Beginning Progrssive
Web App Development

Creating a Native App Experience on the Web

Dennis Sheppard

Apress’

Beginning Progressive
Web App Development

Dennis Sheppard

Apress’

Beginning Progressive Web App Development

Dennis Sheppard
Tinley Park, Illinois, USA

ISBN-13 (pbk): 978-1-4842-3089-3 ISBN-13 (electronic): 978-1-4842-3090-9
https://doi.org/10.1007/978-1-4842-3090-9

Library of Congress Control Number: 2017961107

Copyright © 2017 by Dennis Sheppard

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Technical Reviewer: Phil Nash
Coordinating Editor: Jill Balzano

Copy Editor: Mary Behr

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484230893. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3090-9

For my dad, who only ever asked that I try my best.

Table of Contents

About the AUROFccciimmmssmnmissnnmmssssmssssssssssnsssssnsessansessannessannesssnnesssnnssssnnssssnnnsnns Xi
About the Technical REVIEWETccuusseemmmmssssnnnmsssssnnnmsssssnssssssssnnssssssssnsssssssnnnssssnnns xiii
Acknowledgments.......cccccuuissnnmmemmmmmmmssssssssssnnnssesssssssssssnsnseesssssssssnnnnnssesssssssnnnnnnnnnnss XV
Part I: Intro to PWAS and TOOINGccceermmmsssssnnnnmmssssssnnnnnssssssnnnnssssssssnnnnnsssssnnns 1
Chapter 1: Introduction to Progressive Web ApPS......cccouussmnsmmsssssnssmssssssssssssssnnnsssss 3
What a Progressive Web App ACLUAIIY IS.....c.cveererernenenesers e ssenes 5
Current and Future PWA SUPPOI.......ovcririererirsirene s sese e sessesessessesessessessessssessessesassssssnsessens 8
TG T 21T T OO 10
Chapter 2: Tools to Measure Progressive Web APPSccuueeemmmmsssnnnsmsssssssssssssssnsnsss 11
A Light to Keep You Off the ROCKS.......ccouvrnerinincrnscsine st se s st sessssessnses 11
Chrome DEVTOOISccveiiriirsrer e e e s e b s 15
L0 T2 V0 T3] 00 o SRS 18
LOOKING ANBAMceueerreerineesese s esse e e s nnpe e e e 20
Part II: PWA Features.........ccouiummnssssssssnmnssmnmmmmmmssssssssssssssssnsnssnnnnnssnsssssssssnnnns 21
Chapter 3: Service WOrkers.....ccccuseesmmssssssnsessssnsnssssssssssessssnnssssssssnnssssssnnnsssssnnnnsssss 23
o (0] TSSOSO SR 25
FRUCN . ——————————————————— 29
SEIVICE WOTKEIS ...ectiueirieerise sttt e e e e e bbb ne e 30
Register the Service WOIKET ... s s srs e snas 31
Updating the Service WOTKETcccovecemrenererernesese s s senns 38
Other DevT0O0IS OPLIONS.......cccviirrrere e b s e e 42

TABLE OF CONTENTS

Browser COmMPatibDility........ccovrvrrrrerieriensnserierese s ses e sse e s s sasse s e ssesaessssessesnesesssssensesaes 43
SErviCe WOIKEr RECAD......cccerrerererererertnesessesessesesse e ses e e s e as e sas e sesas e ses e sesse e se e sessesensenens 43
(010 O o 7Y 3= Lo 43
Chapter 4: Caching and Offline Functionality with Service Workers..........cccceviuunes 45
The TEECH EVENT ... s 45
THE CACNE AP ...ttt p e e p e e e e R e 47
[T T 01 TOR 53
Different Caching SIrategieS......ccccvrerevrrrierere s sr e e sr e e naennes 56
Updating the CACE.........coveiriierre s e e e e e 61
SW=PFBCACKE ... ——————————— 63
3 0] | 00 TSRS 65
Dynamic Page Cachingcccuoueerenernenrnenerese s se s s senns 69
TG T 2 1= T OO 71
Chapter 5: Background Sync for Offline Apps with Service Workers.......cccuseeneenns 73
The Background SYNC APlcccccvieverrrierierenenseresesssssssessessessssessessesssssssesssssessessssessesssssssessessens 73
(Lo T (T T4 [0 (0] 3 S 73

LI ESY (=T 11 T T 0 313 74
Implementation Details of USING SYNC ... 75
Testing for OffliNE SYNC ...c..cvvvverire e s se e nnen 80
MaKing IMPrOVEMENTSc.ceceereririer e rer s s s s e s s s s e e s a e s s s s e s ne s ae s e e e e sne e e nae s 81
Data STOTAQEcccevee e e 82
IndexedDB VS. I0CAIFOrAQEccoevirieriereresirsere s s sr s s r e e s e e nne s 82
Using localForage For Better Offline SUPPOrt........ccocvcnne e 86

The message Service WOorker EVENt.........coovcvciinnsnsnc s snes 90

00 0310 12 1= T 93
Chapter 6: Adding your App to the Home Screen with Web App Manifest 95
Installing the App t0 the HOME SCreen........ccovirvirncrrr s 100
Handling Installation EVENTSccccevnvennenennsersse s s se s s sessssessssessnses 100
Manually Adding the App to the Home Screen ... 101

TABLE OF CONTENTS

LA oI 012] TR =TT o 104
The diSplay PrOPEILYccccicriiere s s s r e s 106
The Start_Url PrOPEILYc..coi i s bt s e e 107
LI 10 O o 7Y 312 Lo SR 107
Chapter 7: Notifications..........cccinnssemmmmmsssnmmmmmssssnmmmssssmmmsssssnmmssssnnssssnman—m 109
Weh NOtICAtIONSccveeeerrce et r e e snnnn e 111
Requesting Permission 10 NOtifYccucvvienninnns s 111
Sending @ NOtIfiCatioNccccoveceresrne s 113
Tagging NOIfICALIONScccveeererernesrnese e e 116
Web Notifications with Service WOrkers...........ccuvenrenernsmsnsessnssesssessssesssssessssessssssssseens 116
Push NOEIfICAHIONS ..o 118
Subscribing a User to Push Notificationscccvvvrvninninnnnnnnsene s sessensens 119
Saving the PushSubscription ODJECT ... 124
Triggering the Push NOEIfiCationc.cccvviernsenncsens s 128
Catching Push Events in the Service WOrKerccuueernsenrnesesssesssesssssessssesessesessssessnses 130
Testing Push on MODIlE..........ccovceiieineere e sne e 133
Handling Notification Click EVENLS.......c...ccovieriniiernsnncsisese s senses 135
LOOKING ANBAMccereerreerrssesessese s sse e se s s s sn s s s sr s e r e nr s snnns e nsnnis 137

Chapter 8: App Shell Architecture and Loading Performanceccuuseensnsssannnnns 139

LT = T o] ST 2T 139
Caching the APP SNEIL.......o s e e 143
Measuring App Shell Performance...........ccccuviinrnininnnnnese s s se s sessesnens 145
Going Beyond the App Shell.........cco e 146
Render BIOCKING SCHPIScoverererercersse s 148
ASYNC AN DETEI ... e nne s 149
Deferring Stylesheet Parsing and EXECULIONccvvevreserescrnese s 151
Preloading JavaScript and CSS and Other RESOUICES..........cccvverernrninenin s 151
LT O] oI 3= Lo O 153

vii

TABLE OF CONTENTS

Chapter 9: Exploring HTTP/2 and Server Pushccccinnnemmnnnnsssnnnnnssssssssssssssnns 155
Head-0f-Line BIOCKINGccccoviiriririirsincs e ss s snens 155
Header COMPIESSION.......ccciiiiirirere s s s s e s se s s b e e s be b e e e nne 158
INTPOAUCING HTTP/2 ...t 159
Implementing HTTP/2 in NOGE.JS......ccvcervrerrneriree s ss s sessesenns 159
SBIVEE PUSH....cociiiciii b 162
Deploying HTTP/2 and SErver PUSHccccvivirrerreneresersese s sessessessessssessessessssessessessesssssssessens 168
Measuring the Impact of HTTP/2 and SErver PUSHccccvevevrsnreresessessesessesessessessessssessesaens 169
LOOKING ANBAQcoveiiircier s s s s nne 172

Part lll: Putting the Features to Usecccccmmmmmssssmmnmmnssssssssnmnsssssssssnnsssnns 173

Chapter 10: Turning a Real App into @ PWA........cccccmmmmmmmmsssssssssnsssssssssssssssssssnnnss 175
The MOVIES FINABT APP...coviiiiririre s e b s e e e b s 175
The Plan 10 MaKe @ PWA ... s s s s s s 180
Getting the Code and RUNNING [tccocvieriinnniriere s ss e s sae e s snes 181
Setting UP SW-PrECACNE........ectriererertrrerere s seserse s e s e sse s sae e s e saesaesa s e saesaessesesaesaesaesessennesnes 182
Caching All the TRINGS .cvccveverrrerere e s s sa s e s sae e e e s e naenaes 186
Deploying 10 FIrEDASEccceiiiirirrrcr s r s 189
Moving the Render-Blocking StyleSheetccvoveerrerereserese e 193
IMPleMEeNting SEIVEr PUSN..........coccriernerrese e 193
Adding the App ManifeSt.........ccvviiniens s 197
Thoughts on Movies Finder PEIfOrMANCEccvcevevrrrerienennnensenesessssesessessssessessessessssessessenes 206
00T o 2 1= T S 207

Chapter 11: PWAs From the Start........cc.cccciimmnnemmmnnnmssmnmmmssssnmnsssssssssssssessssnn 209
REACT PWA.....coceeeee e e e nae e p e e e 210

Creating @ REACT APP ..ot e bbb e 211
Configuring the Service WOrKer ... s 213
Running and Building the React App ..o sessesnas 214
Deploying and Measuring Your React PWA...........ccoormnnnnn s sss e 215
Summary of React’s PWA EffOrt ..o sessesnens 217

viil

TABLE OF CONTENTS

Pre@aCt PWA ...t 217
o= o1 A X P 218
Running the Built-in Preact HTTP/2 SEIVENccoevvvrvrerererrere s sese e ssesessessessesessessesnes 219
Preact CLI PIUQINS......ccvveverrereriereresessesessessssessessessesessessesasssssessessesssssnsessesssssssessesassssssnsesaes 220
Running Lighthouse on Firebase-Deployed Preact...........ccocvvvvevevnrerseresssensessessesessesenses 221
Summary of Preact’s PWA EffOrt ..o ses s sessssessessesssssssessessens 223

VUBLJS PWA ..ottt s bbb et 223
Vue CLI and PWA Creationccccecvereresessmsesessssssssesessens 224
What the Deployed VUE PWA OffEIS......ccucvrrrerererrersersessssessessesessssessessessessssessessesssssssessesaes 225
Running Lighthouse on Firebase-Deployed VUE ..o ncnsinsen s ssessenenns 227
Summary of VUE’S PWA EffOrt.......ccccveerernnnieriennsesseresessssessessessessssessessessssessessesssssssessessens 229

ANGUIAE PWA ...ttt e s e b e a e e e b e e e e e nne s 229
Angular’s ROCKY PWA STar..........coccirnrirnc e se st se e e ssssesessessssenens 230
Building the Angular PWA............oo e snes 231
Running Lighthouse on Firebase-Deployed AnQUIAr............cccoovreverierverrennesrersen e sesenenns 232
Summary of Angular’s PWA OffEriNgcccvrerrerrrerrersersesssessersesessssessessesssssssessesssssssessessens 233

JOMIC PWA ..ottt bbb bbb e e e e 233
INSTAING TONIC ... ————— 234
Enabling the 10nic Service WOrKer ... s e snes 236
311 o 1T T 0] o OSSOSO 236
Deploying and Testing the 10niC PWA ... enas 237
Summary of 1onic’s PWA Offering........ccovverrenrienrnicrne s ses e sesessesenns 239

Starting a PWA from SCratCh ..o 240

LI T0] O o 7Y 312 Lo S 240

Part IV: Leveling Up Your PWAccccccmmmmmmssemnnmmmsssssssssmsssssssssssesssssssssssnssnns 241
Chapter 12: Leveling Up Your PWAccccommmmmmmmmmmssnnnmmssssssnssssssssssssssssssssssssnnnss 243

GOOQIE’S PRPL PALBINccveiveieriereereesessene s ssssessessesse s sessessessssessessesasssssessesaessssessesaesssssssensenaes 243
[74 0 T2 Vo] oS 244
T (=T] 13T O 244

ix

TABLE OF CONTENTS

ANAIYZING BUNAIES........oiirieiere i s e e s a e s s a e s ae e 246
Server-Side RENAEIING.......ccoueiiiirne s et e 249
Drawbacks 10 Server-Side ReNderingcccocvvvrrnrnienninsns s sessenes 251
Resources to Implement Server-Side ReNderingccocvvevrnvrninnesnnnsennsesessesesesesenns 251

o (R T T T T SR 252
WED WOTKELS ... se s e e e sre e s e e e s e e nnenens 252
PWA NBWS.....eiicieesesreesieesesesesse e se e ses e se e ses e ses e e sse e ses e sesss s ssssessasssesssssssnsssenssssnsenns 256
£ - T 256
L0 (o) PR 256

L 2T o 259
INA@X...ciiiisnmnnmsssnnnnsssssnnnnnssssnnnsnssssnnnsnssssnnnssssssnnnsnsssnnnnnnsssnnnnsnsssnnnnsnsssnnnnnnsssnnnnnnnss 261

About the Author

Dennis Sheppard is the VP of Technology at NextTier Education, a startup dedicated

to helping students navigate the college selection process. Long before that, though,
Dennis graduated from Louisiana Tech University with a computer science degree and
went on to develop and architect software for almost a dozen different industries. With
over 10 years of professional software development experience, he has built his share of
web applications, for both mobile and desktop. Because of that, Dennis strongly believes
in the power of Progressive Web Apps to further help the tech world reach those who
don’t have access to the fastest networks and latest and greatest phones. He was born
and raised in the Deep South, but migrated to the suburbs of Chicago where he lives
with his wife, a set of twins who are growing up way too fast, and an arthritic but playful
golden retriever.

xi

About the Technical Reviewer

Phil Nash is a developer evangelist for Twilio and a Google
Developer Expert. He's been in the web industry for 10 years
building with JavaScript, Ruby, and Swift. He can be found
hanging out at meetups and conferences, playing with new
technologies and APIs, or writing open source code online.
Sometimes he makes his own beer, but he’s more likely to be
found discovering new ones around the world.

Phil tweets at @philnash and you can find him elsewhere
online at https://philna.sh.

xiii

https://philna.sh/

Acknowledgments

I think everyone who has ever written a book has at least a little bit of crazy in them.
Because of that, there needs to a handful of people to help manage the crazy. I'm
particularly lucky to have a lot of people to help me with that. Without these people,
what you’re about to read would be a much bigger mess than it already is.

First, a huge thank you to Brooke McEntee for creating the diagrams and icons in the
book. She did a miraculous job transforming my awful sketches into what you see here. If
any part of the diagrams isn’t perfect, that’s 100% on me.

Thank you to my friend and coworker Carly Kaluzna for her encouragement and for
coming up with the name iPatch, so you can blame her for that. Thank you to my former
co-author AJ Liptak whom I constantly bounce ideas off and ask technical questions
that I could just as easily google. Thanks to Becky Lehmann for helping me to be a better
teacher and urging me to continue with unparalleled positivity. Thanks to Rick Williams
for being ready to celebrate with me as soon as this book is finished. Thank you to Justin
Shiffman who always champions whatever I'm working on, even if he did say he'd pay
me not to write another book. Thank you to Dave Hoag who first introduced me to PWAs
a couple of years ago, and thank you to the entire NextTier team, who will have a new
addition to the book-stack monitor stands.

Thank you to the team at Apress: Joan Murray, Jill Balzano, and Laura Berendson, as
well as the book’s technical reviewer, Phil Nash.

Thanks to Addy Osmani, Jake Archibald, John Papa, and many others in the PWA dev
community. We've never met, but you'll never know how much you'’ve taught me.

Thank you to my family for instilling in me a love of books growing up. Thank you to
Violet, Cameron, and Betsy Sheppard for always inspiring and motivating me.

And finally, thank you, Reader. With all of the videos and blogs and tutorials available
on the Internet today, a tech book isn’t always an easy purchase. Thank you for having
faith. T hope you learn a lot and have a little bit of fun.

A note on the use of certain images: the browser icons used in Chapter 1 were
designed by Pixel Buddha from Flaticon, the iPatch app’s pirate icon first introduced
in Chapter 6 was created by freedesignfile.com, and Peggy the Parrot’s image first
introduced in Chapter 7 was created by Freepik.

PART |

Intro to PWAs and Tooling

CHAPTER 1

Introduction
to Progressive Web Apps

When was the last time you visited an app’s mobile web site rather than its native app
counterpart? Was it an enjoyable experience? What did you like about it? What could
have been better?

Possibly one of the things you liked was the convenience. You didn’t have to go to
an app store to download the app and you didn’t have to worry about the app being
unavailable for your particular phone. You weren'’t forced to install anything to clutter up
your phone’s home screen with another app icon.

Was there anything you didn’t like? Was the web app slower to load than you
would've liked? If you didn’t have a solid 4G Internet connection, data might not have
displayed quickly or correctly. Maybe you would've liked to receive notifications of an
alert in the app. Perhaps you don’t mind the home screen clutter and would have liked
the option to save the app to your home screen so you wouldn’t have to type in the URL
again next time.

