. For your purposes, that’s just the https://bootswatch.com/superhero/

bootstrap.min.css file. You can’t server push it because it’s served from an external

CDN. So let’s move that line right beneath the </app-root> tag:

<link rel="preload" href="https://bootswatch.com/superhero/bootstrap.min.

css" as="style" onload="this.rel='stylesheet'">

Remember that telling the browser to preload that file will cause it to download right

away, as early in the page’s lifecycle as possible. The hope is that you can get that file

early enough that it doesn’t block any part of the rendering process. Last time we looked

at this, you set an invalid media query that you changed to a valid one onload. Now you’ll

use a more concise trick that just changes the rel property to a stylesheet.

Note  Just like with a lot of these performance based changes, it’s worth trying to
load that file with and without preload to see which helps rendering the most.

�Implementing Server Push
You’ll recall that when the browser makes a request for your app, you have the ability

to send files along with the index.html file so that the browser doesn’t have to make

additional requests for files you know it will need. But remember that you’re focused on

rendering speed. So you don’t want to push everything you possibly can; you just want

the files that impact rendering. For your purposes, that’s going to be the CSS bundle and

the two main JS bundles.

Chapter 10 Turning a Real App into a PWA

https://bootswatch.com/superhero/bootstrap.min.css
https://bootswatch.com/superhero/bootstrap.min.css

194

You’ll need to rebuild the app to make sure you know what the bundle files are

called so you can tell Firebase to push those to the client. After you build the app using

ng build --prod --aot, open the firebase.json file. This is where you’re going to add

link headers containing the files you want Firebase to push. Let’s look at what you want

the config file to contain:

{

 "hosting": {

 "public": "dist",

 "headers": [

 {

 "source": "/",

 "headers": [

 {

 "key": "Link",

 �"value": "<styles.6d601836f8c88cc81e16.bundle.css>;

rel=preload;as=style,<vendor.8d7b8b5b26cc9e120d94.bundle.js>;

rel=preload;as=script,<main.c1a2e8f5346f67c93597.bundle.js>;

rel=preload;as=script"

 }

]

 }

]

 }

}

You’ve already used the config file to let Firebase know what directory you want to

deploy. Now you can add a headers property that adds a key that tells Firebase what kind

of header you want and then the value contains the file. That’s it. You redeploy the app

using firebase deploy in the terminal and you can measure again.

Chapter 10 Turning a Real App into a PWA

195

Note  Your bundle names will be different. If you’re copying and pasting code,
make sure you grab your actual bundle names!

If you’d like to try to push additional files, just add them to that string. It’s definitely
worth taking a little time to see if there’s a noticeable performance improvement
when pushing other files.

After deployment, if you clear the application data and reload, go over to the Network

tab to verify the CSS bundle is getting pushed by looking in the Initiator column, like in

Figure 10-10.

So everything is looking really good here. You’ve pushed assets that you need early

on and you moved the render blocking library file. Let’s now look in Figure 10-11 to see if

Lighthouse finds any improvements.

Figure 10-10.  The Movies Finder bundles are getting pushed to the client

Chapter 10 Turning a Real App into a PWA

196

Figure 10-11.  Movies Finder Lighthouse scores after moving the Bootstrap file
to the bottom of the index and preloading it, plus adding server push for the CSS
bundle

Chapter 10 Turning a Real App into a PWA

197

Hey look at that! The performance score went up almost 20 points! You can see that

something shows up on the screen at just over two seconds, and you get a meaningful

paint in under 5 seconds. We hit our original goal! Under 5 seconds isn’t bad!

For our purposes here, that’s all you’re going to do for initial page load. But you

should play with different server push options, try the Bootstrap file as a local resource

instead of the CDN, and anything else you can think of. There will be additional tips to

try in a couple of chapters, like code splitting and lazy loading. Remember that while

using HTTP/2, large bundle files are an anti-pattern. So you could probably get that

performance score up a bit more.

Note I f you’re following along (of course you are!) and your Lighthouse score
was different from the one posted above, remember that performance scores
are always going to vary. Try running Lighthouse a handful of times to get a good
sense of where your score ends up.

Now you’ll shift your focus to a couple of the items in the PWA score. Lighthouse is

yelling at you about splash screens and installing the app. And that means one thing: you

need an app manifest! Let’s get to it.

�Adding the App Manifest
So that you can have a splash screen and allow the user to install your app on Android

devices, you need to add an app manifest. This is a super straightforward process. You

can borrow the manifest you used back in Chapter 6 and tweak it, or you can use a tool

like https://app-manifest.firebaseapp.com/. There are a number of sites like this if

you search around. This one allows you to fill in a few blanks to generate the file, and

also allows you to upload an icon that it will downsize to create all of the app icons for

you. This is a huge timesaver.

For the movie app, type in whatever info you’d like in those fields, and upload an

icon to see them all generated. If you want to just pull down the app-manifest branch

Chapter 10 Turning a Real App into a PWA

https://app-manifest.firebaseapp.com/

198

of the https://github.com/dennissheppard/Movies-Finder repo, it will have all of the

icons and the completed manifest file that you can also see here:

{

 "name": "Movie Finder",

 "short_name": "Movie Finder",

 "start_url": "index.html",

 "theme_color": "#df691a",

 "background_color": "#2b3e50",

 "display": "standalone",

 "description": "The only movie app you'll ever need",

 "icons": [

 {

 "src": "assets/app-icons/icon-72x72.png",

 "sizes": "72x72",

 "type": "image/png"

 },

 {

 "src": "assets/app-icons/icon-96x96.png",

 "sizes": "96x96",

 "type": "image/png"

 },

 {

 "src": "assets/app-icons/icon-128x128.png",

 "sizes": "128x128",

 "type": "image/png"

 },

 {

 "src": "assets/app-icons/icon-144x144.png",

 "sizes": "144x144",

 "type": "image/png"

 },

Chapter 10 Turning a Real App into a PWA

https://github.com/dennissheppard/Movies-Finder

199

 {

 "src": "assets/app-icons/icon-152x152.png",

 "sizes": "152x152",

 "type": "image/png"

 },

 {

 "src": "assets/app-icons/icon-192x192.png",

 "sizes": "192x192",

 "type": "image/png"

 },

 {

 "src": "assets/app-icons/icon-384x384.png",

 "sizes": "384x384",

 "type": "image/png"

 },

 {

 "src": "assets/app-icons/icon-512x512.png",

 "sizes": "512x512",

 "type": "image/png"

 }

],

 "prefer_related_applications": false

}

There are a couple of properties I’ve left off, like related_applications and

orientation because you have no related apps here, and orientation can be anything for

this particular app.

Now you need to include a reference to the manifest in your index.html. Place the

following line as the last line of the <head> tag:

<link rel="manifest" href="/app-manifest.json">

Chapter 10 Turning a Real App into a PWA

200

The last step for the manifest is to include a reference to the manifest file in the

angular-cli.json file. That file tells the build process what you need to copy over to the

dist folder. Add your manifest to the assets array like so:

"assets": [

 "assets",

 "favicon.ico",

 "app-manifest.json"

]

Your manifest should be all set, and you can check on it in just a moment. First, there

was one other suggestion Lighthouse had having to do with a theme color meta tag. This

will make the address bar match the app’s colors on browsers that support that meta tag.

The goal here is to give users a completely immersive experience. You just need to throw

the following line into the <head> of the index.html file:

<meta name="theme-color" content="#df691a"/>

Obviously you can make the color there whatever you’d like; this one just matches

the manifest. So now you can build the app and run it locally to make sure the manifest

is in place. Check in DevTools under the Application tab and you should see something

like Figure 10-12.

Chapter 10 Turning a Real App into a PWA

201

Note I t’s possible that when you first click on the Manifest section on the left
side of the Applications tab that you won’t see your manifest info on the right.
There appears to be a bug in Chrome DevTools that requires you to close DevTools
and re-open them before the manifest appears.

Figure 10-12.  The app manifest should be visible in DevTools

Chapter 10 Turning a Real App into a PWA

202

If everything is showing up, you’re all set to deploy. First, you can see what the app

looks like on Chrome for Android, and then you can look to see if you’ve made Lighthouse

happy. Just run firebase deploy and let it do some work. If you’re able to launch your

app on Android, you should see some pretty cool stuff, as shown in Figure 10-13.

This is excellent! Notice that not only did Android prompt to install the app on its

own, but that Chrome address bar matching your own nav bar is absolutely sick!

Once you add the app and launch it from the device home screen, you’re greeted by

the lovely splash page seen in Figure 10-14.

Figure 10-13.  Android is asking if you’d like to add your app to the home screen

Chapter 10 Turning a Real App into a PWA

203

The splash page looks fantastic here. It’s almost a shame that you only see it for a

split second before the app launches and you see what’s in Figure 10-15.

Figure 10-14.  The Movies Finder splash page, courtesy of the app manifest

Chapter 10 Turning a Real App into a PWA

204

Figure 10-15.  Chrome’s address bar disappears because of the standalone display
property in the manifest

You currently have standalone for the display property, but try out the different

properties to see what you like for the app.

Chapter 10 Turning a Real App into a PWA

205

Now that you’ve seen how great the app is looking, let’s see if you’ve made

Lighthouse as happy as Chrome appears to be in Figure 10-16.

Figure 10-16.  A perfect Lighthouse PWA score!

It looks like you’ve made Lighthouse very happy. You did it: a perfect PWA score! You

can expand that section and see what you’ve accomplished. But that’s not all, because

now you’re actually looking at the other couple of Lighthouse sections as well. You’re

following all of the best practices already, but each item in that list is straightforward to

fix if you’re seeing anything different. That’s a fairly high accessibility score, too, though

there are a couple of items to work on there.

You have yourself an actual, live, genuine PWA!

Chapter 10 Turning a Real App into a PWA

206

�Thoughts on Movies Finder Performance
We set out knowing that the Lighthouse Performance score was going to be a steep hill

to climb. There are a couple of factors working against us here. One is that the vendor

bundle is really big. Angular is a relatively heavy framework, and as you’ll see in the next

chapter, of the current crop of popular frameworks, it is the bulkiest and gives developers

the least amount of time to work with for optimizing time to first meaningful paint.

The second factor working against us is that the way the app functions leads to

pulling down a lot of images on the home page. If you’re super curious, you might find

that if you take away all of those images and render just the actual app shell, you can

boost that Performance score up into the mid 80s. That would require changing the

functionality of the site, though, which would not only require some Angular knowledge,

but is out of scope of our focus here.