For most mobile web sites you visit today, these are some of the tradeoffs you have
to make. The Web has significant reach; no need for the latest iPhone just to get content.
From your grandma'’s 10-year-old computer to a five-year-old Android tablet to the most
cutting edge phone, the Web is everywhere. No one can deny its reach. Unfortunately,
depending on your Internet connection, it can be slow and clunky.

Over time, there have been improvements. Processors got faster, browsers got
smarter, and blog posts about performance tips and tricks are only a Google search
away. Unfortunately, though, all of that wasn’t enough. The Web could still be slow
on poor connections. Sites had no way to notify you of something going on in the app.
And the idea of a web app working with little or no connectivity was crazy. It seemed
like after all was said and done, native apps were not only a clear winner, but really the
only logical choice for app developers. In fact, a 2015 report from comScore noted that

© Dennis Sheppard 2017
D. Sheppard, Beginning Progressive Web App Development, https://doi.org/10.1007/978-1-4842-3090-9_1

CHAPTER 1 INTRODUCTION TO PROGRESSIVE WEB APPS

smartphone users spend 87 percent of their time in apps (www.comscore.com/Insights/
Presentations-and-Whitepapers/2016/The-2016-US-Mobile-App-Report); see
Figure 1-1.

Growth in Digital Media Time Spent
Source: comScore Media Metrix Multi-Platform & Mobile Metrix, U.S., Total Audience

. . % Change
mDesktop = Mobile App = Mobile Web ¥5. June 2013
1,600,000
1,400,000 &y 118,299 124,787
+26% o
< 1,200,000 97,440
=
;3 1,000,000 778,954
S 800,000 621,410
w
£ 600,000 .
400000 [N
200000 476,553 480,967 850,522 491,743
0
Jun-2013 Jun-2014 Jun-2015 Jun-2016
) COMSCORE

Figure 1-1. Apps take up all our time, according to comScore

Yikes! What are you doing reading a book about web apps, then? Let’s learn about
Swift and Kotlin! Well, don’t ditch this book just yet! It’s true that users love their apps.
The deepest engagement is in apps. But good luck getting that level of engagement.
Another 2015 report, this time Forrester’s US Consumer Technographics Behavioral
Study from October 2014 to December 2014, noted that smartphone users spend 84
percent of that time in five apps. It’s a different top five for most users, but unless you're
Facebook, Snapchat, Instagram, or Google, there is a great chance you aren’t cracking
that top five. Back away from the Swift book!

In fact, because most users cling tightly to their favorite five apps, mobile web
actually gets more eyeballs than apps do, as you can see in Figure 1-2.

http://www.comscore.com/Insights/Presentations-and-Whitepapers/2016/The-2016-US-Mobile-App-Report
http://www.comscore.com/Insights/Presentations-and-Whitepapers/2016/The-2016-US-Mobile-App-Report

CHAPTER 1 INTRODUCTION TO PROGRESSIVE WEB APPS

Average Monthly Audience: Top 1000 Mobile Apps vs. Top 1000 Mobile Web Properties
Source: comScore Mobile Metrix, U.S., Age 18+

m Apps =™ Mobile Web +45% +82%

vs. 2014 vs.2014

12,000

10,000
g 8,000
®
g
® 6,000
=
g
k=3
S 4,000

2,000

- Jun-2014 Sep-2014 Dec-2014 Mar-2015 Jun-2015 Sep-2015 Dec-2015 Mar-2016 Jun-2016

&1 COMSCORE

Figure 1-2. But mobile web takes up all our eyeballs, according to comScore

After the most popular apps, there’s a steep drop off of mobile app usage. So if you're
producing the 912th most visited mobile web site, you're going to get around three times
more visitors than if you're producing the 912th most used mobile web app. That is
significant. No one can doubt the Web’s vast reach.

So what does this mean for those of us who aren’t developing for billion dollar
companies (or at least those of us who aren’t developing for billion dollar companies
that produce a user’s top five apps)? It means that the little bit of user’s time we can
capture on the Web had better be good.

And that’s where Progressive Web Apps swoop in to save the day.

What a Progressive Web App Actually Is

Let’s forget about simply visiting a web app for a moment. Have you ever tried to build a
mobile web app? Did it perform as well as you would’ve liked? Did you try it on a really
old Android phone? Were you able to alert your users of new content or a new message
from your app? Unless you had the opportunity to implement features of Progressive
Web Apps, it’s possible that your users had a suboptimal experience.

CHAPTER 1 INTRODUCTION TO PROGRESSIVE WEB APPS

Progressive Web Apps aren’t built using a singular, specific technology. They're not
a new framework, and they’re not a new language. Instead, PWAs are a set of strategies,
techniques, and APIs that allow developers to give users the native mobile-like
experience they're used to.

Progressive Web Apps are

o Fast, often rendering something on the user’s device in less than a
couple of seconds.

¢ Reliable, even without a solid data connection, and even on old

devices.

o Engaging, because by enabling notifications, even on the Web, users
can be alerted to whatever is happening in your app, even if the
browser isn’t open. Users can even install a Progressive Web App
right to their phone’s home screen. Developers can choose the icon
and even set up a splash screen.

Possibly the best part of Progressive Web Apps, though, is inherent to the platform:
their reach. There are 6.4 BILLION devices connected to the Internet. That’s a lot of
devices, and a lot of reach. You don’t need to learn Objective-C or Swift or Java or Kotlin
to reach every one of those 6.4 billion devices. You can use the tools you likely already
know: HTML, CSS, and JavaScript.

So now let’s get down to the nuts and bolts of what makes up a Progressive Web App.

A Progressive Web App, first and foremost, works everywhere. Even if it’s a small
subset of features, to be a true PWA, your app needs to have some kind of functionality
on the most basic device. Maybe it’s just a static page that shows up on a five-year-old
Android phone. But it works. It’s not just a blank screen or a bunch of error messages.

As your user’s browser gets more modern, more features become available to your
user. This is known as progressive enhancement. Figure 1-3 shows that the same code
that displays as a plain website grows into a powerful application as browser support
improves. That’s where the true power of PWAs comes in: your users’ experiences get
progressively better as their browsers get better. The experience improves via a collection
of features that gives your app depth to engage users, reliability regardless of the quality
of the Internet connection, and enough speed so that it doesn’t make anyone wait
around for your content to load. I'll cover each of those features in depth later on, but so
that you're not left hanging, let’s talk about a few of them at a high level.

CHAPTER 1 INTRODUCTION TO PROGRESSIVE WEB APPS

i

Figure 1-3. Progressive enhancement

Offline support: The main page of your app loads even while the user is offline. This
is accomplished with service workers. I'll show how to use service workers to accomplish
what you see in Figure 1-4: how to cache your app’s assets so that even if your users don’t
have the best Internet connection (or a connection at all), they still get to soak in your
sweet, sweet content.

Internet

[\
App

Cache
Figure 1-4. Offline support via caching

Performance: (Yes, performance absolutely is a feature!) The app’s first page
load is fast, even on slow 3G connections. There are a few things I'll cover that go into
making that a reality, but an important one is having an app shell. I'll go over creating
an app shell that renders almost instantly while the rest of your app is loading. Another
important feature for performance is web workers that allow you to make other parts of
your app do the heavy processing that would normally slow down your UI.

Home screen icon and a splash screen: Your app can be added to the user’s home
screen so they don’t have to navigate to a URL every time they want to use your app. And
at the app’s launch, instead of a blank white screen while your app is loading, you can

CHAPTER 1 INTRODUCTION TO PROGRESSIVE WEB APPS

have a splash screen just like those fancy native apps. You'll use the app manifest to take
care of all that.

Notifications: If there’s anything going on in your app that the user should know
about while they’re not actively using it, the app can notify them with push notifications.
I'll cover the web notifications and the Push API so you can remind your users about that
aforementioned content.

Current and Future PWA Support

PWAs are exciting. But let’s throw in a little dose of reality. One of the biggest downsides
of the Web that has been a struggle since the beginning of time is browser support.

Ugh, browsers. There are so many, and each one doesn’t always support the latest and
greatest awesome technology. Alas, such is the case for PWAs. Remember, though, one
of the most important tenets of PWAs is that they should provide a progressively better
experience for your users as their browsers’ capabilities increase. So just because a
browser doesn’t support a feature you're really looking forward to implementing doesn’t
mean you should abandon all hope, nor does it mean that the browser might not support
it in the future. Plus, if a user is checking out your app on a browser that does support
most or all PWA features, that user is in for an excellent World Wide Web experience.

For the most part, we'll be focusing on five major browsers: Chrome, Safari, Firefox,
Opera, and Edge. Because PWAs are such a focus of Google’s lately, it should come as no
surprise that, as you can see in Figure 1-5, Chrome has the most robust support for every
PWA feature, followed by Firefox and Opera, with Safari and Edge trailing the others
fairly significantly in their support.

CHAPTER 1 INTRODUCTION TO PROGRESSIVE WEB APPS

%

O
(S

3
O

Figure 1-5. Browser PWA support hierarchy

Note There are other browsers that have solid usage, depending on where in the
world you live. A couple of the more popular ones are UC Browser, which is widely
used in Asia, and Samsung Internet Browser, which has a large share of the market
in Europe. Both have solid PWA support that’s almost on par with Chrome.

Let’s go over some of the individual features we’ve talked about and look at their
current support.

Service workers: On the desktop, Chrome fully supports service workers and has
had some level of support since early 2015. The same goes for Firefox and Opera. As of
mid-2017, Edge supported service workers, but not by default; they had to be enabled
via a setting in the browser. As of Edge 16, however, they're enabled by default. In a great
coup for PWAs and service worker domination, Safari announced in August of 2017 that
service worker support was under development. By the time you're reading this, Safari
should (hopefully) support service workers like a boss. On the mobile side, the story is
similar. Android supports service workers through Chrome, while iOS has no service
worker support right now, but it is on the way!

CHAPTER 1 INTRODUCTION TO PROGRESSIVE WEB APPS

Web workers: Web workers have the best browser support of just about any PWA
feature. Every major browser fully supports web workers on both desktop and mobile.

Push API and Notification API: The story here is similar to service workers. On the
desktop, Chrome, Firefox, and Opera all support both the Push API and web notifications
(I'll dive into the differences in Chapter 6). While Safari supports web notifications, it has
a custom implementation for push notifications. Edge supports web notifications, but
has no Push API support. On the mobile side, iOS has no support for either feature, while
Android supports just the Push APIL.

Web app manifest: Again, Chrome and Opera come out as clear winners here. The
app manifest is supported in those two browsers and on Android. Unfortunately, no
other browsers support the app manifest, yet. Edge and Firefox, however, are currently
working on implementing support, and as of mid-2017, Firefox did support a handful of
web app manifest features. Safari is taking the web app manifest under consideration.

IndexedDB: Almost every major browser supports IndexedDB on both desktop and
mobile browsers. The lone exception is Edge, which has partial support.

Please keep in mind that support for these technologies will only improve (until
something better comes along). So if you're reading this far into the future, do a little
research to see if a particular feature is supported in different browsers. The Mozilla
Developer Network and www. caniuse.com are both great resources to find out what web

features are compatible with various browser versions.

Looking Ahead

In this book, you'll learn how to implement all these features (and others) to make your
web apps super powered. Along the way, you'll learn how to measure your app to make
sure it’s not missing any PWA features that could take your app to the next level. And
once you've learned all of that, you're going to take a real-world “traditional” application
and turn it into a blazing fast PWA with all of your newfound knowledge. If you're a React
dev or you're an Angular dev (no framework wars, please!), you're covered there, too.

I'll go over how to start off on the right foot with your new app built in a lot of the most
popular JS frameworks around today. Then, in case your app needs just one more extra
nudge, I'll go over a few more essential performance items that will really help your users
forget about native apps. Let’s get started!

10

http://www.caniuse.com/

CHAPTER 2

Tools to Measure
Progressive Web Apps

Before you go too far down the path of learning how to implement PWA features, it may
help to know exactly what goals you're trying to achieve, and how to measure your apps
against those goals. I've already mentioned the core principles of Progressive Web Apps,
but there are a lot of other little things I haven’t touched on. Most of them wouldn’t
warrant a discussion all on their own; they’re just simple things you should do to make
your app all it can be.

How do you know what those little things are? There’s a PWA checklist that Google
helpfully provides at https://developers.google.com/web/progressive-web-apps/
checklist. This is a great list of goals, and even breaks them up into “Baseline” and
“Exemplary” goals. Reading this list will give you a good idea of what you can do as a
developer to build really great web apps. Even better, though, would be if you could see
certain sites in action and easily compare them to your list of goals to see if even big-
name sites can cross everything off that list. This is where Lighthouse comes in.

A Light to Keep You Off the Rocks

Google’s Lighthouse tool evaluates a site to see how well it complies with Progressive
Web App principles. There are three ways to use Lighthouse: through the CLI, via the
Audit tab in Chrome DevTools, and through the Chrome plugin. Let’s go through the
plugin installation as well as the process to run a report in DevTools to see exactly what
you can measure.

To install the plugin, open Chrome and go to the Chrome Web Store and search for
Lighthouse (or simply search Google for Chrome Lighthouse). Install the extension and
you should have a new icon in your list of extensions.

11
© Dennis Sheppard 2017

D. Sheppard, Beginning Progressive Web App Development, https://doi.org/10.1007/978-1-4842-3090-9_2

https://developers.google.com/web/progressive-web-apps/checklist
https://developers.google.com/web/progressive-web-apps/checklist

CHAPTER 2 TOOLS TO MEASURE PROGRESSIVE WEB APPS

Now, let’s navigate to a site. Here we’ll look at Reddit.com, but feel free to try something
else. Once the site loads, open Lighthouse and you'll see a Generate a Report button. Once
you click that, you will see what Lighthouse options are available to you, as in Figure 2-1.

Audits to perform
Progressive Web App
Does this page meet the standard of a Progressive Web App

Performance

How long does this app take to show content and become usable

Best practices
Does this page follow best practices for modern web development

Accessibility
Is this page usable by people with disabilities or impairments

Figure 2-1. Lighthouse options

Currently there are four different categories you can ask Lighthouse to test for:
o Progressive Web App
e Performance
e Accessibility
e BestPractices

Leave all of them checked so you're able to see everything Lighthouse tests.

Click the Generate Report button. As soon as you do that, Lighthouse is going to start
doing things to that browser tab. It will resize it and reload it and lots of other things. Let
it work for a minute, and soon it will generate a report.

There are a lot of results. Results for Reddit show scores of 45/100 for Progressive
Web App, 45/100 for performance, 94/100 for accessibility, and 85/100 for best practices.

I'm not going over each of these results because a) that'd take forever b) you
might not be that interested in every one of them and c) the results come with handy

12

CHAPTER2 TOOLS TO MEASURE PROGRESSIVE WEB APPS

explanations because each item is expandable. Let’s take a few minutes to talk about
what a few of the most important items are and why they’re important. I'll get into fixing
any issues with these items throughout the book.

Let’s start with the PWA section in Figure 2-2.

Progressive Web App 45
These audits validate the aspects of a Progressive Web App, as specified by the baseline PWA Checklist.

6 failed audits
» Does not register a Service Worker

» Does not respond with a 200 when offline

» Page load is not fast enough on 3G b4
First Interactive was at 11,290 ms. More details in the "Performance” section.

» User will not be prompted to Install the Web App X
Failures: No manifest was fetched, Site does not register a Service Worker, Manifest start_url is not cached by a Service
Worker.

» Is not configured for a custom splash screen x

Failures: No manifest was fetched.

Address bar does not match brand colors X
Fallures: No manifest was fetched, No <meta name="theme-color">" tag found.

v

» 5 Passed Audits

» Manual checks to verify

Figure 2-2. Lighthouse results: Progressive Web App section

Here, you can see that Reddit does not register a service worker. Thus, the site won'’t
load anything when you have no connection, and items won’t be cached with the Cache
API for fast retrieval on subsequent page loads.

Now let’s take a look at something Reddit passes, and something I haven’t talked
about yet. Reddit uses HTTPS. HTTPS is an extremely important security measure for
web apps to help prevent malicious attacks. Long gone are the days when only sites that
handled financial or medical data and the like needed to secure their apps.

Feel free to explore the other sections of the PWA score for the site you chose. For
now, let’s move on to the Performance section.

The interesting sections here to note are the First meaningful paint and the First
Interactive. These are the times in which your users see your content for the first time.
There are numerous studies showing engagement rates based on how long it takes a site
to load. Faster is better. You'll look at various ways to increase your score on this metric,
but Lighthouse gives a few suggestions of its own, including reducing the number of

13

CHAPTER 2 TOOLS TO MEASURE PROGRESSIVE WEB APPS

blocking resources. These are resources such as stylesheets or scripts that need to load
before your page renders on the screen. That results in a perceived longer load time for
your app. Also notice in Figure 2-3 the pretty handy series of screenshots Lighthouse
provides of the different loading states of your app.

Performance 49

These encapsulate your app's performance.

Metrics
These metrics encapsulate your app's performance across a number of dimensions.

11s 23s 34s 45s 56s 68s 79s 9s 102s 11.3s

L] o o o L] L

» First meaningful paint 3,490 ms

* First Interactive (beta) 11,290 ms

* Consistently Interactive (beta) 11,290 ms

» Perceptual Speed Index: 10,084 (target: < 1,250) 19

» Estimated Input Latency: 601 ms (target: < 50 ms) 0

Opportunities

These are opportunities to speed up your application by optimizing the following resources.

» Reduce render-blocking stylesheets 2,890 ms

» Offscreen images 2,310 ms
274 KB

» Properly size images 1,730 ms
206 KB

» Enable text compression m 100 ms

12 KB
Diagnostics

More information about the performance of your application.
» Critical Request Chains: 2

» 6 Passed Audits

Figure 2-3. Lighthouse results: Performance section

14

CHAPTER2 TOOLS TO MEASURE PROGRESSIVE WEB APPS

Also interesting to note here is Avoids an excessive DOM size. The more intricate
your app’s layout is, the longer it will take to render. Sometimes a complex layout is just
inherent to your app’s design, but it's something to consider when you're thinking about
performance.

Onward to the Accessibility section. Accessibility is a very large topic, and for the
most part it’s out of the scope of this book. There are many wonderful resources you can
seek out to find ways to make your site accessible to anyone. That’s what accessibility is
all about: ensuring your app’s content and functionality is available to anyone who wants
it, particularly those with a physical impairment that could otherwise make accessing
your app difficult. Take a few minutes to read through this section of Lighthouse and
you'll get an idea of what you should keep in mind while developing your application.
These aren’t difficult guidelines to follow, and most developers simply need to be made
aware that they exist in order to implement them.

The last section of the Lighthouse report is Best Practices. Obviously that’s a pretty
broad term, so let’s take a look at some of the metrics. Here you'll find Uses HTTPS again
just like in the PWA section. Two for the price of one; let’s take it. You should also see
somewhere in there Avoids Application Cache and Avoids WebSQL DB. Both of these
technologies are deprecated in favor of service workers and IndexedDB, respectively,
and I'll cover those newer, better technologies later on. You should take a few moments
to read over each of them, but the last one we’ll look at together is Avoids requesting the
notification permission on page load. That’s an easy one to pass if your app doesn’t have
notifications. However, if you do plan on implementing notifications for your app, there
are better ways to ask the user for notification permission than blasting them in the face
as soon as the app loads. I'll cover more of that in Chapter 7.

That'’s Lighthouse. Each section has a corresponding explanation and a lot of
material to go along with it, provided by Google. It’s worth spending some time on
each of them, but until you're at a good spot in building your PWA, it might not be that
helpful. So for now, let’s move on.

Chrome DevTools

Lighthouse is the primary PWA measurement tool, but there are other tools that can help
you create better PWAs. A big one is Chrome DevTools. Browser developer tools have
come a long way since the Firebug days of Firefox. They’re for more than inspecting the
DOM or debugging JavaScript. Chrome DevTools are a boon to the productivity of

front-end developers.
15

CHAPTER 2 TOOLS TO MEASURE PROGRESSIVE WEB APPS

It is absolutely worth taking some time to really learn the ins and outs of DevTools.
I'll talk about some things in there that might be particularly helpful for building PWAs.

The first big item has to do with simulating offline behavior. I've already talked a lot
about offline capabilities being a big part of PWAs, and you can test those capabilities
by opening DevTools, navigating to the Network tab, and clicking the checkbox that says
Offline, as you can see in Figure 2-4. In doing so, the particular site you have open will
behave as though you have no Internet connection. Very handy!

e ﬂ Elements Console Sources A Network Performance Memory Application Security Audits

i
1@ O W g View = = Preserve log Disable cache Offline Offline (Oms, Okb/s, Okb¥

Figure 2-4. Offline mode in Chrome DevIools

Another handy feature is right next door to offline mode: Throttling. This setting will
make the site you have open behave as though your Internet connection is limited to
whichever option you choose, most of which are visible in Figure 2-5. One of the core
tenets of PWAs is that your app loads reasonably fast (under 10 seconds) on 3G. This is a
good way to test that scenario.

Disabled
v No throttling

Presets
Offline (Oms, Okb/s, Okb/s)
GPRS (500ms, 50kb/s, 20kb/s)
Regular 2G (300ms, 250kb/s, 50kb/s)
Good 2G (150ms, 450kb/s, 150kb/s)
Good 3G (40ms, 1.5Mb/s, 750kb/s)
Regular 4G (20ms, 4.0Mb/s, 3.0Mb/s)
DSL (5ms, 2.0Mb/s, 1.0Mb/s)
WiFi (2ms, 30Mb/s, 15Mb/s)

Custom
Add...

Figure 2-5. Throttling settings to test slow connections

Underneath the Application tab of DevTools, you'll find an option at the top left for
viewing your app’s manifest file. Take a look at Figure 2-6. Here you can see the app’s
name, short name, the start URL, the theme color, background color, app orientation,
favicons, and more. I'll look at the app manifest in more detail in Chapter 6, but now
you already know how to view it!

16

CHAPTER 2 TOOLS TO MEASURE PROGRESSIVE WEB APPS

e @ Developer Tools - https:/fwww.hnpwa.com/
| % 4] Doments Console Sources Netwark Performance Memory Application Securty Aucits AdBlock

Aeplcation App Manifest
I Manifost (assets/mantiest json
%X Service Workers
i Cloar sion
L iac ety Akt 19 homesczvan
Sorage Hame Hacker News PWA
» £3 Local Siorage
» £ Session Storage
= IndexecDn
B Web S0L
+ @ Cockise StarURL {

slor WWFATSIE
Cache

» & Cache Stomge
&2 Application Cache

ckground color [#FFFFFF

Frames

=1

Figure 2-6. App Manifest section of DevTools

Immediately below the Manifest option underneath the Application tab, you'll see
a section called Service Workers where you can see all the service workers installed for
the current app. As in Figure 2-7, you're presented with the status and information of
the service worker and presented with options such as unregistering the service worker,
options to fire a sync event to test the background sync API, and updating the service
worker. From here you can even send a test push notification. I'll get into why you might
use these options in the next chapter on service workers.

L N] Developer Tools - hitps:/www.hnpwa.com|
[] Bements Corscle Sourss Network Perdormance Maemory Applcation Security Audits AdBlock

Applicason Service Workers
[Maritest Offine | Upclate cn reload | Bypsss for network | Shen all
I Clear storage

ittpe e hnprwa. com/’ Ucciste Push S Ureeqister
Storage
» 8 Local Stage
* EE Session Slorage
= Indexad
- os Chonts hitps:fwawhnpwacom focus
B Web SOL

Sourte gerviot-workers
Recetved 61472017, 10:40:11 PM

ts @ #3846 activated and i running §iop

» @ Cookies

Cache
* = Cachs Siorage
i Appilcation Cache

Frames

* Otop

Figure 2-7. Service Worker section of DevIools

17

CHAPTER 2 TOOLS TO MEASURE PROGRESSIVE WEB APPS

Going just a little further down that left column under the Application tab, you'll see a
section for IndexedDB where you can see the key value pairs stored in IndexedDB. I'll cover
this in more depth in Chapter 5, but you can see what the section looks like in Figure 2-8.

[(i] Elements Conscle Sources Network Peformance Memory Appiication Security Auchs AdBlock o1
| A
| Appiication 4 > Stor fom key
e Manifest ' Key (Kay path: *id") Vaiue
%X Service Workers g “ee-01" » Object
il Ciear stcrage 1 “20-02" » Object

Storage
» E2 Local Storage
» 52 Session Storage
¥ & IndexsdDB
¥ & newDatabase - hiipauiwwy

B Web SQL
» @ Cooldes

Cache
B Cache Storage
% Application Cache

Figure 2-8. IndexedDB section of DevTools

The last piece of Chrome’s DevTools we’ll look at is the Cache section, which is also
under the Application tab. If you expand the Cache Storage item, as in Figure 2-9, you'll
see the service worker cache for the app, which will display all the items currently in the
cache on the right. From there, you can delete or refresh items in the cache.

ece Tools -
[%] Eemems Conscle Sources Metwork Pedormance Memory Application Security Audits AdBlock

Apphcation ..
[Mantest
X Service Workers
I Clear storage

Storage

» ZZ Local Storage

» B2 Session Slorago
B IndexedDB
= Web SOL

> & Cookies

hitps: ! fhaddoBal ..

W
Cache 10 hatpa heprwea g vip abiie fing? ta=T ekl
¥ 5 Cache Storage i) Arwwhnpwe 3 h-pwa g 7w TH13c1185C2. .

ntpssiwww hnpwa

hapren fast jsan?_

At WL
httpa:/fwww hapwa. comindex_hitmi 7. Link

Figure 2-9. Cache Storage section of DevTools

Webpagetest.org

The last tool to cover is an oldie but a goodie. Webpagetest.org is an open source tool
maintained by Google and is a much more performance-focused tool than an all-around
PWA-focused tool. But a very large part of PWAs has to do with performance. So it’s still a
very valuable tool to have on your belt.

18

CHAPTER2 TOOLS TO MEASURE PROGRESSIVE WEB APPS

Because Webpagetest is open source, you can actually install a local, private version
of Webpagetest or navigate to the site and run tests that way. For details on how to do so,
check out the documentation because it’s a great resource for making sure you're able to
use the tool to best meet your development needs. For your purposes, you'll stick to the
website.

Navigate to the page, and input any site you want in there. Because I already picked
on Reddit for the Lighthouse example, I'll use mobile Twitter here for comparison’s sake.

There are a lot of options you can play with here, and the app provides solid
documentation if you have any questions. For your purposes, stick with the Chrome
browser and the rest of the default options. After you click Start Test, it will run for a while

before you see some results, as in Figure 2-10.

N help i ing?
Web Page Performance Test for A A A A J
https:/fmobile.twitter.com/home
FirstByle Keep-alive Compress Compress Cache Effective
From:; Dulias, VA - Chroma - Calile Time Enabled Transfer Images slalic use of CON
61472017, T:46:14 AM content
Summary Details Performance Review Content Breakdown Domains Processing Breakdown Screen Shot
Tester: VM3-03-192.168.10.82 Raw page data - Raw object data
First View only Export HTTP Archive (.har)
Test runs: 3 View Test Log
Re-run the test
Performance Results (Median Run)
Document Complete Fully Loaded
Load First Start Speed First Interactive Bytes Bytes
Time Byte [e batn Time Requests In Time Requests i Certificates Cost
First \ﬁ:)w {Bun 22345 0.253s 0.781s 271 2.348s 2.234s 15 498 KB | 4.985s 22 547 KB J3KE 55
Plot Full Results
Test Results
Run 1:
‘Waterfall Screen Shot Video
v
T \ ..
First View o o
(2.614s) L
T ERmsitin View
Timeline (view) . -
Processing Breakdown | = d Wateh Video
1}
|
Trace (view) [|
il R

Figure 2-10. Webpagetest.org

19

CHAPTER 2 TOOLS TO MEASURE PROGRESSIVE WEB APPS

Here you'll have information about page loads, screen shots, charts, and stats
to show how your page is rendering. In the top right corner of the results page are
optimization grades for the app, including time to first byte, if the app is using
compression for data transfers and images, if static content is being cached, and a few
other things.

If you click on the grades, you'll get quite a few more details about each of those
sections.

There is a wealth of information on Webpagetest.org. It will be well worth your time
to play around in there, read the documentation, and use the tool on your PWAs.

Looking Ahead

You've gotten a nice overview of PWAs and the tools you can use to measure them. Now
it’s time to start implementing some of these features. You'll start with the backbone of
PWAs: service workers. Let’s get to coding]!

20

PART I

PWA Features

CHAPTER 3

Service Workers

How’s your cell phone signal right now? Are you on a capped data plan? Is your WiFi
spotty? Maybe your roommate is torrenting movies and taking all the bandwidth.
Perhaps you're commuting on a train, and your cell provider’s coverage map claims the
whole route is blanketed in LTE, but all you see is a perpetually spinning circle of no
Internet and you start to question what you're even paying for. But take deep breaths.
Whatever the reason for your lack of a great Internet connection, there’s no reason to be
ashamed. It's not your fault.

There are a number of capabilities that service workers bring to the Web, but the
biggest one is offline functionality. There have been attempts in the past to make the Web
more offline-friendly, but they’ve had various issues that service workers attempt to solve.

Note You may have heard of or are even familiar with using AppCache. And if

S0, you deserve a sticker. The many drawbacks of AppCache are legion and well
documented, so | won’t kick a technology while it’s down. Just know that all of that
is over, and service workers are here for you.

A service worker is a script that runs in the background of your web application.
It doesn’t need the DOM and in fact doesn’t even have access to the DOM. Service
workers run in a separate thread from the U], so they don’t block or freeze the UI while
they process. The whole point of a service worker is that it acts as an intermediary
between your app and the Internet. It then performs whatever function you've set it up
to perform, and finally communicates some result back to your app by passing messages.
You can see this service worker architecture in Figure 3-1.

23
© Dennis Sheppard 2017

D. Sheppard, Beginning Progressive Web App Development, https://doi.org/10.1007/978-1-4842-3090-9_3

CHAPTER 3 SERVICE WORKERS

\\

Ul script Service worker

Figure 3-1. Service worker architecture

If intercepting network requests and then potentially passing back something
different sounds nefarious, you're right. This basically sounds just like a man-in-the-
middle attack. For that reason, service workers require a secure connection to function.
All traffic for the app must run over HTTPS to prevent such nefarious activities.

In the next chapter, I'll cover the non-nefarious things we can accomplish with
service workers, such as

o Caching assets like images, scripts, or styles
e Caching entire pages

e Syncing an app that was offline once its Internet connection comes
back to life

e Push notifications

There are a number of other potential benefits to using service workers that I won’t
get into in this book because the specifications for them aren’t quite ready, or they’re just
potential ideas that fit well into the service worker architecture. But some of them are
really exciting, such as periodic sync, processing gyroscope data, and performing certain
actions based on a date and time.

I'll also talk about the life cycle of service workers:

o Registration and downloading
o Installation

o Waiting (sometimes)
24

CHAPTER 3 SERVICE WORKERS

e Activation
e Updating

You're probably super excited, and rightfully so! But there are a couple of things to
cover before we dive in. Service workers make heavy use of promises. If you're already
familiar with promises, feel free to skip that section. But they’re so vital to the use of
service workers, so I'll spend a little time covering the basics of how to use them. There
are ample resources online to go deep into the inner workings of promises if your
curiosity is piqued.

I also need to briefly cover the Fetch API for making API requests. This won't take
long, though. As soon as you learn the prerequisites, you'll be creating service workers in
no time.

For all the examples in the book, try following along in your own dev environment.
Explore, play with the values, try to enhance the examples, and break the examples. For a
lot of the code we’ll be using, you can use a jsfiddle from jsfiddle.net or a plnkr from
plnkr. co.

Let’s get started!

Promises

JavaScript is single threaded. So when your app makes an API request, it’s going to move
on to the next line of code, not waiting for that request to finish. But you need some kind
of mechanism to process the result of that API request. In the past, you'd use callback
functions to accomplish this. But they can be pretty clunky and hard to read when they
end up being nested several times, leading to callback hell.

Promises fix this problem by telling the asynchronous method that it “promises” to
call a given function as soon as the async one is finished. In Figure 3-2, functioni could
make an API call and then go right on to call function2, even though function3 appears
next sequentially. Once the asynchronous function is finished, then function3 will

execute.

25

CHAPTER 3 SERVICE WORKERS

function
1
]
: Async
1then function

function /
2
\ %

function

3

Figure 3-2. Execution order when using promises

It does so in a very readable and self-explanatory syntax. Let’s take a look (https://
jsfiddle.net/fyx8oufs/2/):

function myAsyncFn() {
const everythingWentWell = true;
return new Promise(function(resolve, reject) {
// do something in here
// usually an ajax call
// or other async function
if (everythingWentWell) {
resolve('Success!");
} else {
reject('Things did not go well :(")
}
1);
}

26

https://jsfiddle.net/fyx8oufs/2/
https://jsfiddle.net/fyx8oufs/2/

CHAPTER 3 SERVICE WORKERS

function init() {
myAsyncFn().then(function(response) {
alert(response);
1))
.catch(function(err){
alert(err);

};
}

init();

Here are two functions. One is named myAsyncFn and it creates a promise to make an
asynchronous call and returns the result. A promise can either be resolved or rejected. In
this case, you set a Boolean called everythinghentWell to true and resolve the function
inside the promise. The entire promise object is returned to the calling function.

So the init function calls myAsyncFn and then calls an anonymous function that
alerts the response that’s passed into it. That response is the string you put in the resolve
that was inside the myAsyncFn.

Note A function that returns a promise is sometimes referred to as a thenable
function.

If you change the everythinglWenthell Boolean to false, you can see the promise
get rejected. In that case, the init function will call myAsyncFn and the then call gets
skipped. Instead, you catch the rejection error.

While there may be occasions where you'll need to create promises, most of the time
the code you'll be writing will be consuming promises, which is what the init function
in this example is doing.

There are times when you may need to chain promises. Maybe an asynchronous call
has to wait for another one to finish before it can run. In that case, you can simply call
then again (https://jsfiddle.net/fyx8oufs/3/):

function myAsyncFn() {
const everythinghentWell = false;
return new Promise(function(resolve, reject) {
// do something in here

27

https://jsfiddle.net/fyx8oufs/3/

CHAPTER 3 SERVICE WORKERS

// usually an ajax call

// or other async function

if (everythingWentWell) {
resolve('Success!"');

} else {
reject('Things did not go well :(')

}

D;

function secondAsyncFn() {
return Promise.resolve('This second function is much more concise');

}

function init() {

myAsyncFn()

.then(secondAsyncFn)

.then(function(response) {
alert(response);

9

.catch(function(err){
alert(err);

};
}

init();

Here you add a secondAsyncFn that is called in the first then inside of init. That
secondAsyncFn also returns a resolved promise (but notice the shorthand: you didn’t
have to new up a promise just to resolve it; you can just call the resolve method on a
static promise object). Once the secondAsyncFn returns, you can call then on that as
well.