It’s also worth pointing out that the app uses two not-insignificant JavaScript files

just to have the mobile menu appear on click. Those files are the JS used for Bootstrap

(bootstrap.min.js) and jQuery. The version of jQuery in this repo is a slightly slimmed

down version than the original, but it’s still about 100KB of JavaScript just to have the

menu appear.

So there are a number of things you could do really boost that score up:

	 1.	 Write a custom JS handler to show the menu on mobile, thereby

eliminating 100KB of JavaScript.

	 2.	 Inline the styles needed to render the app shell and defer the need

for the entire Bootstrap theme.

	 3.	 Change the functionality of the app so the user can click a

button to see the most popular and newest movies, rather than

automatically loading them. Or only show the top three of each

section.

There are surely additional things you can do to squeeze every drop of performance

out of this app. So give it a shot and see what you’re capable of. Post your best

performance scores in the pirate app comments, and if you can get into the 80s, let us

know what you did to achieve it!

Chapter 10 Turning a Real App into a PWA

207

�Looking Ahead
In this chapter, you focused on optimizing your Lighthouse scores, and you achieved

those goals using much of what you learned in previous chapters. In the next chapter,

you’re going to rewind to the creation of apps using various popular front-end

frameworks and see how they can get you started on the right PWA foot out of the box.

Before you move on, though, you may have noticed there were a couple of features

you didn’t use in the Movies Finder app. And because you’re obviously itching to take on

such a challenge (and you haven’t been assigned any homework up to this point!), here

is a very open-ended exercise for you to try.

BACKGROUND SYNC AND PUSH NOTIFICATIONS EXERCISE

There is undoubtedly an opportunity in this Movies Finder app to use background sync and

push notifications. And so it is your mission to come up with the most creative way to do so.

	1.	 Fork the https://github.com/dennissheppard/Movies-Finder repo.

	2.	 Make sure you use the app-manifest branch so you have a service worker

and app manifest in place.

	3.	 Come up with a creative way to use background sync and/or push notifications.

Remember, to use push notifications, you need to set up a server like you did in

Chapter 7.

	4.	I f you host your solution somewhere, comment about it on the pirate app

comments section or on the https://github.com/dennissheppard/

Movies-Finder issue tracker! Or at the least, share your ideas with

everyone else.

Hint: It is worth noting that to use background sync, you will obviously need to make

changes to the service worker file. But as I talked about earlier in this chapter, you can’t

directly edit that file because it’s generated by the build process. So in order to extend

the generated service worker with your custom changes, you’ll need to utilize the sw-

precache importScripts option in the configuration file. You can put your service

worker-specific background sync and push notification code in separate JS files and import

them via configuration. Don’t forget to include those files in the angular-cli.json build

configuration too, so they get deployed!

Chapter 10 Turning a Real App into a PWA

https://github.com/dennissheppard/Movies-Finder
https://github.com/dennissheppard/Movies-Finder
https://github.com/dennissheppard/Movies-Finder

208

If you’re stuck, you could use Jake Archibald’s Offline Wikipedia app as inspiration. Check out

the repo here: https://github.com/jakearchibald/offline-wikipedia. It’s a great

example of an offline app that notifies users when a previously un-cached article is available

for reading. You can apply that same concept to the Movies Finder detail pages, showing a

friendly offline message allowing the user to sign up for push notifications to let them know

when the app is back online with a link to the route they were trying to view.

That’s definitely a challenge, but you’re absolutely capable of crushing it! Or, go off on your

own and see what you can come up with. No matter which direction you go, have fun, and

good luck!

Chapter 10 Turning a Real App into a PWA

https://github.com/jakearchibald/offline-wikipedia

209
© Dennis Sheppard 2017
D. Sheppard, Beginning Progressive Web App Development, https://doi.org/10.1007/978-1-4842-3090-9_11

CHAPTER 11

PWAs From the Start
To this point, you’ve cobbled together a Pirate PWA piece by piece and you took a movie

app and totally transformed it (at least in the eyes of Lighthouse and the PWA world).

There’s nothing devs love more, though, than starting a new project from scratch. Just

mention the words “greenfield” or “starter kit” to a software developer and watch their

eyes light up. So in this chapter I’ll talk about creating a progressive web app even before

you add in any application logic. To do that, I need to talk about the most popular

frameworks and libraries in the JavaScript ecosystem today. While it is a completely valid

option to stick with VanillaJS to write your JavaScript apps (just look at that beautiful

pirate app, after all), nowadays it’s probably most common to use some kind of library

or framework. There are just too many advantages to using React or Angular or lots

of others to completely and purposely avoid them. And now that PWAs are taking the

world by storm, those frameworks and libraries are following suit by giving you a PWA

with just a few keystrokes. In this chapter, I’ll talk about those keystrokes by covering a

handful of the PWA-friendly frameworks and libraries available today: React, the ultra

popular library originating from Facebook; Preact, a smaller and faster React alternative;

Vue.js, the tiny view-focused library that has really blown up in the past year; Angular,

the revamped component-based solution from Google; and Ionic, the mobile-centric

framework built on top of Angular.

In comparing and contrasting these libraries and frameworks, though, it’s important

to remember that none of them should be considered a better alternative over the others.

Sometimes it comes down to deciding on the right tool for the job. A hammer isn’t

inherently better than a screwdriver. Other times it comes down to personal preference.

That being said, each solution I’ll cover has pros and cons in the PWA world. I’ll

focus on the performance of each framework and library so that if you need to be

performance obsessed, you know just how much each of these solutions is going to cost

you on that first page load before you add any of your own code and logic.

210

Just like in the Movies Finder app, your goal is for the app to be interactive within

five seconds on a 3G connection. So you can measure how much time each framework’s

starter template takes to load out of the box. By doing so, you can see how much time

you have to work with after adding in your own code.

Note  These will not exactly be robust, scientific tests that would hold up to
extreme scrutiny. The testing method is simply running Lighthouse three times on
each generated PWA. If one of the three is obviously out of line with the other two
scores, you can drop that one and run another test. Each PWA will be available for
you to test, so if you want to set up something more in depth, you’re welcome to do
so. Tell the rest of us about it on the iPatch comment board or in the book’s GitHub
issues. I look forward to seeing if your results match what we’re about to see!

Regardless of the results you find here, though, and regardless of the differences

in each framework and library, one of the great things about them is that each one

empowers developers to focus on building great applications from the start.

Note  This chapter will not be a tutorial for each library and framework. Instead,
I’ll outline how to create a PWA with each of these at project creation, and look at
how much flexibility developers have given each solution with regards to rendering
speed and PWA features.

�React PWA
The first library I’m going to talk about is arguably the most popular JavaScript library

today. React.js is a project from Facebook that focuses on the view portion of front-

end applications. It touts composability and speed along with being backed by one of

the largest tech companies in the world. The main concept behind React is the use of

components and managing their state.

Chapter 11 PWAs From the Start

211

�Creating a React App
It’s easy to start a React app using the Create React App tool. And as a bonus all apps

created via this tool are PWAs by default. Let’s take a look at what this means.

To get started, create a new directory somewhere on your machine and run the

following to see the results from Figure 11-1:

npm install -g create-react-app

create-react-app react-pwa

Figure 11-1.  The terminal when you run create-react-app react-pwa

This is going to run for about a minute, installing various packages and

dependencies. It will scaffold the app for you and generate a starter template that you

can launch and see. When everything is finished running, just like in Figure 11-2, your

terminal will tell you which yarn commands you can run with a helpful suggestion that

you cd into the react-pwa directory and run yarn start.

Chapter 11 PWAs From the Start

212

Let’s go ahead and follow directions by running yarn start.

Note  The latest version of Create React App uses Yarn, a package management
tool much like npm. Yarn was also created by Facebook, so it’s a natural fit that the
React setup would use it.

This launches a dev server on port 3000 and opens the corresponding web page. You’re

greeted with a warm welcome to React and instructions on which file to edit to make

changes. You won’t be making any changes, but let’s check out DevTools and see if you can

spot a service worker, an app manifest, and if any caching is happening right out of the box.

Open up DevTools and choose the Application tab. You can see right away that you

have an app manifest. It defines theme colors, has names, a display property, and an app

icon. Only the 192px icon is visible here, so you can already tell that Android won’t show

the install prompt to users. Lighthouse will double check that for you. Let’s move on to

the service worker section.

It’s empty. Looks like no service worker is getting registered for this created app. And

because there’s no service worker, obviously there’s nothing cached here, either. You

were promised a PWA right out of the box. What’s going on here?

Figure 11-2.  Create React App is finished creating a project and even gives helpful
hints on how to run it

Chapter 11 PWAs From the Start

213

�Configuring the Service Worker
If you look at the README.md file in the root of the app, there is an entire section on

Progressive Web Apps with a wealth of information on how the Create React App setup

deals with service workers and other PWA features.

Reading through this, you learn that the way the Create React App is configured,

the service worker only gets registered for production builds. You can also see that

sw-precache is baked into the production build process. That’s great news!

Note  There are some valid explanations here for why the offline functionality is
only enabled in production builds. Developers who aren’t as familiar with service
workers as you are would really be thrown off as to why all of their changes are
ignored during development. And let’s be honest, even you might forget that your
service worker cached that one JS file that’s nestled four levels deep in your app’s
directory structure.

Further reading shows that there is support for runtime caching, but the process is

slightly different from what you’re used to:

By default, the generated service worker file will not intercept or cache any
cross-origin traffic, like HTTP API requests, images, or embeds loaded from
a different domain. If you would like to use a runtime caching strategy for
those requests, you can [run npm] eject and then configure the runtime-
Caching option in the SWPrecacheWebpackPlugin section of webpack.con-
fig.prod.js.

—Create React App, README.md

Eject? That sounds… interesting. What’s going on here is that the Create React App

setup is trying to streamline everything for you. You’re in the pilot’s seat, but the plane

is on auto-pilot. By running npm run eject, it takes you out of the normal workflow and

shows you all of your configuration files. Try running it and you can see you now have a

config directory with the Webpack configuration files mentioned above.

So you still have control of your service worker and your app caching strategy, but

the details are abstracted away from you. If you’re more comfortable manually writing

your service worker and caching everything yourself, that’s absolutely doable.

Chapter 11 PWAs From the Start

214

Moving on in the README.md, you can also see information on the app manifest, but

there’s nothing really insightful here. You’re likely pretty well-versed on app manifests by

this point.

Essentially, in order to test your service worker, you need to build and run the app

much like the way you did the Movies Finder app in the last chapter. So let’s do that

because you want to see the service worker in action and want to run a Lighthouse

assessment to really see what you’re working with here.

�Running and Building the React App
In order to create your production build of this starter template app, you just need to run

yarn build in the root directory. That will tell you that an optimized production build is

getting created, and everything is now in a build directory. This is essentially the same

thing as the dist directory from last chapter. Let’s peek in there in Figure 11-3 and see

what you’ve got.

Figure 11-3.  The build directory you want to serve up contains your JavaScript
bundle, some CSS, a service worker, a manifest, and the index.html file

Looks like everything you could possibly need is in there. Let’s go ahead and cd into

that directory in the terminal and run http-server. Go to localhost:8080 in Chrome

and you should see the same React welcome screen.

Chapter 11 PWAs From the Start

215

Note  If you’re following along in lockstep from last chapter, when you go to
localhost:8080 you might see the Movies Finder app. That’s because of the
service worker caching. Just go to the Application tab in DevTools and clear out
everything.

If you open up DevTools, now you’ll see that a service worker is registered, activated,

and running. Let’s hop down to the Cache Storage (you may need to right-click and

choose Refresh Caches) and in there you can see that sw-precache has already cached the

index.html file, along with the JS and CSS bundles, and the main logo on the page.

Feel free to explore how the code is structured here, but you can see that you should

have a really solid PWA foundation to build on for the next time you want to create a

React app. Let’s do a little performance measuring.

�Deploying and Measuring Your React PWA
You don’t particularly want to measure the performance of an app when serving from

localhost. So let’s throw these starter PWAs up on Firebase so you can poke and prod

them remotely. If you’d like to deploy to your own remote server, feel free to follow the

steps outlined in the previous chapter when you deployed the Movies Finder app to

Firebase. Alternatively, you can just look here for the React PWA deployment:

https://react-pwa-bd5da.firebaseapp.com.

Chapter 11 PWAs From the Start

https://react-pwa-bd5da.firebaseapp.com/
https://react-pwa-bd5da.firebaseapp.com/

216

Without adding any of your own code, the Create React App project gives really

impressive scores. We knew that Lighthouse was going to complain about the manifest

not having the right icon size, so the project got dinged for that one. There’s another minor

issue with a viewport meta tag. But those are easily fixable. Accessibility and Best Practices

start out at 100s, which is excellent. All you have to do as a dev is not mess that up.

Now you get to performance. Your goal with any PWA is a Time to First Interactive

on 3G in under five seconds. The way you’ll compare these frameworks is by running

Lighthouse three times and taking an average. As you can see in the screenshot, you got

Figure 11-4.  React.js Lighthouse results for Create React App starter project

Let’s open that up and run Lighthouse on it and see what’s what. See the results in

Figure 11-4.

Chapter 11 PWAs From the Start

217

1.77 seconds here, and the average of three runs ended up being 1.8 seconds. So this tells

you that once you add in your own code, images, functionality, etc., you have 3.2 seconds

to work with, as you can see in the fantastic little graph in Figure 11-5.

Figure 11-5.  The amount of time React.js takes to reach First Interactive without
any application functionality

�Summary of React’s PWA Effort
The setup of your React PWA was really easy. The Create React App made the developer

experience really seamless and you were up in running in very little time. With perfect

scores in Best Practices and Accessibility, it’s a little surprising that the manifest and a

meta tag kept the project from being perfect in the PWA section. That’s a particularly

minor gripe, though, and a 98 in performance while only using 1.8 seconds seems

impressive.

Of course, you don’t have much of a frame of reference. So now let’s move on to the

next library, Preact.js.

�Preact PWA
Preact is an incredibly small library. It comes in at just 3KB. It’s positioned as a lighter,

faster alternative to React. It aims to be mostly compatible with the React API, but some

features were purposely left out for either performance reasons or were just out of scope

of Preact’s goal.

Jason Miller is the creator of Preact, and the project has around 100 contributors on

GitHub. While Preact has only been around for a couple of years, it’s already used by

some big name companies like Uber, Pepsi, and The New York Times.

Chapter 11 PWAs From the Start

218

�Preact CLI
The Preact CLI claims a “100 Lighthouse score right out of the box.” You saw that React

was close to that, but you’ll see shortly if Preact lives up to that claim. There is a section

of the Preact website dedicated specifically to PWAs and reasons for why Preact is a good

choice for one. I already discussed how small the library is, so that’s obviously going to

help performance.

Let’s follow the same steps as with React. In fact, the process is almost identical:

npm install -g preact-cli

preact create preact-pwa

Just like with React, this will install all of the necessary dependencies and get

everything scaffolded out for you, as you can see in Figure 11-6.

Figure 11-6.  Preact installs all of the dependencies and creates a project structure
for you, and it gives instructions on how to run the app

This looks a lot like what React does, but here you have npm instead of Yarn. Also,

that last line is interesting. You have the ability to run an HTTP/2 server out of the box

with the production build. That should give you an app manifest and service worker

functionality. Let’s run it and check it out!

Chapter 11 PWAs From the Start

219

�Running the Built-in Preact HTTP/2 Server
In the terminal, cd into the newly created preact-pwa project and then type npm run

serve. You’ll be prompted with a password to set up the SSL certs for the HTTP/2 server.

You can also catch the precaching already happening via the CLI, like in Figure 11-7.

Figure 11-7.  The Preact CLI is pre-caching assets before you’ve configured a
single thing

Now go to localhost:8080 and open up DevTools and you’ll discover not only an

app manifest, but also an installed and activated service worker. You see above that the

CLI is precaching 14 resources, and you can verify that in the Cache Storage section of

DevTools. There are a handful of icons in there, as well as the app manifest, the

index.html file, and some JavaScript and CSS files. If you had DevTools open before

loading the app, move over to the Network tab and you’re in for a real treat. If not, just

clear out everything with the Clear storage section of the Application tab and reload.

Chapter 11 PWAs From the Start

220

In Figure 11-8, the Network tab shows that not only do you have an HTTP/2 server,

but it’s using server push by default. You’re in PWA heaven!

Figure 11-8.  HTTP/2 and server push right out of the box

Not only do you have all of these PWA goodies, but the setup was super easy. You

typed in four short commands, and you’re given a fully featured PWA starter template.

Before you get too carried away, though, once you deploy let’s talk about something

that isn’t quite as easy: runtime caching.

�Preact CLI Plugins
Runtime caching with React wasn’t quite as straightforward as the rest of the process

(remember the eject command?), and that’s also the case with the Preact CLI. The

service worker process is entirely abstracted away, so much so that you can’t simply eject

in this case.

Instead, you need to install a separate npm package to configure sw-precache. If you

want to try this out now, the process isn’t complex, it’s just quite a departure from how

easy the rest of the Preact CLI was. Let’s take a look.

The first step is to run

npm install --save-dev preact-cli-sw-precache

Chapter 11 PWAs From the Start

221

Next, you need to create a file in the root of the project called preact.config.js and

import the package you just installed and set up your sw-precache config:

const swPrecache = require('preact-cli-sw-precache');

export default function (config) {

 const precacheConfig = {

 staticFileGlobs: [

 '/**.css',

 '/**.html',

 '/assets/**.*',

 '/**.js'

],

 stripPrefix: 'app/',

 runtimeCaching: [{

 urlPattern: ‘/’,

 handler: 'networkFirst'

 }]

 };

 return swPrecache(config, precacheConfig);

}

When you build with this file in the root of the project, you can customize your

sw-precache just like you did with the Movies Finder app. So while there are additional

steps to have this type of functionality, it’s really not so bad.

The last step to checking out the Preact PWA is to run it through the Lighthouse test

battery. You don’t really want to run your Lighthouse tests locally. So you will deploy it to

Firebase just like you did with React. You’ll lose your built-in server push in that process,

but you’re taking the rest of your built-in Preact PWA goodies and running away with them.

�Running Lighthouse on Firebase-Deployed Preact
You want to deploy just like you have before, so you’ll follow those same steps. Just

like last time, if you don’t want to go through the deployment process just to see some

Lighthouse scores, you can check out the deployed version here: https://preact-pwa-

27be0.firebaseapp.com/.

Chapter 11 PWAs From the Start

https://preact-pwa-27be0.firebaseapp.com/
https://preact-pwa-27be0.firebaseapp.com/

222

It should come as no surprise given everything I’ve discussed about Preact, but the

Lighthouse scores are absolutely phenomenal. Check out Figure 11-9.

Figure 11-9.  Preact achieves Lighthouse perfection. Almost.

With no configuration and in a matter of seconds, you have an app that is as close

to Progressive Web App perfection as you could reasonably expect to get. It checks

off every PWA box, implements each best practice, and includes every accessibility

recommendation. These scores are so good, it’s almost annoying that you can’t

somehow grab those extra two points from the performance score. We’ll take it anyway,

though.

After a few runs of Lighthouse, Preact performed at an average of 1.745 seconds in

Time to First Interactive, just barely beating out React. You can see just how close they

are in the return of the nifty graph in Figure 11-10.

Chapter 11 PWAs From the Start

223

�Summary of Preact’s PWA Effort
This performance score will give your app about 3.25 seconds to load before hitting the 5

second Time to First Interactive goal. For all practical purposes, this is the same as React.

As for the PWA scores, the couple of items keeping React from achieving the perfect 100

are quickly and easily remedied, but the Preact setup took care of them for you.

Both solutions required a bit of extra configuration to get runtime caching (and any

other service worker features) in place, which is a minor concern, but it’s really only a

couple of extra steps.

These are both great solutions. So when choosing between the two, for PWA

purposes, your decision should really just come down to a personal preference.

One thing to keep in mind is that both of these libraries deal specifically with the

view layer of your application. Things like managing application and model state, data

fetching, and routing all require additional libraries. Just something to consider. The next

library I’ll discuss has the same consideration, but is blowing up in popularity. Let’s see

how it measures up.

�Vue.js PWA
Vue.js is a JavaScript framework that has a strong focus on being light, fast, and simple.

It’s focus is on the view layer of applications, but is capable of powering large front-end

heavy applications if it has some helper libraries to go along with it.