For the purposes of learning service workers, this is all you really need to know about
promises. Next, you'll take a quick look at the Fetch API.

28

CHAPTER 3 SERVICE WORKERS

Fetch

You may be familiar with making AJAX requests from jQuery, other frameworks and
libraries, or even the old school XMLHttpRequest object from the web development days
of yore. Fetch is a native web platform API that allows you to make network requests that
return promises. Let’s take a look (https://jsfiddle.net/fef98bg6/1/):

() = A
fetch("https://opentdb.com/api.php?amount=1")
.then((response) => {
return response.json();

9

.then((data) => {
alert(data.results[0].question);
alert(data.results[0].correct answer);

9
.catch((err) => {
alert(err);

1)

HO;

This is a bit different from the last example, but it’s still using promises. You don’t
need a separate function for the async call because that’s essentially all you're doing.
You also don’t need to create a promise this time; the fetch call does that.

Along with those changes, I snuck in some new syntax, too. You're not going to call

init anymore. You're just using an ITFE.

Note An IIFE is an immediately invoked function expression. It’s just a function
that calls itself. Notice the open and close parenthesis at the end.

Finally, you've dropped the function keyword in place of arrow functions.

29

https://jsfiddle.net/fef98bg6/1/

CHAPTER 3 SERVICE WORKERS

Note Arrow functions are available in all modern browsers. If you’re not familiar
with them, they’re essentially just a shorthand notation for a function. Any time you
see the arrow, think of the word “function” and move the parenthesis to the other
side of it.

The first thing you do in this example is make a fetch call. You can substitute in
your own API endpoint, but this example borrows one from the Open Trivia Database.
Because fetch returns a promise, the next line after making the fetch call, you have a
then. Fetch sends the promise results into the then function, via the response object.
The response from a fetch comes back as a ReadableStream type. Before you're able to
use it, you need to call json() on the response.

Note There are other functions you can call on ReadableStreams, depending on
whether you're expecting text (response.text()), a blob (response.blob()),
or something else. In this case, you expect a JSON response.

The json method returns a promise of its own. So you return that promise and chain
then functions, just like you did before. The json method parses the ReadableStream
as JSON, which could be an object, a string, a number, or anything else JSON could
represent. In this case, there’s a results array. At this point, you can do anything you want
with those results; this example is a very rudimentary trivia game thanks to the Fetch
API, promises, and the Open Trivia Database.

There are a few nuances to fetch thatI can cover as we run into them. For now, if
you play around with the example above, you should have plenty of fetch knowledge in
order to finally move on to your first service worker!

Service Workers

There are three main parts of the service worker lifecycle. To kick things off, you just
need to register the service worker. If that goes well, the service worker is installed and
finally activated. You can see a visual of this process in Figure 3-3. There are cases where
this path takes a few detours when you update the service worker, but follow along and
you won't get lost.

30

CHAPTER 3 SERVICE WORKERS

Registration

l

Installation

Activation

Updating

Figure 3-3. Service worker lifecycle

Register the Service Worker

The first thing you do to create your first service worker is register it. This will download
your service worker script. You can put this code anywhere, but I want the service worker
in this example to run on page load. So you create a JavaScript file that runs on page load
and put your registration code in an IIFE inside of a file called script.js:

31

CHAPTER 3 SERVICE WORKERS

Note You can find the files for this example in the chapter3-example-
1-register-and-activate branch of github.com/dennissheppard/pwa.

(0 =>{
if ('serviceWorker' in navigator) {
window.addEventListener('load", () => {
navigator.servicelWorker.register('service-worker.js').
then((registration) => {
console.log('registered');
console.log(registration);
},(err) => {
console.log(err);
1;

1
} else {

alert('No service worker support in this browser');

}
HO;

Then in a script called service-worker.js, you listen for the install and activate
events, the other two parts of the lifecycle:

self.addEventListener('install', (event) => {
console.log('service worker installed', event);

};

self.addEventListener('activate', (event) => {
console.log('service worker activated', event);

};

Finally, you just need to reference your script in an index.html file:

<html>
<head>
<link rel="stylesheet" href="style.css">
<script src="script.js"></script>

32

CHAPTER 3 SERVICE WORKERS

</head>
<body>
<h1>Hello PWAs!</h1>
</body>
</html>

Let’s start by breaking down the original script. js file and working through it.

Because servicer worker support isn’t universal, you want to check first if the
navigator object has a property called serviceWorker. If not, that browser doesn’t
support service workers. If it does, you're in business!

Next, you need to listen for the 1load event on the window object to know when to
register the service worker. If you wanted to register it based off some other event, you
certainly could do so.

The next line is where the actual service worker registration happens. Call
navigator.serviceworker.register and pass in the path to the service worker file.
Call it service-worker.js and pass that path as a string into the register function. The
register method returns a promise, so you can call then on it.

The function in the then method receives a registration object from register. Log
that out and take a look in a moment.

If anything goes wrong with script registration, log out that error.

Moving on to the service worker itself, it’s pretty concise. The worker executes code
by listening to events. The first two events you're concerned with are the install event
and the activate event. For now you'll just log out those events.

That'’s all the code you need to set up your first service worker!

Note If you pulled down the repo from github.com/dennissheppard/pwa,
switch to the chapter3-example-1-register-and-activate branch and
run npm install in the root directory to install the http-server module. After
installation is complete, you can run the example by typing http-server in the
terminal from the root of the project. This will start a server on port 8080, so that
you can navigate to http://localhost:8080. If you typed the code manually
or copied and pasted into your own project, you’ll need some type of webserver to
run the code.

33

CHAPTER 3 SERVICE WORKERS

Run that code and let’s take a look at Chrome DevTools. Go to the Application tab.
On the left, you should see an option that says Service Workers. Click that, and you'll
see all of your service worker information. Also, make sure your console is open at the

bottom. Your DevTools should look something like Figure 3-4.

Y ﬂ Elements
Application
I Manifest
XX Service Workers
B Clear storage

Storage
» £ Local Storage
» EE Session Storage
» = IndexedDB
= Web SOL
» & Cookies

Cache

£ Cache Storage
EE Application Cache

Frames
» O top

Console

® top v

23:07:41.085 registered

Console Sources Network Performance Memory Application Security Audits AdBlock

Filter

Service Workers

Offline Update on reload

http:/flocalhost:8080/

Source

Bypass for network

Received 6/27/2017, 11:07:41 PM

Show all

Status @ #4623 activated and is running stop

23:07:41.085 service worker installed

, InstallEvent {type: "install”, target: ServiceWorkerGlobalScope, currentTarget: ServiceWorkerGlobalScope, eventPhase:
2, bubbles: false.}

23:07:41.087

onupdatefound: null.}
23:87:41.092 service worker activated

ExtendableEvent {type: “activate", target: ServiceWorkerGlobalScope, currentTarget: ServiceWorkerGlobalScope,
eventPhase: 2, bubbles: false_}

23:08:40.541 Service Worker termination by a timeout timer was canceled because DevTools is attached.

>

Verbose

Update Push Sync LUinregister

x

0
script.is:5

rvi: rker.js:

ServiceWorkerRegistration {installing: ServiceWorker, waiting: null, active: null, scope: “http://localhost:8888/",

service-worker.js:7

rvi rker, i

Figure 3-4. Service Workers section of DevTools. Notice what’s logged in the
console at the bottom.

34

CHAPTER 3 SERVICE WORKERS

Looking at the console, the first thing you want to see is the registration object
inyour script. js file. There are some pretty interesting things in there that you'll be
playing with later. The first thing you see is a property of type ServiceWorker called
active. If you expand it, you can see that it has a few of its own properties, notably
state. Your service worker’s state right now is “activated.” You're doing great so far!

Further examination of this object shows that there are objects of type PushManager
and SyncManager. Those are probably not completely useless, but you'll find out later.

The last important thing here is scope. The scope of your service worker is how
much of the application it is allowed to control. Scope is impacted by where you place
your service worker. If it’s placed and referenced at the root of your application, it has
access to your entire application. If you put the service worker in a subdirectory, say
scripts/trivia, then the service worker only has the scope to control everything in the
trivia directory. More specifically, this means that the service worker is installed and
will receive network events for every page that loads within the trivia directory. You
may specify a scope as a second parameter of the register function, but it must be a
subdirectory of where your service worker lives. Figure 3-5 shows the different scopes
allowed depending on where you place your service worker.

35

CHAPTER 3 SERVICE WORKERS

Service worker

Figure 3-5. Service worker scope

36

Allowed scope of service worker

&

Service worker

A
-

Allowed scope of service worker

CHAPTER 3 SERVICE WORKERS

In the chapter3-example-2-sw-scope branch, for example, your service worker
can’tlive in the /scripts/trivia directory while also having a scope of the whole
/scripts directory:

(0 =>{
if ('serviceWorker' in navigator) {

window.addEventListener('load", () => {

navigator.serviceWorker.register('scripts/trivia/service-worker.js",
{scope: 'scripts'}).then((registration) => {

console.log(registration);
}, function(err) {
console.log(err);

};

1
} else {

alert('No service worker support in this browser');
}
NO;

Notice the scope object as the second parameter of the register method. If you run
this example, you'll get an error that looks something like this: The path of the provided
scope (“/scripts’) is not under the max scope allowed ('/scripts/trivia/’). Adjust the scope,
move the Service Worker script, or use the Service-Worker-Allowed HTTP header to allow
the scope.

The last option of that error is saying that you can add a header to the service worker
script’s response to allow the service worker to be used anywhere. For your purposes,
you're going to just make sure your service worker isn’t trying to take over more scope
than it’s allowed to.

If you wanted to, you could put the service worker in the /scripts directory but
set the scope to cover just the /scripts/trivia directory. That’s a valid scope. You're
not actually using that directory, though, so to fix the scoping error, let’s just move the
service worker back to the root directory, and completely remove the scope object.

Once you run this again, take another look at Chrome DevTools. You should see your
“service worker installed” and “service worker activated” events in the console, like in
Figure 3-6.

37

CHAPTER 3 SERVICE WORKERS

= 4 Elements Console Sources Network Performance Memory Application Security Audits AdBlock I 4
Application Service Workers
[Manifest Offline Update on reload Bypass for network Show all
£t Service Workers
il Clear st e
L i hitp//localhost:8080/ Update Push Sync Unregister
Storage Source
» 58 Local Storage Status
Sesslon Storage
» S IndexedDB Lants
= Web SQL Erors ©1 details clear
» @ Cookies
] http:/flocalhost:8080/ Update Push Sync Unregister
= Cache Storage
E2 Application Cache Source SeNViCe-WOrKRis
T Received 6/27/2017, 11:21:58 PM
Frames Status @ #4630 activated and is running Stop
» O top
Console x
o | wp ¥ | Filter Verbose ¥ te
23:21:58.703 registered script.is:s

23:21:58.703 service worker installed service-worker, js:2

- InstallEvent {type: "install®, target: ServiceWorkerGlobalScope, currentTarget: ServiceWorkerGlobalScope, eventPhase:
2, bubbles: false.}

23:21:58.706 script.is:6
ServiceWorkerRegistration {installing: ServiceWorker, waiting: null, active: null, scope: “http://localhost:8888/",
onupdatefound: null-}

23:21:58.712 service worker activated service-worker, js:6

’Exreno‘abiefvenr {type: “activate”, target: ServiceWorkerGlobalScope, currentTarget: ServiceWorkerGlobalScope,
eventPhase: 2, bubbles: false.}

Figure 3-6. Service worker with updated scope

If you run the example with the bad scope, at the top of the DevTools page you'll
see a service worker with the scope error mentioned. Below that is your activated and
running service worker with the correct scope.

Updating the Service Worker

Now, let’s make a little tweak to the service worker script so you can see how to update
the service worker. Let’s just change the first of the console statements. This change is
reflected in the chapter3-example-3-updated-sw branch.

console.log('updated service worker installed', event);

38

CHAPTER 3 SERVICE WORKERS

Just a simple change so that the browser sees an updated service worker. Save it and
refresh your browser. If you look in DevTools, you'll see the same service worker. The
console shows that it was registered again, but there’s no install or activate events logging
anything. What’s up with that?

The changes to the service worker script file in this instance won’t be visible for up to
24 hours, or until all of the clients controlled by that service worker have been terminated.

But we're devs and know ninja tricks that regular users don’t. So click the Update
link over on the right. Once you press that, you should see a second service worker that’s
labeled as “waiting to activate.” As in Figure 3-7, in the console you'll see the “updated
service worker installed” log statement, but no activated log statement.

»
I ﬂ Elements Console Sources Network Performance Memory Application Security Audits AdBlock x
Application Service Workers
I Manifest Offline Update on reload Bypass for network Show all
%X Service Workers
B Clear storage 1
u g http://localhost:8080/ Update Push Sync Lnregister
Storage Source
> E2 Local Storage Status
» EE Session Storage
» = IndexedDB Clients
= Web SOL Emors @1 details clear
» @& Cookies
Cache http//localhost:8080/ Update Push Sync Unregister
£ Cache Storage .
5 Application Cache Source senvice-workeris
Received 8/27/2017, 11:21:58 PM
Frames Status @ #4630 activated and is running stop
» [top © #4632 waiting to activate skipWaiting
6/27/2017, 11:28:23 PM
Clients http:/localhost:8080/ focus
: Consocle x
® | top ¥ | Filter Verbose v o]
23:28:17.293 registered script.is:5
23:28:17.295 script.is:6
» ServiceWorkerRegistration {installing: null, waiting: null, active: ServiceWorker, scope: “http://localhost:8088/",
enupdatefound: null.)}
23:28:23,.572 updated service worker installed service-worker.is:2
'_InstauEvem {type: "install®, target: ServiceWorkerGlobalScope, currentTarget: ServiceWorkerGlobalScope, eventPhase:
2, bubbles: false.}
>

Figure 3-7. A “waiting” service worker. Notice there’s no “activated” log statement.

39

CHAPTER 3 SERVICE WORKERS

)«

Because the label says it’s “waiting,” it makes sense you don’t have the activated
log statement. But why is it in this “waiting” state? The browser does this so that only
one version of your service worker is running at a given time. The new service worker is
registered and installed, but it wants to wait until the original service worker is booted out.

Note As I've talked about, service workers deal a lot with data, be it caching or
syncing or pushing. You can imagine some of the issues that can pop up if you
have two different service workers in two different tabs trying to manage that data
in different ways.

Again with the ninja tricks, you can click the “skip waiting” option. When you do
this, the ID and timestamp of the running service worker will update. You now have your
latest service worker running, and looking down at the console, you see the “service
worker activated” log statement in Figure 3-8.

40

CHAPTER 3 SERVICE WORKERS

& @ Elements Console S N rk Per

Memory Application Security Audits AdBlock S 4 |
Application Service Workers
B Manifest
XX Service Workers
@ Clear storage

Offline Update on reload Bypass for network Show all

http://localhost:8080/ Update Push Sync Unregister
Storage Source
» = Local Storage Status
» £ Session Storage
» = IndexedDB Clonts
= Web SQL Erors ©1 details clear
» @& Cookies
Cache i
http//localhost:8080/ Update Push Sync Unregister
£ Cache Storage
25 Application Cache Source gervice-worker.is
= Received 6/27/2017, 11:28:23 PM
Frames Status @ #4632 activated and is running stop
» O top Clients http/flocalhost:B080Y focus
Console x
® | top v Filter Verbose v o
23:28:17.293 registered script,js:5
23:28:17.295

script.js:6
,serviceworkerﬂegx'stration {installing: null, waiting: null, active: ServiceWorker, scope: “http://localhost:5888/",
onupdatefound: null.}

23:28:23.572 updated service worker installed service-worker.js:2

> InstallEvent {type: “install®, target: ServiceWorkerGlobalScope, currentTarget: ServiceWorkerGlobalScope, eventPhase:
2, bubbles: false.}

23:28:39.240 service worker activated rvic rker.js:

,.Exrendableivenl {type: "activate”, target: ServiceWorkerGlobalScope, currentTarget: ServiceWorkerGlobalScope,
eventPhase: 2, bubbles: false.}

Figure 3-8. Service worker updated and activated

If you want to bypass the safety check of making sure your app only has one service
worker controlling a page a time, you can force the update in code as well, with the
skipWaiting() method. This immediately removes the existing service worker and
activates the new one, skipping the normal waiting state:

self.addEventListener('install’, (event) => {
self.skipWaiting();

console.log('updated service worker installed', event);

};

41

CHAPTER 3 SERVICE WORKERS

self.addEventListener('activate', (event) => {
console.log('updated service worker activated', event);

};

If you make that update and refresh, nothing new appears to happen. Remember, it’s
still holding onto your previous service worker that didn’t have your new code in it until
you close all the open tabs of your app and reload, or until you manually update through
DevTools. So let’s click Update again. This time, the service worker should have both
installed and activated, since you skipped the waiting state.