It’s another relatively new-on-the-scene solution but already has well over 100

contributors to the project, and it has exploded in popularity over the last year or so.

Figure 11-10.  Preact narrowly edges out React in Time to First Interactive

Chapter 11 PWAs From the Start

224

On the PWA side of things, Vue provides a set of templates that allow developers to

have options around what kind of project they would like to start. One of these templates

is a PWA template that you can find here: https://github.com/vuejs-templates/pwa.

Much like React and Preact, let’s follow the instructions and spin up a project.

�Vue CLI and PWA Creation
Run the following commands in your terminal in whatever directory you’d like to put

your Vue PWA project:

npm install -g vue-cli

vue init pwa vue-pwa

Note  That last command looks a little convoluted. But the pwa part specifies
which template to use, while vue-pwa is the name of the project.

This setup requires quite a bit more configuration. There are about nine questions

the CLI asks you before you’re ready to go. Most of them are quick and painless, so you

can breeze through them.

Once you cd into the project root directory, you need to run npm install. That’s

different from the previous two solutions that installed all of the needed dependencies

for you. Just one extra step, though, and it goes relatively quickly.

After the install finishes, you could either run the dev server or create a production

build. The dev build doesn’t create a service worker, though, so just like with Create

React App, you’ll want to run a production build and serve your app from the newly

created folder. So ignore what the terminal tells you and instead run npm run build in

the root directory.

Nothing fancy here; it simply creates a dist directory. Let’s take a look in there

(Figure 11-11) before deploying and testing with Lighthouse.

Chapter 11 PWAs From the Start

https://github.com/vuejs-templates/pwa

225

�What the Deployed Vue PWA Offers
It looks like you should have all of the major parts of your PWA, so let’s go ahead and

deploy instead of running locally. You can check out the service worker and manifest

once everything is up on Firebase. If you’d like, you can see the base starter template

deployed up on Firebase here: https://vue-pwa-c7515.firebaseapp.com.

Open that up and let’s check out DevTools. You’ve got a service worker all ready to

go and the manifest looks like it’s in great shape. Let’s go down to the Cache Storage and

check out if you have pre-caching in Figure 11-12.

Figure 11-11.  The dist directory contains the app manifest, a service worker, and
all of the needed icons

Chapter 11 PWAs From the Start

https://vue-pwa-c7515.firebaseapp.com/

226

So you have your service worker, an app manifest, and pre-caching. The only thing

left to find out is how easy implementing runtime caching is.

Go back to the code and check out the build directory. In there you’ll find a file

called webpack.prod.conf.js. This contains all of the build configurations. Just like the

other solutions, the Vue.js CLI build process is built on Webpack. You can edit this config

file to add in runtime caching. Look for the following block of code:

// service worker caching

 new SWPrecacheWebpackPlugin({

 cacheId: 'vue-pwa',

 filename: 'service-worker.js',

 staticFileGlobs: ['dist/**/*.{js,html,css}'],

 minify: true,

 stripPrefix: 'dist/'

 })

You can add a runtimeCaching property in there that takes an array of objects with

route patterns and caching strategies:

// service worker caching

 new SWPrecacheWebpackPlugin({

 cacheId: 'vue-pwa',

 filename: 'service-worker.js',

Figure 11-12.  The Vue.js PWA template gives you sw-precache out of the box

Chapter 11 PWAs From the Start

227

 staticFileGlobs: ['dist/**/*.{js,html,css}'],

 minify: true,

 stripPrefix: 'dist/',

 runtimeCaching: [

 {

 urlPattern: “/*,

 handler: 'cacheFirst'

 },

 })

For Vue, there was no need to eject or install a plugin. You could just directly change

the Webpack configuration. Nice and easy.

�Running Lighthouse on Firebase-Deployed Vue
Now let’s go ahead and run the Lighthouse tests and see where the Vue PWA template

starts you off. The results are in Figure 11-13.

Chapter 11 PWAs From the Start

228

Vue looks to be just about perfect when it comes to Lighthouse. It trails React and

Preact in the Performance category by just a single point. The Time to First Interactive

was just a hair higher than those other two libraries, but the amount wouldn’t be

noticeable to users. For a comparison, check out Figure 11-14.

Figure 11-13.  Vue.js comes in with fantastic Lighthouse scores, perfect in three of
four categories, with a near-perfect Performance score

Chapter 11 PWAs From the Start

229

Vue leaves you just over three seconds to load up all of your own application logic

and resources. There’s less than a quarter of a second difference between Vue and Preact

on a 3G connection, and with enough tests, it’s possible that even that difference shrinks

further.

�Summary of Vue’s PWA Effort
Vue had the most configuration needed to get set up so far, but that’s not saying much.

There’s just a handful of questions asked at the beginning, and that could be nice for a

little extra customization from the start. Additionally, Vue has made adding in runtime

caching the easiest of the three solutions, with the configuration file already available for

easy editing.

The next two frameworks you’ll be looking at are at a disadvantage on paper. They’re

bigger frameworks with more capabilities. While these first three options are focused

exclusively on the view layer of the application, Angular and Ionic (which is built on top

of Angular) are full-fledged front-end frameworks. Let’s see how Angular stacks up.

�Angular PWA
Angular underwent a dramatic change in the last couple of years. AngularJS 1.x

dominated front-end frameworks for a few years before React came on to the scene.

The component-based model of React along with its virtual DOM abstraction lured

developers away, showing some of the weaknesses of the AngularJS framework. Once

ES6 finalized and TypeScript stormed onto the scene, the Angular team decided the

Figure 11-14.  The comparison of the three solutions so far is very consistent, with
Vue trailing behind React by a few milliseconds, and Preact in the lead by an even
smaller margin

Chapter 11 PWAs From the Start

230

framework was due for a complete overhaul. What was formerly known as Angular 2

is now known as just Angular (the current version is Angular 5, and by the time you’re

reading this it’s likely it could be even higher). Angular is not just an upgrade from

AngularJS, it’s a completely different framework.

Backed by Google, thousands of enterprise companies use Angular. It’s a fully

featured framework that not only takes care of the view layer, but has a much larger API

that allows for robust change detection, front-end routing, support for observables via

RxJS, and more.

You saw an Angular PWA in Chapter 10. But you gradually made that app a PWA

rather than starting as one. Here the goal is to start from scratch.

�Angular’s Rocky PWA Start
Once upon a time, there was support for PWAs via a project called Angular Mobile:

https://mobile.angular.io/. The site looks promising, and is completely PWA

focused. However, at the time of this writing, that project is dead.

In its place is a project called Angular Service Worker. This is still a very new project,

so it’s still in beta, and there’s not a lot of documentation yet. Let’s see what we can

squeeze out of it, though.

Let’s get started by installing the Angular CLI and creating an app:

npm install -g @angular/cli

ng new angular-pwa

cd angular-pwa

This will create a new Angular project called angular-pwa. All of your packages and

dependencies were installed, and you’re ready to go.

The next step is to install the Angular Service worker:

npm install --save @angular/service-worker

ng set apps.0.serviceWorker=true

This will install the necessary files, and sets a flag inside of the .angular-cli.json

file. From there, you need to create a configuration file that will allow you to

customize your service worker. Create an empty file in the root of the project and call it

ngsw-manifest.json. You don’t need to add anything in there for static caching, as that’s

already taken care of for you. But for runtime caching, you can configure it like so:

Chapter 11 PWAs From the Start

https://mobile.angular.io/

231

"dynamic": {

 "group": [

 {

 "name": "angular-pwa",

 "urls": {

 "/*": { "match": "prefix" }

 },

 "cache": {

 "optimizeFor": "performance",

 "maxAgeMs": "360000000",

 "maxEntries": 10,

 "strategy": "lru"

 }

 }

]

 }

At the moment, finding documentation for this is nearly impossible, and the

properties don’t seem to follow the standard ones you’re used to in other projects. There

are a few presentations on this file, but anything official seems to still be forthcoming.

Hopefully, by the time you read this everything is well documented.

�Building the Angular PWA
Luckily, the Movies Finder app was built with the Angular CLI, so you should already

be familiar with the necessary build commands. You could run ng serve, and that will

launch a server with all of your files served from memory. But you’re more interested in

what the production-ready package looks like, because that’s when you get your service

worker and your ngsw-manifest.json. So let’s go ahead and build the project using ng

build --prod and you’ll deploy the resulting dist folder, which should now have your

service worker in it. You’ll find this brand new Angular PWA here: https://angular-

pwa-e74db.firebaseapp.com/.

Chapter 11 PWAs From the Start

https://angular-pwa-e74db.firebaseapp.com/
https://angular-pwa-e74db.firebaseapp.com/

232

�Running Lighthouse on Firebase-Deployed Angular
The relatively underwhelming PWA scores are shown in Figure 11-15.

Figure 11-15.  Angular CLI falls short of producing the same out-of-the-box PWA
experience as React, Preact, and Vue.js

Given the fact that the Angular CLI didn’t provide even a service worker out of the

box, much less an app manifest, the PWA score isn’t surprising. The Accessibility and

Best Practices scores are decent, and at this point you’re well equipped to get those

scores up to 100s. What you have less control over is that Performance score. Thankfully,

it’s really solid, but it doesn’t quite hit the same level as the other frameworks and

libraries you’ve seen. A few points, though, shouldn’t scare you away from using Angular.

You can see in Figure 11-16 that Angular falls behind the rest of the pack.

Chapter 11 PWAs From the Start

233

�Summary of Angular’s PWA Offering
The performance of Angular is surprisingly good considering the amount of features

available in the framework. The real issue here is that Angular is such a major player

in the front-end community, and has been for a long time, and yet at the moment

there isn’t much support for starting an Angular application as a PWA. It looks like

improvements are coming, but the framework has clearly been passed by the other

major solutions. Even more surprising is that Angular is a Google-backed project, and in

the push for PWAs there is no bigger champion than Google.

Given this, you have to think that by the time you’re reading this, Angular will get

its PWA ducks in a row. As it stands at this moment, there is quite a bit of work to do to

before Angular gets up to the level of React, Preact, or Vue when it comes to PWAs.

That should make the next and final framework all the more interesting. Ionic, which

is built with Angular, promises devs a great PWA experience from a framework that’s

geared toward compiled native applications. Let’s see what it’s got.