Other DevTools Options

While you've got DevTools open, let’s take a quick look at a couple of the options shown
in Figure 3-9.

o e Developer Tools - http:/
x O Elements Console Sources Network Performance Memory Application Security Audits AdBlock
Application Service Workers

i Manifest Offine || Update on reload Bypass for network Show all

il Clear storage

http://localhost:8080/

Storage Source service-worker.js

Figure 3-9. Service Workers DevTools options

The Offline option makes the app act as though you have no Internet connection.
You'll be using this a lot in the next chapter.

After that is the Update on reload option. This forces your service worker to update
when you make changes to it in code. This keeps you from having to click that Update
link every time you make a change to your service worker. With this option checked,
each page of your app you go to refetches the service worker script, and the install
and activate events fire. So no more needing to reload the page twice or manually skip
waiting or anything.

You'll likely want this option checked for development.

Next is an option labeled Bypass for network. This basically turns off your service
worker so none of your CSS or JavaScript is cached during development.

42

CHAPTER 3 SERVICE WORKERS

Finally, the Show all option will show you every service worker installed in your
browser for various sites you've visited. If you're a PWA or service worker nerd, it’s pretty
interesting to see which sites and apps are using service workers.

Browser Compatibility

I've laid the groundwork to really get into the amazing things service workers are capable
of. Until mid-2017, service workers were limited by browser compatibility. Service
workers are best supported by Chrome and Firefox, followed closely by Opera. But

Edge is enabling service worker support by default as of version 16, and the last major
remaining holdout, Safari, has undertaken development for service worker support. We
love you, Safari! There’s a site dedicated to the browser support of service workers at
https://jakearchibald.github.io/isserviceworkerready/.

Service Worker Recap

This chapter covered a lot, so let’s take a minute to recap. Service workers
e Are scripts that live between your app and the network
e Only work on HTTPS

e Are the PWA mechanism for caching, background syncing, push

notifications, and more
o Install using register
o Listenforinstall and activate events

o Enter a waiting state on updates to ensure there is only one running
atatime

Looking Ahead

Next, you're going to apply all of this knowledge to create some service workers that do
a lot more than just log things out to the console. You'll look at caching your resources
to speed up your page loads and reduce bandwidth usage. I'll also walk through how to
make an app work with no Internet connection at all. Sound good? Let’s go!

43

https://jakearchibald.github.io/isserviceworkerready/

CHAPTER 4

Caching and Offline
Functionality with
Service Workers

Now that you know what service workers are and how to implement a very basic one, in
this chapter you're going to go beyond the basics. We want apps to be fast, reliable, and
work offline whenever possible. So now I'm going to talk about the Cache API that lets
us return items we specify from the cache instead of making the whole journey to the
server.

The fetch Event

Before you can cache anything, you need to be able to intercept network requests. That'’s
trivial using your service worker. Every network call originating from the domain in
which the service worker has scope will fire the fetch event:

self.addEventListener('fetch', (event) => {
event.respondWith(fetch(event.request));

};

So you just need to listen for it in the service worker. Here, you catch the event and
simply respond with whatever would have come back anyway. In Figure 4-1, you can
see the service worker catching the fetch event, making its own call to the API. Once
that data is returned to the service worker, you can pass that back to the calling script,
manipulate it somehow, or do nothing at all.

45
© Dennis Sheppard 2017

D. Sheppard, Beginning Progressive Web App Development, https://doi.org/10.1007/978-1-4842-3090-9_4

CHAPTER 4 CACHING AND OFFLINE FUNCTIONALITY WITH SERVICE WORKERS

- . API
JavaScript Service worker

Figure 4-1. The fetch event listener intercepts the API request

If you pull down the chapter4-example-1_fetch_event branch from github.com/
dennissheppard/pwa and run npm install and http-server, then the site will be
accessible on http://localhost:8080. Once you go there, you'll see a pretty great site

dedicated to pirates, as shown in Figure 4-2 (no need to judge how it looks; this isn’t a
book about CSS!).

2 | D locslhost

p

‘?

A4
»

A
-

Quarterdeck_schomer five in the Jole clap of thunder keel jipy muast noavoon. Splice the wuain brace gun scuppers sench wuin sheet_yo-fo-Fo
bowsprit. Spanker keel keelhaul draft deadlights hodrack booty. Citlass wutey harkadeer hang the jib Plae Fleer avast mizzenmast. Measured
| for_yer chains piracy carouser port jib brasd side Barbary Caast. Carouser league Corsair no prey, o pay Letter of Marque topmast lad.,

PIREﬂB

Seuppers belay nociny dowlom lad fist brig, Chase line fluke pillsge sheet hands hulk, Gally Kueve Iugger pressgang hand somely fire ship
buckg. Firate af rackle b square-rigged heave down ropmust. Shees bowrty shrouds league Gold Read hands Yellow Juck Hogshead
boatsuain swartly landlubber or just lubber fad lapyard qverhal.

Main sheet cdsfmﬁ’m come abost cable yun a rig mizzenmast .;?fire the muain W&_flnﬁvm M:frffx)m’a &.«ffm guarterdeck aloy strike
colors Gold Read. Rigging tackle flogging gaff wop pinnace_yawl. Flogshead Frivateer lost Chain Shot rusters pillage cog, Sparish Main
chase Fearties brig yardarm execution dock brigaoine. Spyglass snnw walk the plok Corsair coxswain clipper gangplok,

Figure 4-2. The site returns normally if you just intercept fetch and respond with
the same fetch

46

CHAPTER 4 CACHING AND OFFLINE FUNCTIONALITY WITH SERVICE WORKERS

As far as the service worker goes, this isn’t very helpful or practical because you're
just using it as a pass through. It’s like you aren’t doing anything. But think of the
implications. What if we were pirates who wanted to hijack a site and had the ability to

slip a rogue service worker onto someone’s site? Arrgh!

self.addEventListener('fetch', (event) => {
event.respondWith(new Response('arrrgh!"));

1

If you throw that code in your service worker and run it (remembering to either click
Update in the Service Worker section of DevTools or check Update on reload), Figure 4-3
shows what you would have.

* (D localhost ACA0 pirates o v - -

Figure 4-3. Pirates have taken over your site!

You're able to do this by creating a new Response object and responding with that
text. Then any fetch event just responds with that. So instead of any HTML pages or
images or anything, you simply have “arrrgh!” Which is pretty fun!

You could also respond with a fully-fledged HTML file announcing that your site is
under maintenance or really whatever you want.

So you've started off by listening for the fetch event, and you know you can intercept
network requests and return anything you want. But you didn’t come here to be a pirate;
you came here to see what the cache can do for you.

The Cache API

Caching is going to be your new best friend. Using it, you can make your app significantly
faster, and you can even make the app usable with no Internet connection at all, because
you can just respond with items you've previously saved. Let’s start with a quick example
that saves items to the cache. Let’s add the following code to service-worker.js:

self.addEventListener('install’, (event) => {
if (!('caches' in self)) return;
event.waitUntil(

47

CHAPTER 4 CACHING AND OFFLINE FUNCTIONALITY WITH SERVICE WORKERS

caches.open('versionl').then((cache) => {
return cache.addAll(
[
'/pirates.html’,
'/styles/pirates.css’,
'/styles/pirates.tff’,
'/images/i-love-pirates.jpg'
]
)s
1)
)
1;
Go ahead and clear out the fetch event; you'll bring it back in a moment. Now you
have your install event back. You can add items to the cache on the install event.

Note The 'caches’ property is actually also available on 'window". That
means you can technically cache items from anywhere in your app. Try some of
these examples in other parts of your app, perhaps based off of user interactions
that would make sense to cache items. Maybe you can even give your user the
option to save certain resources for offline use.

First, check browser compatibility for caching. Add in the check for the caches object
on self to make sure the current browser supports it, and if not, let’s just get out of here.

Assuming you're using a fully supported modern browser, add in this new method:
event.waitUntil. This method takes a promise, which extends the lifetime of install
until the promise resolves. This is useful because you don’t want the event to complete
until you've cached your files. Plus, if the caching fails for some reason, the promise is
rejected and the service worker isn’t installed.

Next you have the caches object. To create a new cache, call open and give it a name.
Note that open returns a promise, so you can call then on it and then add an array of files
by using the addA11l method on the cache object returned from the promise.

48

CHAPTER 4 CACHING AND OFFLINE FUNCTIONALITY WITH SERVICE WORKERS

If you have a sample project with an HTML file, a CSS file, and maybe an image,
add those files to an array in a service worker like above. Or, pull down the chapter4-
example-1_caching branch from github.com/dennissheppard/pwa.

You now have a pretty amazing site dedicated to pirates. Let’s open DevTools and
load the site. You can see what the Network tab tells you in Figure 4-4.

o} Bements Console Sowces Network Pedomance Memory ADpicaiion Securly Audts AJEiook
90 w7 vew = %N Presonve 0g @ Dratse cacre Ofine N trrorming
f Regex | Hidedata URts [X048 JS CSS img Meda Fort Doc WS Manfest Other
Name Metmoo st Troe naor S0 Trre
vt e GET 200 soc rrat e 22x8 10ms
pratws.ce oET 200 sty esteet orpm 08
® loveprates o9 GET 200 peg oirmtea ey 652 xB 526 ms

prae-cip-an g GET 20 e e Ty 164 <8 Tms
e GET 200 ot oraea T 37 B ams

Orervorworee s oeT X javascrios Hevce worsey k. cache ams

Figure 4-4. Network requests after creating the cache

All of your files are being fetched like you'd normally expect. You've created the
cache of your files, but you haven't told the service worker to use the cache yet. You can
see what you've cached by going to the Application tab in DevTools and expanding the
Cache Storage item on the left. You may have to right-click on it and tell DevTools to
refresh the cache before it will show up. Now you should see your versionl cache with
the items you told your service worker to cache, as in Figure 4-5.

sce Developer Tooks - http:iflocathost:BI80 pirates el
% (] Eements Consoie Sowces Network Pedormance Memory Appication Securty Audis AdBock

Appiication
W Vet [Fisquest Fesponse
Xt Service Weriors 0 R hocal T B0 TR -Kive-Crates g oK
AEpLOCRCET OB Drate. hemi oK
T] oK
Pepfocainost AOMYstyies/pirates cas oK

Figure 4-5. The newly created versionl cache

49

CHAPTER 4 CACHING AND OFFLINE FUNCTIONALITY WITH SERVICE WORKERS

So now you have the triumphant return of your fetch event. Using that, let’s go
ahead and tell the service worker to use the cache you've created:

self.addEventListener('fetch', (event) => {
event.respondWith(
caches.match(event.request)

)

1;

Now you're listening for the fetch event once again, which will intercept any

network request the service worker has control over. You respondWith items in your

cache that match the same URL as the network request. In your case, that should be four

out of five files. Figure 4-6 shows this happening.

> > =
¢ & —
Cached assets w
JavaScript Service worker Cache

Qm ooy

Assets

Figure 4-6. Retrieving cached items

So now you should add that snippet to your service worker. Make sure the Update
on reload option is checked in the Service Worker section of the Application tab in
DevTools.

Now if you look at your Network tab, like in Figure 4-7, you can see that the items
you told the service worker to cache are being fetched “from ServiceWorker” in the Size

column.

50

CHAPTER 4 CACHING AND OFFLINE FUNCTIONALITY WITH SERVICE WORKERS

r

[NN Developer Tools - http://localhost:B080/pirates.htm|
(v (1] Elements Console Sources Network Performance Memory Application Security Audits AdBlock
® O W YT Vew I= = Preserve log Disable cache Offine No throttling v
Filter Regex [HidedataURLs [[[] XHR JS CSS Img Media Font Doc WS Manifest Other

Name Method Status Type Initiator Size Time

|_| pirates.htmi GET 200 document Other {from ServiceWorker) 80ms

pirate-clip-art.jpg GET (failed) pirates.htmi 0B 564 ms

_| pirates.css GET 200 stylesheet pirates. htmi {from ServiceWorker) 3ms
' i-love-pirates.jpg GET 200 ipeg pirates.htmi (from ServiceWorker) 516 ms
|_| pirate.ttf GET 200 font pirates.htmi {from ServiceWorker) Ims

Figure 4-7. Items returned from cache

You'll notice that one lovely image is failing to return. That’s because you haven’t
cached that file and you have no backup. You told the service worker to intercept those
requests and return what'’s in the cache. If a particular request isn’t in the cache, that
match fails. So if there’s a file you don’t want to cache, or you might have files you haven'’t
cached before, you need to tell the service worker to go ahead and fetch that file using
the network instead of the cache. Luckily, the match method on the caches object returns
a promise with the response. And you're actually kind of decent at handling promises

by now.

self.addEventListener('fetch', (event) => {
event.respondWith(
caches.match(event.request).then((response) => {
return response || fetch(event.request);

)
)
1;

Wait for the promise to return from the match method, then call a function that gets
the response. If that file wasn’t found in the cache, response is undefined, so go ahead
and call the fetch method to make the request from the network.

If you add that to your service worker and refresh, now all the items in the Network
tab should be returning from ServicelWorker.

51

CHAPTER 4 CACHING AND OFFLINE FUNCTIONALITY WITH SERVICE WORKERS

This is pretty solid, except having to manually add items to your service worker isn’t
that cool. What if once you fetch the items from the network if you didn’t have them in
the list, you can go ahead and add them to the cache? For this trick, you'll use the put
method, which takes the request and the response objects:

self.addEventListener('fetch', (event) => {
event.respondWith(
caches.match(event.request).then((response) => {
return response || fetch(event.request).then((response) => {
console.log('fetched from network this time!');
return caches.open('versionl').then((cache) => {
cache.put(event.request, response.clone());
return response;
1);
D;
)
)
D;
As you've seen before, fetch returns a promise. You call then on fetch passing in the
response from the network. In that function, you can open up the versionl cache again,
and this time you'll put the request and its corresponding response in the cache. You
have to call clone on the response because the original response isn’t kept in memory.
Once it’s read once, it’s gone. But you still need to return the original response, as well
as save it in the cache. So to do so, you just call clone on it. Figure 4-8 may help you
visualize that process.

52

CHAPTER 4 CACHING AND OFFLINE FUNCTIONALITY WITH SERVICE WORKERS

)

ES Fetch
o = 6
%

Cached assets
JavaScript Service worker

W
o
<
0]

Fetch

Figure 4-8. Retrieve items from cache, or fetch if they’re not in the cache, and then
save in the cache for next time

If you run this code, you again should see everything returning from the ServicelWorker
in the Network tab. Look at the console, and you can see that an item was fetched from the
network, because you slipped that console. log line in the then on the fetch call.

Refresh the page one more time, and that line is gone from the console. Switching
over to the Application tab and looking at the Cache Storage section, you have a new item
added in! Your cache is doing work!

Going Offline

You now have everything you need to make your app offline capable. This is just a small
sample app, but as long as you cache what is necessary for your app to function, what
we've covered here will scale well for all your fetching needs.

It can, however, be helpful to let the user know that there’s currently no connection,
in case something isn’t in the cache and appears broken. Figure 4-9 illustrates the
workflow of checking for a connection, and returning cached resources if so or returning
an offline page if not.

53

CHAPTER 4 CACHING AND OFFLINE FUNCTIONALITY WITH SERVICE WORKERS

| - oy
E: cn < —
</> © _ —
S : 4{ Has network connection? 1
JavaScript Service worker i Cache
v
=1
X
Offline page
Figure 4-9. Service worker checks for network connection, and if there’s no
connection, returns an offline page or message
This example shows a special offline landing page that does just that:
self.addEventListener('install', (event) => {
event.waitUntil(
caches.open('versionl').then((cache) => {
return cache.addAll(
[
"index.html',
'/pirates.html’,
'/styles/pirates.css’,
"/styles/pirate.ttf’,
'/images/i-love-pirates.jpg’,
"offline.html’
D;
1))
);
}s
self.addEventListener('fetch', (event) => {
if(!navigator.onLine 8& event.request.url.indexOf('index.html') !== -1) {

event.respondWith(showOfflineLanding(event));

54

CHAPTER 4 CACHING AND OFFLINE FUNCTIONALITY WITH SERVICE WORKERS

}
else {

event.respondWith(pullFromCache(event));
}

};

function showOfflineLanding(event) {
return caches.match(new Request('offline.html'));

function pullFromCache(event) {
return caches.match(event.request).then((response) => {
return response || fetch(event.request).then((response) => {
return caches.open('versionl').then((cache) => {
cache.put(event.request, response.clone());
return response;
D;
D;
IOk
}

Here are two functions that are called from within the fetch event listener. The first
one is called if the browser has no Internet connection. You can check for this using

navigator.onlLine.

Note navigator.onLine isn’t 100% accurate in its ability to know if there’s

a network connection. There are some browsers that don’t implement it correctly,
and some where it will return true as long as there’s an internal network
connection, but no Internet connection. So in production apps, you may not want to
solely rely on this method of determining the user’s Internet connection state. Here,
it’s just an example to show how you might respond with an offline page.

55

CHAPTER 4 CACHING AND OFFLINE FUNCTIONALITY WITH SERVICE WORKERS

If you're offline and the request is for index.html, you know you want to display your
special offline landing page. So you respond to the fetch event by looking in the cache
for a request that would match offline.html. If you look up at the install event, you'll
see that this is a file that you added to the cache. So your offline.html page will be
returned in place of your traditional index.html. Thus, if you run this code once, turn off
your WiFi, and refresh, you should be presented with something like Figure 4-10.

€ 3 C O ehouBOGN ! v HoOROBE ™ oL

Arrrgh!!! Looks like you
don't have a connection

Most of the app will s18 work, bul pardon us il you come across something that doesnl!