�Ionic PWA
Ionic is a framework built on top of Angular that focuses on building native mobile

apps with front-end technologies. If you’re familiar with Phone Gap, it’s the same idea:

leveraging Cordova to take a JavaScript application and make it native mobile-friendly.

Figure 11-16.  Angular trails the other three solutions by almost half a second, but
that’s not the real issue with the PWA offering

Chapter 11 PWAs From the Start

234

Because that mission is closely aligned with PWAs, in late 2016, the Ionic team

announced support for PWAs as well. If that support proves to be robust, it could be an

alternative to starting a PWA project with Angular, since that’s what’s under the Ionic

hood. Let’s go through the installation process and see if it’s able to improve on the

Angular CLI experience.

�Installing Ionic
The developer experience for setting up Ionic is definitely a pleasant one. There’s robust

documentation for just about everything, and the steps are on par with what you’ve seen

for React, Preact, and Vue. To begin, just install the Ionic CLI and start up a project:

npm i -g cordova ionic

ionic start ionic-pwa

After running these commands, you’ll be asked a couple of configuration questions

like in Figure 11-17.

Chapter 11 PWAs From the Start

235

Just like with a couple of the other solutions you’ve looked at, there are different

templates for developers to choose from to bootstrap the app. A lot of mobile

applications have a tabbed interface, and Ionic will start you off with one of those out of

the box if you’d like. For your PWA, though, you’ll just choose the Blank template. Once

everything is installed, you can cd into the project’s directory.

Figure 11-17.  Setting up a new Ionic project

Chapter 11 PWAs From the Start

236

�Enabling the Ionic Service Worker
When building an Ionic app for production, you should get a service worker and an app

manifest automatically. Those are already huge improvements over the built-in

Angular CLI process. You just need to tweak one thing in the index.html file to enable

the service worker.

The service worker registration code is already right there inside the index.html

file; you simply need to uncomment it. After that’s taken care of, you can kick off a

production build.

�Building Ionic
In the root directory of the app is a package.json where you can see what options you

have for either running the app locally or creating a production-ready bundle. One

of the options in there is the npm command ionic:build, which will take care of the

production build. Type npm run ionic:build and you have your production-ready

files. Unlike the other projects you’ve looked at in this chapter, Ionic will build your web

production files into a www directory, like in Figure 11-18.

Figure 11-18.  The result of running an Ionic production build, which gives you an
app manifest and a service worker

Chapter 11 PWAs From the Start

237

Note R emember that Ionic is, first and foremost, a native app solution, so any
web-specific builds need a special output directory.

In the www directory, you should have your app manifest and a service-worker.js

file. Those files were just copied over from the src directory, which contains an editable

service worker file. No need to mess with any configuration files; the service-worker.js

is right there. So if you want to add in runtime caching, background syncing, or push

notifications, that’s your spot.

You can already see that the Ionic team has put in a bit more of a focus on PWAs because

you’re getting nice support without having to do much of anything, except commenting out

the registration code. Now comes the moment of truth: let’s deploy the app.

�Deploying and Testing the Ionic PWA
This is your last PWA project to deploy, which is good because Firebase limits the

number of projects you can have for free. You can find the Ionic PWA you’re going to test

here: https://ionic-pwa-6d2e5.firebaseapp.com/.

Open it up in the browser and take a look in DevTools. You’ve got a manifest and a

service worker. Moving down to the cache, you can see in Figure 11-19 that pre-caching

works by default.

Figure 11-19.  Pre-caching works with no configuration

Chapter 11 PWAs From the Start

https://ionic-pwa-6d2e5.firebaseapp.com/

238

It looks like everything is in order here for a really solid Lighthouse score. Let’s take a

look at the results in Figure 11-20.

Figure 11-20.  Ionic posts a solid improvement over Angular CLI Lighthouse scores

Ionic improves on Angular by 27 points in the PWA category. The only mark against

Ionic is a lack of anything showing on the page when JavaScript is disabled in a browser.

That might seem kind of silly, since without JavaScript, there’s not much of an app

anyway. But remember the progressive part of PWAs. Even on the oldest browsers,

the user needs to see something. This is a very easily fixed issue, though, using the

<noscript> tag and putting a string of text in there explaining that there’s nothing to see

here if the user disabled JavaScript. With that tweak, say hello to a perfect PWA score.

Chapter 11 PWAs From the Start

239

In the Best Practices category, Ionic bests the Angular CLI by 15 points, though there

was a drop of a few points in the Accessibility category. It’s definitely still an acceptably

high score, though.

The interesting score is Performance as it’s only a point below Angular’s score. So

you make huge improvements in two areas while only losing a point on Performance

and a few points on Accessibility.

The average Time to First Interactive is only 150 milliseconds slower than Angular.

You can see the comparison to other frameworks in Figure 11-21.

Figure 11-21.  Time to First Interactive across all frameworks and libraries. Ionic’s
is slowest, but by a marginal amount and with vastly improved PWA and Best
Practice scores.

Ionic takes up about half of the allotted time of your goal, leaving a little more

than 2.5 seconds to load your app’s resources.

�Summary of Ionic’s PWA Offering
If you’re looking to whip up a quick and simple PWA or an app that has a heavy mobile

focus, and you’re partial to Angular, then Ionic is undoubtedly a better option. With

little to no configuration, you get a near perfect PWA score, a big improvement to Best

Practices, with only the slightest drop in performance.

If, on the other hand, you’re planning a bigger Angular project, you may be better off

manually improving the PWA capabilities of an Angular app.

No matter which route you go, Ionic really improves on Angular CLI from the PWA

perspective and is very comparable to the other solutions you’ve examined.

Chapter 11 PWAs From the Start

240

�Starting a PWA from Scratch
What a great time to be a developer focusing on PWAs! Almost any solution you turn to,

you should not only have great support for PWAs, but really solid performance as well.

Preact obviously takes home a much deserved overall PWA gold medal and to boot

was the easiest setup that provided the most value for your time. But you really can’t go

wrong with even the poorest performing solution we examined: Angular. Using the skills

you’ve learned throughout this book, you should be able to improve those scores in no

time at all, and the performance wasn’t far enough away from Preact that you should

dismiss it out of hand.

There are still a few other things you can do to squeeze a drop or two of extra

performance out of your app.

�Looking Ahead
What I’ll talk about next isn’t necessarily PWA-specific. You’ve learned just about all

there is to know about PWAs. For now. Where you’re going, you don’t need to know

about PWAs.

Chapter 11 PWAs From the Start

Leveling Up Your PWA

PART IV

243
© Dennis Sheppard 2017
D. Sheppard, Beginning Progressive Web App Development, https://doi.org/10.1007/978-1-4842-3090-9_12

CHAPTER 12

Leveling Up Your PWA
At this point, your official PWA education is complete. Congratulations! Using what

you’ve learned in this book, you now should be able to create a web application that

loads fast, is installable on Android devices, works completely offline, and engages

users. However, there is always more to learn. Developers tend to be smart people, and

smart people are going to keep coming up with better and better ways to do things.

That’s what this chapter is about: taking steps beyond what you’ve learned about PWAs

and making your apps even better. That will include even more performance patterns

and enhancements, like Google’s PRPL pattern, lazy loading, code splitting, server-side

rendering, and web workers. You’ll explore all of that and more in this chapter. If you’ve

made it this far, you’ve earned enough XP; it’s time to level up your PWA!

�Google’s PRPL Pattern
PRPL is a pattern of best practices to build fast web applications. It was “discovered”

by the Polymer team at Google. It’s not a technology in and of itself, but a collection of

things you can do to make the user’s experience in your app a great one. Even better,

you’ve been using most of the PRPL pattern all along, but now you have a name for it.

•	 P: Push resources for the initial route. I’ve gone over server push quite

a few times in our journey here, but again, this is important to eliminate

the need for multiple requests from the browser when the server is

capable of pushing the resources an initial page needs all at once.

•	 R: Render the initial route. Not just render, but render it fast. Use the

app shell architecture to make the first route super-light so the user gets

instant content. Sometimes that means using rel="preload" or inlining

styles or inlining JavaScript or just removing render blocking resources.

Under five seconds on a 3G connection, and under three seconds on an

LTE connection, are great goals for rendering the initial route.

244

•	 P: Pre-cache remaining routes. You saw this with almost every

library and framework we looked at. Pre-caching is essential to

optimal performance. Any resource the initial route doesn’t use, but

the rest of the app might need is cached before it’s even asked for.

This way when the user navigates to the other parts of the app that do

need those resources, it’s already available in the cache.

•	 L: Lazy load everything the user doesn’t need on a page. If a user

isn’t going to need a CSS file or an image until he or she reaches a

certain route, there’s no need to load it beforehand. It might seem

like pre-caching and lazy loading are opposite strategies, but they

really play well together. When a user navigates to a route where the

resources weren’t loaded in advance, they can be lazy loaded from

the service worker’s cache, resulting in no additional network calls on

a lazy loaded route.

�Lazy Loading
The goal of lazy loading is to ensure that your app only loads what is necessary for

the route the user is navigating to. This means that instead of a 500KB bundle getting

downloaded on initial load, there’s a chance that the majority of that bundle never loads

at all if the user never navigates to the routes that require loading those resources.

I’ve gone over those first three principles of PRPL quite a few times, but I haven’t

discussed lazy loading. One of the reasons for that is that while the concept is simple

in theory, the implementation of lazy loading is largely dependent upon whatever

framework or library you’re using. Additionally, a prerequisite of lazy loading is

something called code splitting, so let’s talk about that next.

�Code Splitting
One of the excellent features of HTTP/2 is that requests are fast and cheap. The browser

can make dozens of requests at the same time, which causes monolithic bundles to be a

sort of anti-pattern. Why would you load 500KB of resources when you only need 5KB for

the initial load? This means you can be ultra-smart about how you split up your bundle.

Rather than blocking rendering with that huge monolithic chunk, code splitting allows

you to download and parse just what you need on a route and pre-cache the rest.

Chapter 12 Leveling Up Your PWA

245

This is significantly different from past JavaScript deployment best practices.

Previously, we would minify and concatenate and that’s our bundle. The browser

downloads it and parses it, and that’s just the way it’s worked for years. That answer isn’t

good enough anymore because we have the ability to do better.

You may have noticed one commonality among the libraries and frameworks

you played with in the last chapter. Their build processes were all built on Webpack.

Webpack is kind of the de facto standard of building and bundling front-end applications

nowadays. Using Webpack, you’re actually able to split your code into multiple bundles

that you can load either asynchronously or on demand.

Note  Webpack is not a requirement to implement code splitting. There are other
methods by which you can split your code into separate, smaller bundles. As of
2017, however, Webpack is rather ubiquitous in the JavaScript build landscape.
In 2018 or 2019, that could change.

The method by which you can do this will once again vary based on your application.

After all, Webpack doesn’t know where the best place to split your code is unless you

help it out a little. While many frameworks and their build systems abstract away the

Webpack details (which isn’t a bad thing, by the way, since rumors abound about

developers getting lost in a Webpack config and never being heard from again), we can

still take a look at how you might go about splitting up your code bundle:

const path = require('path');

const HTMLWebpackPlugin = require('html-webpack-plugin');

module.exports = {

 entry: {

 popular-movies: './src/popular-movies.js',

 new-movies: './src/new-movies.js'

 },

 output: {

 filename: '[name].bundle.js',

 path: path.resolve(__dirname, 'dist')

 }

};

Chapter 12 Leveling Up Your PWA

246

Here you’re specifying two different code modules in the entry property of

Webpack’s module.exports object. The result of these two modules is two bundles

named popular-movies.bundle.js and new-movies.bundle.js.

If the initial route of the application only needs the popular-movies bundle, that’s

all the initial route requests. You can create multiple small bundles out of your app since

HTTP/2 welcomes as many bundles as you can throw at it.

There are various ways to split your code, so depending on the library or framework

you’re using, do a little bit of research on how to implement code splitting that makes

sense for your application. For now, let’s move on to additional methods of improving

that all-important first page load.

�Analyzing Bundles
The bane of a browser’s performance focus is giant resources. They take a long time to

download, and the browser has to figure out what to do with them. That’s one of the

reasons that all of your PWAs from scratch loaded so quickly. The bundle sizes of each of

them were remarkably small.

Oftentimes throughout the development process of an application, we try out

libraries, decide they’re not quite what we wanted or needed, and then try another

library. Or, we pull in an entire library for one small thing, much like the Movies Finder

app is doing with the expansion of the mobile menu. It references the entire jQuery

library for one small function.

In either of those cases, the result is a bloated JavaScript bundle. Once your JavaScript

resources are bundled, it’s difficult to really see what’s included in there. Additionally,

your node_modules folder usually consists of ten pounds of “Nope!” in a five-pound bag.

Good luck figuring out what you can pluck out of there. The package.json file is better in

smaller projects, but as your project grows, so too does your package.json.

Thankfully there are solutions to seeing exactly what is in your JavaScript bundles.

One such solution is the webpack-bundle-analyzer package. The process for using

this will vary slightly depending on your setup, but let’s take a look at an analysis of the

Movies Finder PWA app.

If you still have the Movies Finder code around, go back to that directory, and if not go

ahead and re-clone the repo here: https://github.com/dennissheppard/Movies-Finder.

Then run npm install --save-dev webpack-bundle-analyzer -g to install the

npm package.

Chapter 12 Leveling Up Your PWA

https://github.com/dennissheppard/Movies-Finder

247

The next step to analyze Movies Finder’s bundles is specific to the Angular CLI, but

if you have a non-framework specific webpack.config.js file, you can run webpack

--profile --json > stats.json to generate metadata about your bundle that will live

in a file called stats.json.

For the Movies Finder app, however, you’ll run ng build --prod --stats-json to

generate the stats.json file. Then to actually see your bundle analysis, you just need to

run webpack-bundle-analyzer dist/stats.json. This command will launch a browser

tab where you can visually assess your bundle, as in Figure 12-1.

Figure 12-1.  Webpack bundle analyzer is helpful in identifying what’s included in
your built bundles

Chapter 12 Leveling Up Your PWA

248

As you can see, there are a lot of items that get put into your bundles. In the case of

Movies Finder, the bulk of your app is in the vendor bundle. A good portion of that vendor

bundle is rxjs. However, the app doesn’t use a large amount of what’s included in rxjs.

By comparison, you can go through this same process on the Angular CLI PWA you

built in the last chapter. The results for that PWA are in Figure 12-2.

Figure 12-2.  Webpack bundle analyzer for the Angular CLI PWA shows a much
smaller vendor bundle

Chapter 12 Leveling Up Your PWA

249

When you’re not importing and using features of libraries, you’re going to drastically

reduce bundle size. Examining the differences in those two vendor bundles shows

that by adding in routing, for example, you’re increasing your bundle size. This isn’t to

suggest you shouldn’t use routing in your apps, but it does point out that you should be

aware of everything you’re importing.

A great example of this with the Movies Finder app is that the part of the app that

makes API calls imports all of the rxjs library, but it only actually needs the map operator:

// import 'rxjs/Rx';

import 'rxjs/add/operator/map';

Making this simple switch in one file of that entire app reduces the vendor bundle

size from 156KB to 123KB (gzipped). That’s a 21% reduction in bundle size by only

importing the portion of the library you need instead of the entire library!

Remember, as a general rule, the less code you have to ship to the browser, the faster

your app is going to load.

�Server-Side Rendering
A long time ago, logic for web apps was all taken care of by the server. Doing anything on

the screen, like clicking a button, required a trip to the server to return the entire page

again. These were called postbacks and in general they resulted in a bad user experience.

As JavaScript pervaded the web app landscape, AJAX solved the issue of postbacks and

we now only need a subset of data from the server instead of re-rendering the entire page.

The one good thing about those server-rendered pages, though, was that the first

page load was pretty fast. Think about the page load process you’ve experienced in the

apps you’ve looked at so far that are rendered on the client-side compared to how a

traditional server-side—rendered app loads.

Chapter 12 Leveling Up Your PWA

250

Figure 12-3 should give you some idea of how server-side rendering works compared

to client-side rendering.

Figure 12-3.  Server-side rendering gets all of its data from the server in one shot,
while client-side rendering pulls down the HTML file, requests the JavaScript file,
requests data from the API, and then is finally rendered.

You can actually combine the benefits of server-side rendered pages and client-side

rendered pages by only using server-side rendering for the initial page load and sending

the JavaScript necessary for page interactivity down after the app shell is visible. Once

the JavaScript is downloaded and executed, the page is ready for the user. That process is

also called hydrating the page.

Chapter 12 Leveling Up Your PWA

251

One of the benefits of this kind of setup, aside from faster loading of initial pages, is

SEO. Because the app is fully rendered on the server, search engine crawlers are more

easily able to see a full page, improving your search score.

Furthermore, for any users or browsers that may have JavaScript turned off, they

would still see an (almost) immediately rendered page, which is a really nice progressive

enhancement to have.

You can even pick and choose what you’d like to render on the server. Maybe it

makes sense for your application to have the server take care of just the application shell

and let the JavaScript take care of the actual content. Because the app shell is loaded

almost instantly, the perceived loading time of the app is much quicker for users.

�Drawbacks to Server-Side Rendering
All of this sounds great, in theory. The problem that comes along with server-side

rendering, however, is complexity. All of your JavaScript code now needs to be able to

run on a server as well as in the browser. This is called Isomorphic JavaScript, or more

recently, Universal JavaScript.

Think about how much of your JavaScript code likely references browser-specific

objects, like document and window. None of that exists on the server. You also need to

make sure you wrap any DOM manipulation code in a check to insure the server doesn’t

execute it.

�Resources to Implement Server-Side Rendering
In fact, the complexity of Universal JavaScript is such that entire books are written about

it, and many frameworks and libraries have separate projects dedicated to server-side

rendering. Next.js is a very popular framework for server-rendered React applications

(and there are many others). Vue.js has a project called Nuxt.js. Angular Universal was

a big focus for the Angular team with the new version of Angular.

None of this is to say that you should be scared away from looking into server-side

rendering. It makes sense in a lot of cases, but not as much in others. It’s another tool at

your disposal to try to achieve that ever-elusive 100 Performance score in Lighthouse.

Chapter 12 Leveling Up Your PWA

252

�Pre-Rendering
As you’re doing additional research on server-side rendering you may run across the

term pre-rendering. This is the process of taking your initial route and creating a static

web page from it. There are build tools that can do this, so that once you have your page

pre-rendered, you can distribute it to CDNs. Because the initial route is now a static

page, the browser only needs to pull down the HTML and CSS, resulting in what should

be a very quickly loading page. The JavaScript needed to “hydrate” the page for any user

interactivity can come down separately, avoiding any render blocking.

Let’s move on to another rendering problem that JavaScript and the Web has long

been faced with, and the solution that will further improve your app’s performance.

�Web Workers
One of the drawbacks of client-side development is that all code runs on the UI thread.

So anything that requires a lot of processing can block the UI from rendering or being

interactive. You’ve likely experienced this with apps that appear to be frozen. For

example, take a look at this Plnkr at http://bit.ly/2wgCOoH.

Here is the markup:

<body>

 <div>

 <div style="padding: 15px;">

 <button id="freezeBtn" onclick="freeze()">

 Freeze Everything!

 </button>

 </div>

 </div>

 <div>

 </div>

 <div>

 </div>

</body>

Chapter 12 Leveling Up Your PWA

http://bit.ly/2wgCOoH

253

And the very important processing going on in the background:

function freeze() {

 for (let i = 0; i < 500000; i++) {

 let result = i * i;

 console.log(result);

 }

}

When you run this, yes, it appears that there are two adorable dog gifs, and while

you’re goofily smiling at them, click that button that says Freeze Everything! and see what

happens. The dogs stopped moving! Why would anyone ever want those dogs to stop

doing the cute things they’re doing?

Unfortunately they become temporarily frozen because that button kicks off a

function that requires intense processing. It’s a pointless process in this case, but that’s

not the point. You’ve asked the browser to do some kind of processing that is intensive

enough that it can no longer properly render the UI. Everything freezes. Rendering,

downloading additional resources, parsing other code. Everything. That’s a problem if

you have anything you need to process on the front end.

You might think that you don’t have much you actually need to process on the client

side. After all, most processing should happen on the server, right? You’re not thinking

in terms of this new world of apps on the Web that are as powerful as native apps. For

example, there are now web-based spreadsheets. Think about that. If you have a formula

in a spreadsheet that calculates hundreds or thousands of numbers, you’re not going

to want to throw up a loading message every time. Especially a loading message that

won’t even animate because the entire UI is now unresponsive. There are also web-

based games, web-based video, and image processing apps. More and more processing

is getting pushed to the browser, and users expect the UI to remain responsive. As they

should! So what is a processing-happy, front-end developer to do?