Nt time you have a connection, wa'll save whatover we haven already 5o works noxt
time you're offlin!

Figure 4-10. Your special offline landing page, only seen when there’s no Internet
connection

If you aren’t looking specifically for index.html, just call the pul1FromCache function
that does the same thing you've already covered: looks in the cache for each request,
and calls fetch if it can’t find it. Additionally, if there’s a connection, that resource is
automatically added to the cache.

You now not only have an app that can load resources without a network connection,
but can also show different screens and load different resources without a network
connection.

Different Caching Strategies

I've covered the most common and helpful caching scenario you're likely to need: using
the cache first, and using the network as a backup.

There are other combinations of caching and fetching you can use in your
applications, though.

56

CHAPTER 4 CACHING AND OFFLINE FUNCTIONALITY WITH SERVICE WORKERS

Note Most of these examples you'll find in the chapter4 branches of
www.github.com/dennissheppard/pwa/branches, but if it helps you to type
them in manually, by all means do that!

For instance I've also covered two others, network-only, in which case the service
worker is just a pass through, and cache-only, where you look for files in the cache and
anything not there simply fails.

Those aren’t the most helpful caching options, because network-only behaves as
though the service worker isn’t even there, and cache-only loads just the resources that
are in the cache. That means anything not in there you can’t fetch from the network. So
some resources will be missing, and it’s possible that the items that are available in the
cache could be quite old.

One improvement to this strategy is called stale-while-revalidate. This tells the
service worker to request both the cache and network, return the cached version to the
caller, and save the network response in the cache to use for next time. This allows the
cache to be updated while still delivering the fast, cached content to the user. Let’s take a
look at how you could implement something like this:

self.addEventListener('fetch', (event) => {
const version = 'versioni';

event.respondWith(
caches.open(version).then((cache) => {
return cache.match(event.request).then((response) => {
let fetchPromise = fetch(event.request).then((networkResponse) => {
cache.put(event.request, networkResponse.clone());
return networkResponse;
}s
event.waitUntil(fetchPromise);
return response;
1}
9
);
IOk

57

http://www.github.com/dennissheppard/pwa/branches

CHAPTER 4 CACHING AND OFFLINE FUNCTIONALITY WITH SERVICE WORKERS

With this code, you're looking for your cached resource and returning it. But
before you return it, you also fetch the same request and use cache. put to save the
networkResponse in the cache.

You could also ask for both the cached resource as well as the network resource, and
whichever one is faster is the one that gets to respond to the request. This sounds great
in theory, because if you have a slow Internet connection you can just use the cache.
But if you already have items in the cache, it can be a waste of bandwidth to ask for
the network to return your resources. Just ask the cache to start with. Only in very few
circumstances would the network be faster than the cache, mainly with super old hard
drives. But if you're curious about how that could work, take a look at Figure 4-11.

JavaScript Service worker

ES - Fetch % | Cach
</> © ache
o AN

APIl/Resources

Figure 4-11. “Fastest” caching strategy: both the cache and API (or resources/
assets) are fetched. The fastest one back to the service worker wins and is used.

Let’s take a look at the code you need to do this:

function setupPromises(promises) {
return new Promise((resolve, reject) => {
promises.forEach(promise => promise.then(resolve));
D;
b5

self.addEventListener('fetch', function(event) {
event.respondWith(setupPromises([
caches.match(event.request),

CHAPTER 4 CACHING AND OFFLINE FUNCTIONALITY WITH SERVICE WORKERS

fetch(event.request)

IDE
};

Here you create a function that takes an array of promises. That function returns a
new promise that resolves as soon as the promise passed in resolves. So basically you
pass in both the cache and fetch calls, and both are used in the respondWith function.

If you run this and open your DevTools Network tab as in Figure 4-12, you'll see that
each asset is actually requested twice: once from the service worker and once from the
network.

BE WEAUE DRARN REEAT NEEEE B URAPTIE WEALED BEPTU VL R DM WS LALE W

0@ Developer Tools - http://localhost:8080/pirates.htm|

[® (1] Elements Console Sources Network Performance Memory Application Security Audits AdBlock

® O W YT Vew I= = Preserve log Disable cache Offine No throttling 4

Filter Regex [HidedataURLs [[[) XHR JS CSS Img Media Font Doc WS Manifest Other

Name Method Status Type Initiator Size Time

|| pirates.ntmi GET 200 document Other (from ServiceWorker) 5ms
_| pirate-clip-art.jpg GET (failed) pirates htmil oB 557 ms
|_| pirates.css GET 200 stylesheet pirates. htmil (from ServiceWorker) 3ms
& i-love-pirates.jpg GET 200 ipeg pirates htmil (from ServiceWorker) 485 ms
|| Skpirates.css GET 200 text/icss Other 5038 6ms
Ll Chi-love-pirates.|pg GET 200 ipeg Other 652 KB 107 ms
|_| Eepirate-clip-art.jpg GET 200 peg Other 164 KB 5ms
|_| pirate.ttf GET 200 font pirates.htmil (from ServiceWorker) 3ms
L] Ckpirate.ttf GET 200 x-font-ttf Other 39.7KB 16ms
W Lrservice-workerjs GET 200 javascript service-wo... (from disk cache) 4ms

Figure 4-12. Each asset is requested twice

Asyou can imagine, there are additional patterns you can use with caching. Maybe
you'd like to try the network first and fall back to the cache if that call fails, as in Figure 4-13.

59

CHAPTER 4 CACHING AND OFFLINE FUNCTIONALITY WITH SERVICE WORKERS

RN |
ke -7 .
A\ R R
[\ & -
ES _ e "’r
Fetch L’

JavaScript Service worker

APIl/Resources

Figure 4-13. Network first, with cache as fallback

In that case, your fetch call would just have a catch function on it that then looks for
a match in the cache:

self.addEventListener('fetch', function(event) {
event.respondWith(
fetch(event.request).catch(function() {
return caches.match(event.request);

1)
)
D;
You could also display nice error messages for offline scenarios. Perhaps there’s a
request for something that isn’t in the cache while the user has no network connection.
In that scenario, you can configure your service worker to return a placeholder image,
or even a message explaining that the user is offline right now, but next time they have a
connection, that resource will be available:

self.addEventListener('fetch', (event) => {
const version = 'versioni';
const placeholderAssetURL = 'placeholder’;
event.respondWith(
fetch(event.request).catch((e) => { // fetch fails

60

CHAPTER 4 CACHING AND OFFLINE FUNCTIONALITY WITH SERVICE WORKERS

return caches.open(version).then((cache) => {
return cache.match(placeholderAssetURL);

};
}
)5
1

Whatever option you go with for caching will depend upon the needs of your
application. You should spend some time experimenting and coming up with other
potential solutions using caching and fetching resources to ensure your user has the
most pleasant experience possible.

Of course, just because you have items returning from the cache doesn’t mean
everything is great. Oftentimes a user’s cache can contain old files that your app doesn’t
use anymore. It’s your job to tell the service worker to clean those up.

Updating the Cache

Since you're going to be caching lots of things while also updating your app regularly,
some of the stuff in the cache can become stale. Maybe you updated that old pirate
image with a sweet new one, and you don’t want that being displayed to the users
anymore.

Where might be a good place to clean up an old cache? That’s right, the activate
event! If you remember, the activate event fires once there are no more old service
workers controlling your app. That sounds like a great time to clear out an old cache.
Figure 4-14 shows the theory, and then you’'ll look at the implementation.

61

CHAPTER 4 CACHING AND OFFLINE FUNCTIONALITY WITH SERVICE WORKERS

(e

) Cache
version 1

Service worker

(L

Cache
version 2

Figure 4-14. Updating the cache by deleting the old one (versionl) and creating
the new one (version2)

self.addEventListener('activate', (event) => {
const CURRENT_CACHE = 'version2';
event.waitUntil(
caches.keys().then((cacheKeys) => {
return Promise.all(
cacheKeys.map((cacheKey) => {
if (cacheKey !== CURRENT CACHE) {
console.log('Deleting cache: ' + cacheKey);
return caches.delete(cacheKey);
}
1)
)
1)
);
D;
You need to label your current cache so that it doesn’t get wiped out when the
service worker is activated. That wouldn’t do you much good.

Then you get all of the different cache keys and delete any of them that have a
different name than CURRENT_CACHE.

62

CHAPTER 4 CACHING AND OFFLINE FUNCTIONALITY WITH SERVICE WORKERS

If you run this code, make sure you update any call to caches.open with whatever
you’re naming your CURRENT CACHE, or you're going to keep recreating the cache you're
trying to delete. Once you update that, add in the snippet above and run it. You should
see something similar to Figure 4-15 in the Application tab in DevTools.

e @ Tools - htmi
[% 0] Elemerts Console Sowces Network Performan e Memory Application Security Audits AdBlock

| Application Service Workers

I Manifest Offine @ Update on reioad | Bypass for network Show af

i Clear storage

hittp:/Nocalhost:B080/ Updale Push Swo Unregisser

| Stomge Sourcs SANVCe-wWOrker |y
» E2 Local Storage
| * X Session Starage Status @ #5239 activated and is nning Stop
= IncexedDB
B Web S0L
* @ Cookdes

ents http:ocalhost8080/pirates.himl {oous

Cache
v = Cache Storage
| B8 varsion? - hitpifocamostt
EE Application Cache

Frames

| »Owe

© | wp v | Fmer Verbose ¥

rvice Worker was updated because “Update on reload® was checked in the DevTools Applicaticn panel.
evLing cache: versioni service-worker, j5:24

Figure 4-15. You made the versionl cache walk the plank, and version2 now lives!

You may need to right-click on Cache Storage on the left pane in DevTools and
choose Refresh Caches before you can see your version2.

Now you have a brand new cache!

But if you're thinking, “This looks easy if you have a dumb static site about pirates.
What about a real-world application with dozens of files?” you wouldn’t be wrong.
Manually configuring service workers and caching as your project grows can be
complex. And that’s when two tools from Google can really help you out: sw-precache
and sw-toolbox.

sw-precache

I haven’t covered build processes, as that’s out of the scope of this book. But if you
are familiar with and use Gulp or Grunt, or any other JavaScript build process (like
Webpack), sw-precache can be a game changer. It is a node module that you integrate

63

CHAPTER 4 CACHING AND OFFLINE FUNCTIONALITY WITH SERVICE WORKERS

into your build process that will generate a service worker for you and set up caching for
certain resources that you specify. Because this is handled at build time, these are likely
to be the more static assets of your app, like your index.html, images that are on most or
all pages, global stylesheets, etc. (basically your app shell, which I'll cover in more depth
later on). It will handle versioning and caching strategies for you as well.

sw-precache is also available via the command line, and that’s what I'll briefly cover
here.

Go ahead and install sw-precache like this:

npm install --global sw-precache

If you want to see what sw-precache is capable of, just run it from the root of
your project:

sw-precache

This will take a moment but should generate a file called service-worker.js. While
running it with the last example in this chapter, you have a service worker that will cache
1587 resources, because the entire node_modules directory is included.

That’s not super helpful, but without a build system, and without telling sw-precache
what you want included, this result is expected.

Instead, let’s create a config file that tells sw-precache exactly what you want and call
it sw-precache-config. js, placing it at the root of your project:

module.exports = {

staticFileGlobs: [
"styles/**.css’,
"styles/**.ttf',
"images/** . *',
"** html!

]J

skipWaiting: true,

cacheld: 'version2'

}s

Here you're giving sw-precache a list of all the static resources you want cached.
You can also tell it to include a call to skipWaiting, and give your cache an ID. There
are numerous other options you could use, with a full list available at the sw-precache

64

CHAPTER 4 CACHING AND OFFLINE FUNCTIONALITY WITH SERVICE WORKERS

documentation: https://github.com/GoogleChrome/sw-precache#foptions-
parameter.
Now you can run sw-precache again, specifying your config file:

sw-precache --config=sw-precache-config.js

If you look at what this generates, it's a much more reasonable file, caching seven
resources. Of course, in larger apps, that number will be greater, but using patterns in
your file list should make this fairly easy.

Ifyou look at the generated file, you'll see a lot of code. But in there is the familiar
install, activate, and fetch events. There’s a lot of additional code to handle path
matching and other options that you could put into your config.

Again, sw-precache is geared more toward your static files, but even in larger
apps you'll likely want to point the config to files in a dist folder, or some equivalent,
assuming you have some kind of build process.

sw-toolbox

I talked about some of the caching strategies you can use with the Cache API and

we looked at code to handle a few. But if you don't want to worry about manually
writing code to take those on, sw-toolbox will provide helpers to do it for you. While
sw-precache is more useful for your app shell, sw-toolbox is better for handling your
dynamic content.

Note If “dynamic content” seems a little too vague, just think about that as data
returned from an API that can vary based on parameters or user interactions. For
example, in the trivia game example, the questions you fetch from that API are
dynamic content.

Let’s install sw-toolbox first, just like you did sw-precache:
npm install --save sw-toolbox

This will give you a companion. js and a sw-toolbox. js file in the node_modules/
sw-toolbox directory. You can either use that path, or move those files to the root of your
app. To make things easier for you, go ahead and move them.

65

https://github.com/GoogleChrome/sw-precache#options-parameter
https://github.com/GoogleChrome/sw-precache#options-parameter

CHAPTER 4 CACHING AND OFFLINE FUNCTIONALITY WITH SERVICE WORKERS

Now you can register your service worker like you have before, or you can use a
shortcut. Since you already know how to register the service worker the other way, let’s
use the shortcut this time.

In your index.html, you just need to include a reference to the companion file and
point to your service worker:

<script src="companion.js" data-service-worker="service-worker.js"></script>

Note The benefit of using this shorthand method is purely brevity. If you need to
add in additional logic around installing service workers, this probably isn’t the way
you want to implement yours.

Next, you'll need to reference that sw-toolbox. js file you moved. For that, just add it
to the service-worker. js file with importScripts:

importScripts('sw-toolbox.js");

After those are in place, you're set up to use sw-toolbox. This will work much like
the fetch events you're used to, except in the place of a fetch, sw-toolbox will intercept
routes and perform caching, based on an option that you specify. Those options are the
ones I discussed a few pages back.

Let’s take a look at an example that implements the “fastest” caching strategy for all
of your image files (calling both the cache and the network and using whichever comes
back the fastest):

importScripts('sw-toolbox.js");

self.addEventListener('install', (event) => {
1;

toolbox.router.get('/images/*', toolbox.fastest, {
cache: {
name: 'sw-toolbox-versioni',

66

CHAPTER 4 CACHING AND OFFLINE FUNCTIONALITY WITH SERVICE WORKERS

maxEntries: 20,
maxAgeSeconds: 60 * 30

}
};

You've imported sw-toolbox. js, and you don’t need anything in your install event
right now.

To tell sw-toolbox you want images cached in a certain way, you use “Express” style
routing, using a URL pattern with a syntax similar to Express. js.

Note You can also route using regular expressions if you’re more familiar
with them.

Passing in your images URL to the toolbox.router.get is the first step. Then you
specify which strategy you want to use, fastest in this case. Next, you have options for
your cache: name, maxEntries (how many entries will be cached before the oldest one is
deleted), and maxAgeSeconds (which will cause the cache to expire at the specified time;
yours is set at 30 minutes).

Of course, you can use different routes and different caching strategies if you'd like.
You'll also say you want everything in your styles directory to use cacheFirst and to
expire those after a week:

toolbox.router.get('/styles/*", toolbox.cacheFirst, {
cache: {
name: 'sw-toolbox-versioni',
maxEntries: 20,
maxAgeSeconds: 60 * 60 * 24 * 7

}
1

Go ahead and run this and see what you get. Close any previously opened tabs, open
up DevTools, and navigate to the home page and then to a content page.

In the Application tab, go to the Cache Storage section on the left. You may need to
right-click and choose Refresh Caches to see the latest stuff in there, as shown in
Figure 4-16.

67

CHAPTER 4 CACHING AND OFFLINE FUNCTIONALITY WITH SERVICE WORKERS

Tools - html
& dal Elemants Conso Sources Network Performance Memory Applicaion Security Audits AgBlock a1
Appiication S
I Mantost " | Request Responss
£t Service Workers 9 nnpefecalrost love-pirates jpg oK
W Cioar storage : i) oK
2 hipeiecalhost-6080/styles pirate.t1f [= 9
Storage 3 nopeiecanostBOB0/ sty les pirates cag o

» §F Local Storage
* 55 Session Storage

8 IndexoclB

B Web 50L
» @& Cookes
Cache
w @ Cache Storage

2 $8Stooibox-cacha$$Sntioo/fioct

£ Appication Cache

Frames

»Dop

Figure 4-16. Hey, that’s your stuff! Those are your images and files in the styles
directory.