Web workers are the solution. They allow you spin off a collection of work to a script

that runs in the background, which is also able to notify the main execution thread

when it’s finished. Web workers are a multi-threaded JavaScript solution. You can see

in Figure 12-4 that the interaction between the JavaScript file and the web worker is the

same as with service workers.

Chapter 12 Leveling Up Your PWA

254

Let’s take the same code from the gif example in the Plnkr and throw the processing

into a web worker. You can see the final result at http://bit.ly/2wHyVdk.

The script.js from before is now:

function freeze() {

 createWorker();

}

function createWorker() {

 var worker = new Worker('worker.js');

 worker.postMessage('start-freeze');

 worker.onmessage = function (e) {

 alert('final number: ' + e.data);

 };

}

Instead of doing any processing in here, you now have a createWorker function that

creates a new Worker object, and you pass it your worker script. All of your processing

will be done in there by a file called worker.js. You can communicate with the worker

via messages, similar to how you did before with service workers, passing in data if the

main thread needs to send the worker any information.

Note T he postMessage method requires that you pass something in, so you
have a string passed in there, even though the worker doesn’t actually use it.

The main thread also can listen for a message with worker.onmessage, in which data

from the worker comes through on the data property on the e (event) object.

Figure 12-4.  Web workers allow the main UI thread to offload processing to a
script that runs in the background, making sure that the UI remains responsive

Chapter 12 Leveling Up Your PWA

255

Moving over to the worker implementation:

self.addEventListener('message', function(e) {

 freeze();

});

function freeze() {

 let result;

 for (let i = 1; i < 30000000; i++) {

 result = i * i;

 }

 self.postMessage(result);

}

The worker listens for a message. In this case, you just want the worker to start the

freeze function. It does, goes through the meaningless loop, and sends the result back to

the main thread via the self.postMessage method.

When you run this, not only do you see that the gifs continue animating, but the

result is returned significantly faster when the dedicated thread is responsible for

calculating it.

You could also configure your worker to make API calls and process the results. Just

like you imported the pirate-manager.js app into your service worker before, web

workers can also use the importScripts function. If you expect a large amount of data

from an API call and you need to process that data, simply import whatever script would

typically make the call and call that function from within the web worker. When the call

is finished, you can use the messaging mechanism to let the main thread know that the

worker has fetched and processed the data.

The cute dog gifs example shows the use of a dedicated web worker. The life cycle of

this worker is the same as the page that created it. When that page is no longer in scope,

the worker dies along with it. If you need a worker to live across multiple pages, you

can use a shared worker. The instantiation is the same: you just use the SharedWorker

constructor when creating your worker rather than just Worker.

Obviously the pointless loop is a vastly simplified example, but you can imagine the

power web workers bring to front-end web development. As a bonus, dedicated web

workers share universal support across browsers, including mobile Safari. Shared web

workers, on the other hand, don’t have quite the same level of acceptance, with only

Chrome, Firefox, and Opera supporting them.

Chapter 12 Leveling Up Your PWA

256

�PWA News
We’ve had such a great time on this journey of learning everything there is to know about

Progressive Web Apps that it inspired some exciting new PWA updates from Apple and

Google. Let’s see what they’ve got for us.

�Safari
Service worker support is coming to Safari! This is FANTASTIC news! As of early August

2017, Webkit, which is the engine that powers Safari, changed the status of service

workers to “in development.” Since mobile Safari accounts for a significant share of

web traffic, this makes your PWA knowledge all the more important. It’s unclear when

this will actually be widely available, but Safari Tech Preview 38 has them enabled as an

experimental feature. So as a new PWA developer, you now have a responsibility to get

out there and fill up the iOS world with service worker and PWA goodness.

�Workbox
While you were busy learning, the Google Chrome team released a new service worker

generation tool called Workbox. It’s a collection of libraries and tools to generate a

service worker for you, much like how sw-precache does.

Before you panic about the possibility of everything you’ve learned being wasted,

don’t. Workbox is just another tool in your belt. sw-precache is still the default out-of-

the-box solution right now for all of the frameworks and libraries you’ve looked at. Plus,

I’ll go over what Workbox has to offer. The concepts are all the same, just wrapped up in

a new package.

To get started with Workbox, you install it by running npm install workbox-cli

--global. In the root of your project (feel free to use any of the projects you’ve gone

over throughout the book, or spin up a new project), you can generate a service worker

with the following command: workbox generate:sw. The CLI will ask you a number of

questions, like in Figure 12-5.

Chapter 12 Leveling Up Your PWA

257

After those questions, such as what you would like to cache and where you want the

CLI to put the resulting service worker, you will have a generated file. If you look in there,

you’ll see that the result is actually similar to a sw-precache-generated service worker,

just with much less code. There’s an array of all the files you want to cache, and then at

the bottom of the file you see two simple lines tying everything together:

const workboxSW = new self.WorkboxSW();

workboxSW.precache(fileManifest);

With this, you now have a service worker with pre-caching all set up. You might

remember that Workbox is a collection of libraries and tools. WorkboxSW is the high-

level wrapper that ties all of the modules together. For pre-caching and runtime

caching, WorkboxSW is likely all you’ll ever need. You create a new instance of it and call

precache and you’re all set.

The result of this generated file is just like every other service worker you’ve seen,

with the same registration process and the same lifecycle. If you like this type of CLI

generation, it’s easy to plug it into your existing npm build process in the scripts array

inside of your package.json, just like you did with the Movies Finder app:

"build-sw": "ng build --prod && workbox-cli generate:sw"

Note I f you’re not using Angular for your PWA project, just replace ng build
with whatever your build script happens to be.

Figure 12-5.  Workbox CLI setup

Chapter 12 Leveling Up Your PWA

258

If you have a Webpack build process where you’re editing Webpack config files

directly, there is a Workbox Webpack plugin, surprisingly called workbox-webpack-

plugin. In your plugins array, just include your Workbox configuration:

plugins: [

 new workboxPlugin({

 globDirectory: '/dist',

 globPatterns: ['**/*.{html,js,css}'],

 swDest: path.join('/dist', 'service-worker.js'),

 }),

]

Workbox supports runtime caching as well via the router.registerRoute method.

The syntax is very similar to using sw-toolbox:

workboxSW.router.registerRoute(

 'https://api.themoviedb.org/*',

 workboxSW.strategies.cacheFirst({

 cacheName: 'movies',

 cacheExpiration: {

 maxEntries: 20,

 maxAgeSeconds: 7 * 24 * 60 * 60,

 }

 })

);

As you can see, not all that much changed regarding what I’ve discussed with

sw-precache and sw-toolbox compared with Workbox. Instead of having two libraries

handling different features, everything is rolled into one.

Try Workbox out on your project and see if you like it. Whether you do or not,

for now sw-precache and sw-toolbox are still excellent choices to take care of your

caching needs.

Chapter 12 Leveling Up Your PWA

259

�A Last Word
Even in the process of writing this book, and certainly while you were reading it, the

development landscape morphed. New libraries were released, older ones lost some

users, and syntax changed. That’s what technology does, and as developers we have to

learn to embrace that. It is extremely likely that code you write today will be obsolete

in just a few years, and the framework or library you used on that project has a finite

lifespan.

However, every concept you learned in this book will be relevant as long as the Web

continues to dominate in terms of user reach. The syntax will change, browser support

might get better (or a new browser might arrive on the scene), and the libraries and

frameworks we looked at will come and go. In the end, though, the principles that make

a Progressive Web App a progressive web app are that it loads fast, it works (even if only

minimally) on all browsers, it’s reliable with or without an Internet connection, and it

engages users in ways that only native applications did in the past. Even as technology

changes, those tenets will live far beyond any hot development trend.

The Web is constantly challenged on multiple fronts, and time and again the Web

has kept pace or surpassed those challengers. With PWAs, the Web is well equipped to

do so once again.

Thanks for reading! Hopefully it was as enjoyable to read and follow along as it was to

write. Best of luck!

Chapter 12 Leveling Up Your PWA

261
© Dennis Sheppard 2017
D. Sheppard, Beginning Progressive Web App Development, https://doi.org/10.1007/978-1-4842-3090-9

Index

A
Angular PWA, 229

Angular Service Worker, 230
build-in option, 231
configuration file, 230
efforts, 233
Firebase-Deployed, 232
Rocky, 230

App manifest, 197
angular-cli.json file, 200
application tab, 200
Chrome’s address bar, 204
home screen, 202
index.html file, 200
Lighthouse PWA score, 205
manifest file, 198
splash page, 203

App shell architecture
async and defer, 149
caching, 143
dynamic content loads, 142
index.html file, 148
JavaScript and CSS, 151
Lighthouse performance comparison,

146–147
meaning, 139
measurement, 145
mobile and web view, 141
pirate app, 140
render blocking scripts, 148
stylesheet parsing and execution, 151

B
Bundles, 246

development process, 246
vendor bundle, 248
webpack-bundle-analyzer package,

246–247

C
Caching and offline function

caching option
cache option, 49
items returns, 51
network requests, 49
network tab, 51
process, 52
response objects, 52
retrieving cache

items, 50
service-worker.js, 47

dynamic page, 69
fetch event, 45

listener intercepts, 45–46
site returns, 46
update option, 47

offline (see Offline function)
strategies, 56

error messages, 60
fallback, 60
fastest strategy, 58
respondWith function, 59

https://doi.org/10.1007/978-1-4842-3090-9

262

stale-while-revalidate, 57
sw-precache, 63

command line, 64
config file, 65
sw-precache-config.js, 64

sw-toolbox, 65
update, 61

application tab, 63
implementation, 61

Chrome DevTools, IndexedDB
section, 18

Content delivery network (CND), 180
Cross-origin resource

sharing (CORS), 126

D, E
DevTools, 15

app manifest section, 17
cache storage section, 18
offline mode, 16
service workers option, 17, 42
test slow connections, 16
throttling, 16
Web app manifest, 99

Dynamic page caching, 69

F
Fetch, 29
Firebase deployment, 189

CLI, 191
console, 190
firebase.json file, 191
Lighthouse results, 192
Movies Finder, 190

G
Google’s PRPL pattern, 243

code splitting, 244
lazy loading, 244
web applications, 243

H
Header compression, 158
Head-of-line blocking, 155

HTTP 1.1 requests, 156
HTTP/2 requests, 157

HTTP/2, 159
Node.js

browser running, 161
implementation, 159
protocol column, 162
server, 160

server push, 162
comparison, 170
Express.js server, 164
firebase, 169
initial request, 163
initiator column, 167
Lighthouse results, 171
link header, 168
pirate-manager.js, 168
pushed resource, 167
request-response

pattern, 163
server push and cached

files, 170
Hypertext Transfer Protocol (HTTP), 155.

See also HTTP/2
header compression, 158
head-of-line blocking, 155

Caching and offline function (cont.)

Index

263

I, J, K
IndexedDB vs. localForage, 82

built-in fallback, 84
function details, 83
pirate app, 84
refresh option, 85
structure, 82

Ionic project, 233
build-in, 236
deploying and testing, 237
efforts, 239
installation, 234
interactive across, 239
pre-caching works, 237
service worker, 236
set up, 235
solid improvement, 238

L
Lighthouse tool, 11

accessibility section, 15
blocking resources, 14
categories, 12
DevTools (see DevTools)
excessive DOM size, 15
options, 12
performance section, 14
progressive web app section, 13
Webpagetest.org, 18

localForage, 86

M, N
message event, 90
Movies Finder app, 175

first page load, 178

initial Lighthouse scores, 179
mobile, 177

Movies Finder performance, 206

O
Offline function

Internet connection, 56
landing page, 54
navigator.onLine, 55
page/message, 54
sync testing, 80

P, Q
Persistent notifications, 116
Preact

build-in process, 219
CLI, 218
effort, 223
Firebase-Deployed, 221
HTTP/2 and server push, 220
installation, 218
interactive, 223
Lighthouse scores, 222
plugins, 220
pre-caching assets, 219

Progressive web apps (PWA)
browser support hierarchy, 8–9
build process, 180
comScore, 4
home screen icon and splash screen, 7
IndexedDB, 10
mobile-like experience, 6
mobile web activities, 4, 5
notifications, 8
offline support via caching, 7

Index

264

performance, 7
progressive enhancement, 6–7
push API and notification API, 10
service workers, 9
source code, 181
Web app manifest, 10
web workers, 10

Promises, 25
callback functions, 25
chain methods, 27
execution order, 26
secondAsyncFn, 28
self-explanatory syntax, 26
thenable function, 27

Push notifications, 109, 111
action options, 132
application data, 132
architecture, 119
catching push events, 130
enableNotifications function, 122
handling click events, 135
mobile testing, 133
process, 118
PushSubscription returns, 123
remote devices option, 134
setPushTimer() function, 127
user subscribe, 119

R
React PWA, 210

app creation, 211
build directory, 214
deploying and measuring app, 215
effort, 217
react app, 214
React.js code, 216

react-pwa directory, 211
service worker, 213
terminal page, 211

Render-blocking stylesheet, 193

S
Safari, 256
sendNotification function, 116
Server push

config file, 194
implementation, 193
Lighthouse scores, 196
Movies Finder bundles, 195

Server-side rendering, 249
client-side rendering, 250
drawbacks, 251
hydrating page, 250
pre-rendering, 252
resources, 251

Service workers
application tab, 34
architecture, 23–24
browser compatibility, 43
DevTools options, 42
fetch, 29
index.html file, 32
life cycle, 24, 31
non-nefarious, 24
potential benefits, 24
promises, 25
recap, 43
scope option, 36
script.js file, 33
script.js, 31
scripts directory, 37
service-worker.js, 32
updated scope, 38

Progressive web apps (cont.)

Index

265

update files, 38
log statement, 39
skipWaiting() method, 41
updated and activated, 41

sw-precache
dist/index.html file, 183
images and API calls, 188
index.html, 183
installation, 182
maxEntries option, 188
movies finder, 185
package.json file, 183, 185
service worker, 183, 184
sw-precache-config.js file, 186

sw-toolbox
cacheFirst, 67
dynamic content, 65
importScripts, 66
IndexedDB section, 68
index.html, 66
styles directory, 68
sw-toolbox.js, 67

Sync API
data storage

architecture, 92
IndexedDB vs. localForage, 82
localForage, 86
message event, 90
pirate app architecture, 86
script.js, 91

implementation details
manager/service layer file, 77
markup changes, 80
pirateManager object, 75
pirate-manager.js, 75
script.js code, 77

improvements, 81
listen option, 74

progressive enhancements, 74
register, 73
testing for, 80

T, U
thenable function, 27

V
Voluntary Application Server

Identification (VAPID) keys, 119
Vue.js PWA, 223

comparison, 229
dist directory, 225
effort, 229
Firebase-Deployed, 227
Lighthouse scores, 228
patterns and caching strategies, 226
template, 226
Vue CLI and PWA creation, 224
webpack configuration, 227
webpack.prod.conf.js, 226

W, X, Y, Z
Web app manifest

DevTools, 99
display property, 106
home screen installation, 100

Chrome’s menu, 101
device home screen, 104
handling installation events, 100
icon and name app, 103

manifest file, 96
properties, 97
splash screen, 104
start_url property, 107

Index

266

Web notifications, 111
permission, 111
sending function, 113
service workers, 116
tagging notifications, 116

Webpagetest.org, 18
WebPageTest results, 145
Web workers, 252

client-side development, 252

processing data, 253
script.js, 254
self.postMessage method, 255
UI thread, 254
worker.onmessage code, 254

Workbox, 256
CLI setup, 257
plugins array, 258
sw-toolbox, 258

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Part I: Intro to PWAs and Tooling
	Chapter 1: Introduction to Progressive Web Apps
	 What a Progressive Web App Actually Is
	 Current and Future PWA Support
	 Looking Ahead

	Chapter 2: Tools to Measure Progressive Web Apps
	 A Light to Keep You Off the Rocks
	 Chrome DevTools
	 Webpagetest.org
	 Looking Ahead

	Part II: PWA Features
	Chapter 3: Service Workers
	 Promises
	 Fetch
	 Service Workers
	 Register the Service Worker
	 Updating the Service Worker
	 Other DevTools Options
	 Browser Compatibility
	 Service Worker Recap
	 Looking Ahead

	Chapter 4: Caching and Offline Functionality with Service Workers
	 The fetch Event
	 The Cache API
	 Going Offline
	 Different Caching Strategies
	 Updating the Cache
	 sw-precache
	 sw-toolbox
	 Dynamic Page Caching
	 Looking Ahead

	Chapter 5: Background Sync for Offline Apps with Service Workers
	 The Background Sync API
	 Registering for sync
	 Listening for sync
	 Implementation Details of Using sync
	 Testing for Offline Sync

	 Making Improvements
	 Data Storage
	 IndexedDB vs. localForage
	 Using localForage For Better Offline Support
	 The message Service Worker Event
	 Looking Ahead

	Chapter 6: Adding your App to the Home Screen with Web App Manifest
	 Installing the App to the Home Screen
	 Handling Installation Events
	 Manually Adding the App to the Home Screen

	 The App Splash Screen
	 The display Property
	 The start_url Property
	 Looking Ahead

	Chapter 7: Notifications
	 Web Notifications
	 Requesting Permission to Notify
	 Sending a Notification
	 Tagging Notifications
	 Web Notifications with Service Workers

	 Push Notifications
	 Subscribing a User to Push Notifications
	 Saving the PushSubscription Object
	 Triggering the Push Notification
	 Catching Push Events in the Service Worker
	 Testing Push on Mobile
	 Handling Notification Click Events
	 Looking Ahead

	Chapter 8: App Shell Architecture and Loading Performance
	 What an App Shell Is
	 Caching the App Shell
	 Measuring App Shell Performance
	 Going Beyond the App Shell
	 Render Blocking Scripts
	 Async and Defer
	 Deferring Stylesheet Parsing and Execution
	 Preloading JavaScript and CSS and Other Resources
	 Looking Ahead

	Chapter 9: Exploring HTTP/2 and Server Push
	 Head-of-Line Blocking
	 Header Compression
	 Introducing HTTP/2
	 Implementing HTTP/2 in Node.js
	 Server Push
	 Deploying HTTP/2 and Server Push
	 Measuring the Impact of HTTP/2 and Server Push
	 Looking Ahead

	Part III: Putting the Features to Use
	Chapter 10: Turning a Real App into a PWA
	 The Movies Finder App
	 The Plan to Make a PWA
	 Getting the Code and Running It
	 Setting Up sw-precache
	 Caching All the Things
	 Deploying to Firebase
	 Moving the Render-Blocking Stylesheet
	 Implementing Server Push
	 Adding the App Manifest
	 Thoughts on Movies Finder Performance
	 Looking Ahead

	Chapter 11: PWAs From the Start
	 React PWA
	 Creating a React App
	 Configuring the Service Worker
	 Running and Building the React App
	 Deploying and Measuring Your React PWA
	 Summary of React’s PWA Effort

	 Preact PWA
	 Preact CLI
	 Running the Built-in Preact HTTP/2 Server
	 Preact CLI Plugins
	 Running Lighthouse on Firebase-Deployed Preact
	 Summary of Preact’s PWA Effort

	 Vue.js PWA
	 Vue CLI and PWA Creation
	 What the Deployed Vue PWA Offers
	 Running Lighthouse on Firebase-Deployed Vue
	 Summary of Vue’s PWA Effort

	 Angular PWA
	 Angular’s Rocky PWA Start
	 Building the Angular PWA
	 Running Lighthouse on Firebase-Deployed Angular
	 Summary of Angular’s PWA Offering

	 Ionic PWA
	 Installing Ionic
	 Enabling the Ionic Service Worker
	 Building Ionic
	 Deploying and Testing the Ionic PWA
	 Summary of Ionic’s PWA Offering

	 Starting a PWA from Scratch
	 Looking Ahead

	Part IV: Leveling Up Your PWA
	Chapter 12: Leveling Up Your PWA
	 Google’s PRPL Pattern
	 Lazy Loading
	 Code Splitting

	 Analyzing Bundles
	 Server-Side Rendering
	 Drawbacks to Server-Side Rendering
	 Resources to Implement Server-Side Rendering
	 Pre-Rendering

	 Web Workers
	 PWA News
	 Safari
	 Workbox

	 A Last Word

	Index