In a bonus surprise, Figure 4-17 shows that if you go up to the IndexedDB section on
the left (again, you might need to right-click and choose Refresh IndexedDB), you'll see
how sw-toolbox is managing those cache expiration times.

ece Tools - Mtmi

Appiication |
[Mantest :'
£X Service Workers 0
W Coar storage

Stomge 1

» 53 Local Storage
» £2 Session Storage
v § IndexecDa L
- swmmx-m-mma-mmi
- 52 store
timestaTp
B Web S0L
» @ Cookdes

|3

Cache
¥ B Cacheo Storage |
5 sw-toohax-version? - hetp:/fod
5 $$$icolbox-cacha$SShtipoifocy
I= Appication Cache |

Frames

=

[w (] Elemonts Conscle Sowces Network Pedormance Momory Application Socurly Audits AdBiock

< » Stan from koy

Key [Key path: *url”)

“http://localhost: 8080/ inages/i-love-pirates. jog"

*nttp://localhest : BOB0/ images/pirate-clip-art. jpg”

“http://localhost : 680/ styles/pirate. L1

"http://localhost :B8B0/styles/pirates. cos™

Value
v Object
timestarp: 1409748033164

i/ localbost: BB/ images s i=Tlove-pirates. jpg"
¥ Object

timestomp: 1499745833133

wrly "http://localhost: BEB8/ inages/pirate-clip-art. jpg™
v Object

tirestanp: 1499748028297

urls "http://localhest: BOB@/styles/pirate, taf"
v object

tirestomp: 1400745038083

wrl: "htep://localhost: BOBR/ /sty les/pirates. cos”

Figure 4-17. That’s your stuff, too! This time with expirations on it. And in a

different place!

68

CHAPTER 4 CACHING AND OFFLINE FUNCTIONALITY WITH SERVICE WORKERS

Dynamic Page Caching

All of your static content is cached and working great. But what if you added a page that
displays items dynamically, based on an API call? Just caching the HTML file isn’t going
to do you much good.

Let’s go ahead and create this page and see what you can do. If you're able, pull
down the chapter4-example-6_sw-toolbox branch from github.com/dennissheppard/
pwa. In there, you'll see a new file called pirate_books.html. The actual HTML portion
of this file consists of just a couple of lines:

<body>
<h1>Books About Pirates</hi>
<ul id="piratelist">

</body>

Because your list of books is going to be generated dynamically based on results of
an API call, you're not going to get away with just caching pirate books.html. You'll
also need to cache that API call.

Take a look at the <script> section of that same file, and you can see what API call
you're using and how you generate the list items:

<script>
let pirateBooks = [];
let bookSearchUrl = 'http://openlibrary.org/search.
json?q=pirate+history’;
fetch(bookSearchUrl).then((response) => response.json()).then((data)

pirateBooks = data.docs;
generatePirateBookList();

1

function generatePirateBookList() {
let piratelist = document.getElementById('piratelist');
for (let i = 0, book; book = pirateBooks[i]; ++i) {
let pirateItem = document.createElement('1li")

69

CHAPTER 4 CACHING AND OFFLINE FUNCTIONALITY WITH SERVICE WORKERS

pirateItem.innerHTML = book.title + (book.author name ? " by " +
book.author name[0] : '');
piratelist.appendChild(pirateItem);

}
}

</script>

The book list data comes from openlibrary.org, and you can make that call with
just a few lines like in the script block above. It’s a simple fetch call, where you assign
the results to an array. Then just loop over the array, generating list items with the book
title and author. Finally, append each item to your pre-existing ul.

You need to cache the response from that fetch call so you can still use the page
while offline. So let’s go ahead and add a couple of new routes to your service worker:

toolbox.router.get("*.html', toolbox.cacheFirst, {
cache: {
name: 'sw-toolbox-versioni',
maxEntries: 20,
maxAgeSeconds: 60 * 60 * 24 * 7

}
};

toolbox.router.get('/*', toolbox.networkFirst, {
origin: 'openlibrary.org',
cache: {
name: 'sw-toolbox-versioni',
maxEntries: 20,
maxAgeSeconds: 60 * 60 * 12

}
};

That first route is to cache your HTML files, which you just haven’t done to this point.
The second one is the important one for your dynamic data. You tell sw-toolbox to look
at all content from the origin (openlibrary.org) since the call originates from a different
domain than your app. Notice also that you're telling sw-toolbox to use the networkFirst
strategy. This is because API data should typically be fresher than your static content.
This is also why if you look at your cache expiration for this route, you're specifying that

70

CHAPTER 4 CACHING AND OFFLINE FUNCTIONALITY WITH SERVICE WORKERS

you should expire this cache in 12 hours. Of course, that value will vary based on your
needs, but typically dynamic data should stay relatively fresh.

So now you have a dynamic page, you're caching the page, and the response that
holds the data to generate the content on that page.

Close all of your open clients in the browser, open a new browser tab and its
DevTools, and navigate to the main page. Navigate to both pages to let the content make
its way to the cache.

Now in DevTools, choose the Offline option in the Service Workers section of the
Application tab.

Navigate around the app, and you should see everything operating perfectly
normally. In case you're skeptical about the functionality of that Offline option in
DevTools, try navigating to google.com or somewhere else on the Web to insure you have
no Internet connection for that browser tab. You could also just turn off your WiFi.

Head on back to arrrrguably the best pirate site on the Web, because it’s fully offline
capable!

Whew, that was a lot of material, but who even needs an Internet connection now?

Looking Ahead

I've covered how to save things for offline use (or to just make everything speedier by
going to the cache instead of the Web) when you need to fetch them, but what about
when you need to update data on the server? That's what background sync does: holds
on to your requests while you don’t have a stable network connection and then sends
them off into the great big Internet once you do. Let’s take a look at that next!

71

CHAPTER 5

Background Sync
for Offline Apps
with Service Workers

Most of the Pirate app is fully offline-capable. There’s one glaring weakness remaining,
though, as far as functionality without a connection goes. If you need to make an API call
while you don’t have a connection, there’s no mechanism in place to do that. This Pirate
app is so great, we’'d love for people to be able to leave comments about it. Or even have
pirate-based conversations! But what if you happen to like posting Internet comments
when you're out at sea where your Internet connection is choppy? That’s where the
Background Sync API is going to help!

The Background Sync API

Background Sync will hold onto your API call until there’s a stable Internet connection.
Even better, as the “background” part of the name implies, the app will make the API call
even if your app isn’t active and running. Service workers are so cool.

Registering for sync

The way you're gonna make this happen is by registering for a sync event, and then
listening for it, just like you do with install, activate, and fetch. You're an old hand at
this by now, so the setup for this is going to be a breeze. To start, you'll allow users to post
a message on your site: either “Ahoy!” or “Arrrgh!” You need to post that message to your

73
© Dennis Sheppard 2017

D. Sheppard, Beginning Progressive Web App Development, https://doi.org/10.1007/978-1-4842-3090-9_5

CHAPTER5 BACKGROUND SYNC FOR OFFLINE APPS WITH SERVICE WORKERS

API so you can fetch it later. And because you want to allow that to work while offline too,
you'll go through a sync event.

function postComment(comment) {
navigator.serviceWorker.ready.then((sw) => {
return sw.sync.register(comment);
D;
}

This is how you register for the sync. When a user is ready to post a comment, you
check if the serviceWorker object is ready. If so, you get a reference to the service worker
passed into the function in your then method. You call sync.register on that object
and pass in a string key. This is the key you'll look for in your service worker. In your case,
you pass in the string representation of whichever button the user pressed.

Listening for sync

In the service worker, the string key you registered for will be referred to as a tag. Let’s
take a look at that code:

importScripts('sw-toolbox.js', 'pirate-manager.js');

self.addEventListener('sync', (event) => {
const data = pirateManager.setupCommentData(event.tag);
event.waitUntil(pirateManager.postComment(data));

};

In the service worker, you listen for the sync event. This event holds a tag property
that will let you know which button was pressed, because that’s what you registered
earlier on the button press in script. js. You take that tag and post it as the comment by
sending it to the pirateManager.postComment method. Of course, just like before, you
want the event to wait for you to finish your work before completing.

You've put the implementation of the postComment method inside of an object
called pirateManager because you may want to be able to post comments outside of the
service worker, too (remember, service workers are progressive enhancements; you still
want your app to work even when service workers don’t). So that you don’t duplicate
code, you have a few helper functions in the pirateManager. You'll look at that file in

74

CHAPTER5 BACKGROUND SYNC FOR OFFLINE APPS WITH SERVICE WORKERS

a bit. For now, it’s important to know that the postComment method returns a promise.
When that promise resolves, the sync is finished. If the promise is rejected, another sync
event may fire later on.

Implementation Details of Using sync

Let’s take a look at the implementation of postComment as well as the whole
pirateManager object, saved in a file called pirate-manager. js.

Note All of the code in this chapter can also be found on the book’s GitHub site at
github.com/dennissheppard/pwa in the branches starting with chapters.

The pirateManager object will take care of fetching your comments as well as
posting them:

var pirateManager = (() => {
return {
getComments: getComments,
postComment: postComment,
setupCommentData: setupCommentData

};

function getComments() {
return fetch('https://pirates-b74f7.firebaseio.com/commentList.json")
.then((response) => response.json())
.then((data) => {
this.commentlList = data;
return this.commentlist;

1

function postComment(commentData) {
let data = JSON.stringify(commentData);

75

CHAPTER5 BACKGROUND SYNC FOR OFFLINE APPS WITH SERVICE WORKERS

return fetch("https://pirates-b74f7.firebaseio.com/commentList.
json",
{
method: "POST",
body: data
}
.then((response) => {
response.json();

};

function setupCommentData(comment) {
const d = new Date();
const date = (d.getMonth() + 1) + "/" + d.getDate() + "/" +
d.getFullYear() + " " + d.getHours() + ":" + d.getMinutes() + ":" +
d.getSeconds();

const data = {
commentText: comment,
date: date

};

return data;

HO;

There are three relatively straightforward methods here. The only details you need to
know for background syncing are that the postComment method returns a promise via the
fetch method, and that you're taking in the comment from the service worker to POST it
to the APL

Note This file is using the revealing module pattern. Notice at the top of the file
there is a return statement that contains an object with properties referencing
every function that other parts of the app might need. These functions are
accessible through those properties.

76

CHAPTER5 BACKGROUND SYNC FOR OFFLINE APPS WITH SERVICE WORKERS

You can see the high-level architecture for how you're going to use this manager file

and how it fits into the rest of the app in Figure 5-1.

'{i}

4
\(\vﬁ ot

oS, Service worker
[Js "

</

Ul layer \

\ et
y

sync tires

- Call APl when

pirate-manager.js

Figure 5-1. App architecture using sync with a “manager” or service layer file

Now in the script.js code, you tie everything together:

(0 = {
document.addEventListener('DOMContentLoaded', init, false);

function init() {
registerServicelWorker();

addListeners();
getComments().then((commentList) => renderComments(commentlList));

function registerServiceWorker() {
if ('serviceWorker' in navigator) {
window.addEventListener('load', () => {
navigator.serviceWorker.register('service-worker.js').
then((registration) => {
console.log(registration);
}, function (err) {

77

CHAPTER5 BACKGROUND SYNC FOR OFFLINE APPS WITH SERVICE WORKERS

console.log(err);

1

1;
} else {
console.log('No service worker support in this browser');

function getComments() {
return pirateManager.getComments()
.then((commentList) => commentList);

function postComment(comment) {
const data = setupCommentData(comment);
if (navigator.serviceWorker) {
navigator.servicelWorker.ready.then((sw) => {
return sw.sync.register(comment)
.then((args) => {
appendComment (document.getElementById('comments"'),

data);
9]
.catch((err) => {
console.log(err);
9K
1)
} else {

pirateManager.postComment(data).then(() =>
appendComment (document.getElementById('comments'), data));

function addListeners() {
document.getElementById('arrghBtn').addEventListener('click", () =>

postComment('Arrrgh!"'));

78

CHAPTER5 BACKGROUND SYNC FOR OFFLINE APPS WITH SERVICE WORKERS

document.getElementById('ahoyBtn').addEventListener('click", () =>
postComment('Ahoy!"));

function resetElements() {
let comments = document.getElementById('comments');

comments.innerHTML = 5

function renderComments(commentList) {
resetElements();
let comments = document.getElementById('comments');
Object.keys(commentList).forEach((key) => {
let comment = commentList[key];
appendComment (comments, comment);

};

function appendComment(commentsEl, comment) {
let commentElement = document.createElement('p');
commentElement.innerHTML = comment.commentText + " - " + comment.
date;
commentsEl.appendChild(commentElement);
let hrElement = document.createElement('hr');

commentsEl.appendChild(hrElement);

NO;

Again, nothing too complex here, and I already covered the code that registers the

sync event. One thing to note is that you're still registering the service worker like you

always have before. This code registers the button click handlers, fetches comments that

79

CHAPTER5 BACKGROUND SYNC FOR OFFLINE APPS WITH SERVICE WORKERS

have already been posted, and renders the comments on the page. The last thing to do to
run this is to make some minor markup changes from the examples in the last chapter:

<h1>Comments</h1>
<div id="comments">
</div>

<div style="display: flex; flex-direction: row">
<button id="arrghBtn">Say Arrrgh!</button>
<button id="ahoyBtn">Say Ahoy!</button>
</div>

This is where you place posted comments and your two buttons for posting the
user’s message of choice. Once you have all this, run the code and post a couple of
messages. These will fire the sync event and post to the Firebase API (you may even see
other readers’ previous messages from their own pirate ships across the sea, so say Ahoy!
to them!).

Testing for Offline Sync

To test the background sync functionality, turn your Internet connection off. Don’t
worry, it’s just temporary. The Offline mode of the browser isn’t quite sufficient for this
test.

Once your connection is off, post another message. You'll see that it shows up right
away. That’s because in your script. js code, you're manually appending the comment
to your list of comments as soon as you register for the sync event. But nothing was
posted to the API. Put a breakpoint in DevTools on the sync listener in the service
worker, and maybe another in the pirateManager.postComment method. If you turn your
Internet connection back on, your breakpoint should be hit, and the actual comment
will post to the API! You can see a high-level overview of this process here in Figure 5-2.

80

CHAPTER5 BACKGROUND SYNC FOR OFFLINE APPS WITH SERVICE WORKERS

9 Connection is back, sync fires
o NO connection Service worker
Ly
= /+/1
</>
Ul layer

9 After sync, APl is updated

pirate-manager.js

Figure 5-2. No connection, so the script.js file is on its own. Then the connection
returns and sync is fired. The service worker calls the pirate-manager.js file to
update the API.

Making Improvements

If you refresh the page on the messages you just synced while offline, you may have
noticed that the timestamp of your message was different. That’s one drawback to the
implementation here. You update the UI as soon as the user clicks the button, regardless
of whether the post was made. So in the offline scenario, the post doesn’t actually make
it to your API until the user is back online, which could be seconds or hours later.

A better user experience would be to let the user know that there is no connection
and that their message will be posted as soon as connectivity returns. Once the message
is actually posted, you can update the list of messages.

Also, wouldn’t it be better if the user could post his or her own message instead of a
precanned one? That’s a little more difficult than you may think. If you're offline, you'd
need to store that message somewhere so that the service worker still has access to it
when the sync event fires when the user is back online. After all, the sync event will
fire even if the app is no longer running in the foreground, which means the message
wouldn’t be in memory anymore.

You can make both of these improvements by using a data storage library.

81

CHAPTER5 BACKGROUND SYNC FOR OFFLINE APPS WITH SERVICE WORKERS

Data Storage

For some front-end devs, databases can be a little intimidating. Most relational database
work is unlike anything we do on the front end. But the storage solution you'll be using is
not a relational database. You don’t need to be a DBA, and you don’t need to know SQL.

IndexedDB vs. localForage

IndexedDB is a large-scale, client-side storage solution. You can use it to store large
amounts of data. But unlike relational databases, there aren’t tables. Instead, you
typically write to object stores that can hold numbers, strings, JavaScript objects, blobs, or
files. You can use it to store, search, get, and update data, and even makes use of indexes
for fast data retrieval. Additionally, IndexedDB uses transactions to ensure database
integrity. A transaction is a wrapper around an operation that will fail if any part of

the operation fails. This lets the database maintain its state before the transaction was
attempted. See Figure 5-3 for a high-level look at IndexedDB.

“string”

43233

{"prop™: “val”
prop: val

IndexedDB
Figure 5-3. IndexedDB structure

82

CHAPTER5 BACKGROUND SYNC FOR OFFLINE APPS WITH SERVICE WORKERS

If all of this sounds pretty great, let’s take a quick look at a code example, but don't
worry about too much about the details (you won’t be using this code, and it likely
doesn’t actually work; this is for illustrative purposes only!):

(function() {
// different browsers have prefixes
window.indexedDB = window.indexedDB || window.webkitIndexedDB || window.
mozIndexedDB || window.msIndexedDB;
window.IDBKeyRange = window.IDBKeyRange || window.webkitIDBKeyRange | |
window.msIDBKeyRange;

if (!window.indexedDB) {
window.alert("Your browser doesn't support IndexedDB");

}

// Open the DB
var request = window.indexedDB.open("pirates”, 1);

request.onupgradeneeded = function(event) {
var db = event.target.result;

// Create object store for this database
var store = db.createObjectStore("comments"”, { autoIncrement : true });
store.createIndex('date', 'date', { unique: false });

};

function addComment(commentObj) {
var tx = db.transaction('comments', 'readwrite');
var store = tx.objectStore('comments');

var req;

try {

req = store.add(commentObj);
} catch (err) {

throw err;

}

83

CHAPTER5 BACKGROUND SYNC FOR OFFLINE APPS WITH SERVICE WORKERS

req.onsuccess = function (evt) {
console.log("adding comment successful, arrrgh!");
1
req.onerror = function() {
console.error("something went wrong", this.error);
}s
}
HO;

That’s a lot of code just to create a database and write something to the store.
IndexedDB can be complex. So you need a simpler way to use it, as well as having
built-in fallback support. And that’s where localForage comes in. Before I talk about
localForage, let’s look at a similar code sample that creates a database and writes a
comment to it:

var store = localforage.createInstance({
name: "pirate"
Ds
store.setItem('comment’, {"comment": "ahoy!"}).then(() => {
return localforage.getItem('comment');
}).then((value) => {
console.log(value);
}).catch((err) => {
console.log(err);

};

Well now, that’s a lot less code. In fairness, this can only save one value at a time,
while the prior example can save multiple. But hopefully you get the point. You are more
than welcome to use old school IndexedDB if you would like, but from here on out, the
pirate app (and any future examples that need some type of storage) will use localForage.

localForage is available via npm. So install it with

npm install --save-dev localforage
and make sure you add it to index.html like so:

<script src="node_modules/localforage/dist/localforage.min.js"></script>

84

CHAPTER5 BACKGROUND SYNC FOR OFFLINE APPS WITH SERVICE WORKERS

If you run the pirate app again (make sure you clear out any cached files and old
service workers), you can actually paste the localForage example code above into the
DevTools console. If you do this, then go to the Application tab in DevTools and down to
the IndexedDB section on the left, you can see the result of this operation (you may need
to right-click on IndexedDB and choose Refresh IndexedDB), as in Figure 5-4.

e @ Develaper Tools - hitp://lacalhost:8080/
[w 3] Elemems Conscle Souces Network Performance Memory Application Security Audits AdBlock

Valug
v Object

EE local-foraga-detect-biob-sup|
¥ [pirate - httpoiocalhost: 8080
B keyvaluepairs

E8 local-forage-detect -biob-sup|
E Web SOL
* @ Cookies

! | Conscie

4 x

o | top ¥ | Fier Verbose ¥

23:18:28.269 var store = localforage.createlnstance(d
name: “piratet

Hi
store.setIteal ' comment', {“comsent™: “ahoy!"}l.then(() == {
return loc e, getIten(' comment ')3

23:18:28.289 » Promise {[[ProniseStatus]]: “pending”, [[PromiseValue]]: undefined}

Figure 5-4. The comment is saved in IndexedDB.

So you're able to store items in IndexedDB with few lines of code. What is this
spooky magic? localForage is a third-party library created by the Mozilla team. It
essentially wraps IndexedDB (or WebSQL, though this is a deprecated technology)
and automatically uses localStorage for a fallback. If you're familiar with localStorage,
you may notice that the syntax of localForage in the setItemline of the example is very
similar to localStorage.

85

CHAPTER5 BACKGROUND SYNC FOR OFFLINE APPS WITH SERVICE WORKERS

Using localForage For Better Offline Support

Now we’ll want to use this special magic to improve the pirate app’s offline support and
make the commenting feature a little more robust overall. Take a look at the overall
architecture of the new plan that utilizes localForage in Figure 5-5.

A
Js
</>
Ul layer ’j\ >
f;g;)(,_ R . ~
._)(.;Jl,/@ . | —
e ~
~
~—_~
localForage

Figure 5-5. Pirate app architecture using localForage. The UI saves the comment
to localForage. When the sync event fires, the service worker calls pirate-manager.
Js, pirate-manager.js fetches the comment from the data store and once the API call
is made, the service worker handles the promise, which has the data. From there,
though, we currently have no way to update the Ul from the service worker.

The complete example using localForage is in the chapter5-example-2_
localforage branch of the www.github.com/dennissheppard/pwa repo if you just want
to follow along with all of the code pre-written.

If you want to type out the code, go ahead and add a textarea element to your
HTML view, and change the two buttons to just one comment button:

<textarea id="comment-text" cols="40" rows="10"></textarea>
<div style="display: flex; flex-direction: row">

<button id="commentBtn">Leave a comment</button>
</div>

86

http://www.github.com/dennissheppard/pwa

CHAPTER5 BACKGROUND SYNC FOR OFFLINE APPS WITH SERVICE WORKERS

That will allow your users to say hello in whatever way they choose. You're able to
store that comment using localForage. Let’s go ahead and do that as soon as the user
presses the Leave a comment button and before you register your sync event in the main
script. jsfile:

function postComment() {
document.getElementById('commentBtn').innerHTML = "Posting...";
localforage.setItem('comment', document.getElementById('comment-
text').value)
.then(() => submitPost());

}

Here you're saving whatever the user entered into your offline store with the key
comment. The setItem method will return a promise. You need to wait until you're sure
the value is stored before you register for sync or make the API call. Then you can call
submitPost, which will register your sync if the browser supports it, or just make the API
call if not:

function submitPost() {
if (navigator.serviceWorker) {
navigator.servicelWorker.ready.then((sw) => {
return sw.sync.register('post-comment")
.then((args) => {
offlineTimeout = setTimeout(() => {
localforage.getItem('comment').then((val) => {

document.getElementById('no-connection-
message').style.display = "block";
document.getElementById('commentBtn").
innerHTML = "Leave a comment";
document.getElementById("'comment-text").

value = "";

};

}, 3000);

1)
.catch((err) => {

console.log(err);

};

87

CHAPTER5 BACKGROUND SYNC FOR OFFLINE APPS WITH SERVICE WORKERS

D;
} else {
pirateManager.postComment().then((data) => {
document.getElementById('comment-text').value = "";

document.getElementById('commentBtn').innerHTML = "Leave a

comment";

document.getElementById('no-connection-message').style.

display = "none";

appendComment (document.getElementById('comments'), data);
D;

}

The submitPost function has kind of a lot going on, so I'll break it down. First, you're
checking to see if you have service worker support. If not, you just make the call to the
API and update the UI. If you do, things are much more interesting.

You register sync once you get an instance of the service worker. You changed the
name of the sync key to post-comment. Now you don’t need to register the sync based
off what the user enters. Regardless of the message, you'll always sync with the
post-comment key.

Once the sync is registered, set a timeout to give the API a few seconds to make its
POST. If the POST isn’t successful by that point, you assume the user is either offline or
has a poor Internet connection. So, show an offline message and wait for the sync to fire
again to retry the POST. If the POST is successful, you'll clear the timeout later. You're
declaring that timeout at the very top of this file, but that declaration is not shown in the
above snippet.

Over in pirate-manager. js, retrieve the comment text from your data store so that
you can make the POST to the API. Because you saved the comment into storage as soon
as the user clicks the button, this will work for both when you’re on and offline:

function postComment() {
return localforage.getItem('comment').then((val) => {
let d = new Date();
let data = {
commentText: val,

88

CHAPTER5 BACKGROUND SYNC FOR OFFLINE APPS WITH SERVICE WORKERS

date: (d.getMonth() + 1) + "/" + d.getDate() + "/" +
d.getFullYear() + " " + d.getHours() + ":" + d.getMinutes() + ":" +
d.getSeconds()

};

return fetch("https://pirates-b74f7.firebaseio.com/commentList.
json",
{
method: "POST",
body: JSON.stringify(data)
})-then(() => {
localforage.removeItem('comment');
return data;

};
};
}

Notice that the getItem call to retrieve your comment from the data store returns
a promise. Here you need it to get the value, package it up with a date stamp, stringify
it, and send it off to your API. You also want to remove the comment from your local
database because it’s safe and sound in your remote database. No need to hold on to it.
Also, go ahead and return that packaged-up data after the POST because you'll need it to
update your UL

At this point, the user can POST their own comment even if they’re offline.

Since you're supporting a nice offline message for the offline user, let’s just add
that simple message to your view HTML above your textarea (and no judgement for
that inline styling; it’s purely to illustrate that you want to hide that message until you
determine the user is offline):

<div id="no-connection-message" style="display: none;">

<h2>Arrrgh! Looks like you have no connection. We'll try posting
your message again when you're back online!</h2>
</div>

You're just about finished! The app lets users post comments, whether or not they
have a connection because you're using a web data store, and you can display a message
to the user if they post when they're offline. The last thing you'd like to do is update the

Ul once the user regains a connection.
89

CHAPTER5 BACKGROUND SYNC FOR OFFLINE APPS WITH SERVICE WORKERS

If you noticed the architecture diagram (Figure 5-5), though, you know that you don’t
have anything in place to do that. To this point, pirate-manager knows nothing of the
DOM, and script. js knows nothing of the API. Nice, clean separation. You don’t want
to mess that up. So how do you let your Ul file (script. js) know that the call is finished?

If you were using a library like Rx]JS or any other Pub/Sub type of library, this would
be pretty straightforward. There is a similar way to accomplish this, though, with a built-
in feature of service workers.

The message Service Worker Event

There are times you need the service worker and its clients to communicate back and
forth. This is done via a message event that you can listen for in either the service worker,
the client, or both. Let’s take a look at the syntax before applying it to the app:

navigator.serviceWorker.controller.postMessage("Hey Mr. Service Worker,
whattya say?");

From script.js, you can send a message back to the service worker. On the service
worker side, you just need to set up a listener to catch the message:

self.addEventListener('message', (event) => {

console.log("This was received by the service worker: " + event.data);
event.ports[0].postMessage("Hey Mr. Client, what do YOU say?");

};

You register for an event like you've done a hundred times before. The message
is contained in the event argument passed in. You can even have the service worker
respond by posting a message on the event’s port that was opened when the client sent
the message.

If you want to communicate in the reverse direction, the syntax is mostly the same.
And that’s what you need to do for the pirate app. In your case, the service worker is the
one calling the POST method to save your comment, and your POST method returns a
promise that you can handle in your service worker. So the service worker just needs to
send a message to the client once the POST comment call is finished.

Once pirate-manager is finished POSTing, let the UI know to update

function notifyClient(msg){
self.clients.matchAl1({'includeUncontrolled': true}).then((clients) => {

90

CHAPTER5 BACKGROUND SYNC FOR OFFLINE APPS WITH SERVICE WORKERS

clients[0].postMessage(msg);

};
}

Slip that function right into your service worker code at the bottom. It takes all of
the service worker’s connected clients and passes them into a promise. If there were
multiple tabs open, all running the same service worker, you could selectively send
messages to different clients. In your case, you only have one, and you can reference it
directly and post a message to it using clients[0].postMessage. Way back up in your
sync listener in the service worker, you can call this notifyClient function when your
POST is finished:

self.addEventListener('sync', (event) => {
if (event.tag == 'post-comment') {
event.waitUntil(pirateManager.postComment().then((data) => {
notifyClient(data);
1);
}
1;

You can see that after you call pirateManager.postComment (), you have a promise
that has a data object in the then function. That’s the data returned from postComment.
If you remember, that’s your comment text and a date stamp packaged up for you. You
send that to the notifyClient function, and that should send your data to the client. But
you still have to listen for it over in script. js. However, that’s straightforward:

function addListeners() {

document.getElementById('commentBtn').addEventListener('click', ()

=> postComment());

if (!navigator.serviceWorker) {
return;

}

navigator.servicelWorker.addEventListener('message’, (event) => {
clearTimeout (offlineTimeout);
document.getElementById('comment-text').value = "";
document.getElementById('commentBtn').innerHTML = "Leave a

comment";

91

CHAPTER5 BACKGROUND SYNC FOR OFFLINE APPS WITH SERVICE WORKERS

document.getElementById('no-connection-message').style.display
= "none";
appendComment (document.getElementById('comments'), event.data);
1);
}

Registering for the message event is as simple as calling addEventListener on the
servicelWorker object. As soon as the client receives the message event, you should clear
the timeout that checks to see if you should show the offline message. You've already
received word that the POST is complete, so obviously you have a connection. If the
offline message was displaying, you can go ahead and clear it because now you have
data to show and you're back online. The last thing you need to do is append your new
comment to your list of comments. You passed that data from the pirateManager, and
you have access to it via event.data. This message pattern is a much cleaner way of
allowing the service worker and the UI to communicate. Take a look at Figure 5-6 to see
this updated architecture.

Service worker

@)
Ul layer : /’?f;;
D

<>
o —A
—

localForage

Figure 5-6. Updated architecture using the message event to send the user’s
comment to the Ul

92

CHAPTER5 BACKGROUND SYNC FOR OFFLINE APPS WITH SERVICE WORKERS

You should now be able to post comments while online. Try it out. Also, kill your
network connection and try to post a comment. You'll get the offline message, with
your comment safely tucked away in your offline data store. If you bring your network
connection back to life, after a moment the offline message will disappear and your
comment will be appended to the end of your comment list.

Congratulations, matey! You have a fully capable offline app!

Looking Ahead

Three chapters’ worth of service workers is a lot, so next we’ll shift a bit. There are things
we can do with mobile web apps now that weren’t possible just a few years ago. The next
chapter will dive into what makes some of these features a reality: the web app manifest.

93

CHAPTER 6

Adding your App
to the Home Screen
with Web App Manifest

To this point, everything you've done could be applied to both a “traditional” web app
you’d visit on your laptop or desktop computer as well as on a mobile device. In fact,
offline capabilities are likely going to be needed more often on a mobile device than on a
laptop. But the web app manifest is a PWA feature that is really mobile-focused. With it,
you can specify details about your app that help devices give your users the best possible
experience.

Because of this, you're going to be testing all of these features on an Android phone.
If you don’t have an Android phone, there are several emulators you can download to
play around with to get Chrome installed and follow along.

Each thing I cover here really is best experienced on a device. For example, with a
web app manifest, you can specify icons the device will use when a user saves your app
to the home screen. You can specify visual themes and launch URLs and app names that
show up under the app icon on a device home screen. There are options to change the
browser’s chrome to allow your app to appear as if it’s not even running in a browser. And
you can even specify a splash screen that launches as soon as your app does to avoid that
couple of seconds of a blank white screen if you're fetching the app from the network
instead of the cache.

95
© Dennis Sheppard 2017

D. Sheppard, Beginning Progressive Web App Development, https://doi.org/10.1007/978-1-4842-3090-9_6

CHAPTER 6 ADDING YOUR APP TO THE HOME SCREEN WITH WEB APP MANIFEST

Even better is that all of this is really easy and straightforward. You simply specify
your options in a JSON file and reference it in your HTML files. Let’s take a look at the
manifest file you'll use:

{

"name": "iPatch",
"short_name": "iPatch",
"start url": "index.html",
"display": "standalone",
"theme_color": "#000",
"background_color": "#000",
"description”: "The best pirate app on the high seas! Arrrgh!",
"icons": [{
"src": "images/app-icon48.png",
"sizes": "48x48",
"type": "image/png"
b
"src": "images/app-icon72.png",
"sizes": "72x72",
"type": "image/png"
b A
"src": "images/app-icon96.png",
"sizes": "96x96",
"type": "image/png"
A
"src": "images/app-iconi144.png",
"sizes": "144x144",
"type": "image/png"
b
"src": "images/app-icon168.png",
"sizes": "168x168",
"type": "image/png"
b
"src": "images/app-icon192.png",
"sizes": "192x192",
"type": "image/png"

96

CHAPTER 6 ADDING YOUR APP TO THE HOME SCREEN WITH WEB APP MANIFEST

b
"src": "images/app-icon512.png",
"sizes": "512x512",
"type": "image/png"
H,
"prefer related applications": false,
"related applications": [{
"platform": "play",
"url": "com.arrgh.pirates”

H

"orientation": "portrait"

Most of this is self-explanatory, but Table 6-1 provides explanations just in case.

Table 6-1. Web App Manifest Properties

Property Description

name The name of your application. This will display under the app icon.
short_name A fallback for the name, used anywhere the full name isn’t.

start_url The landing page for your users. Useful, for example, if your app is hosted on

www. iheartpirates.com but you want your readers to go to
www.iheartpirates.com/login.html when they launch.

display Available display options are
Fullscreen: Takes up the entire screen, and nothing of the web browser is
visible. Probably preferred for games.
Standalone: Most browser elements are hidden, like navigation, but some
items might still show.
minimal-ui: Essential Ul elements of the browser are still visible, like
navigation buttons.
Browser: Just your normal old browser.

theme_color Specifies what color to tint the browser elements, such as the browser’s toolbar.
background Displays a color of your choosing as the background of your app before the
color style sheets have had an opportunity to load.

(continued)

97

http://www.iheartpirates.com/
http://www.iheartpirates.com/login.html

CHAPTER 6 ADDING YOUR APP TO THE HOME SCREEN WITH WEB APP MANIFEST

Table 6-1. (continued)

Property Description

description Just what your app does.

icons The icon of your app.
Size: You can specify an icon size (even multiple sizes that are space-
separated). It’s important to include icons of different sizes as there are a
variety of screen sizes your app should support
Src: The path to the image.
Type: The media type, so the browser can ignore the image if it doesn’t
support the file type

prefer You can specify related applications (in the next property), and this value tells

related the device 0S to let the user know other applications are recommended over

applications this one. That seems silly, but a good example of this is if your PWA is related
to a native app that the user needs to perform a particular operation, and the
feature just doesn’t exist on the Web.

related Alist of native applications related to your PWA. Could allow the browser to

applications prompt a user to open the native version of your app.

orientation Set your app to work only in landscape or only in portrait. You can also include
any as a value, but this is the default.

dir This is the text direction for the name, short_name, and description
properties. By default, this will be 1tx or “left to right,” but for languages that
are written right to left, put rt1 here.

lang This specifies the language for the name and short_name properties. This
should be a string containing a single language. By default, this is 'en-US".

scope Much like the service worker scope from previous chapters, this property

specifies which directories and files the web app manifest affects. This value
should be a string representing a valid path of your application. If you don’t
specify this path, everything that is in the directory of the manifest and all
subdirectories are included in the scope.

98

CHAPTER 6 ADDING YOUR APP TO THE HOME SCREEN WITH WEB APP MANIFEST

Now that I've covered what the manifest contains and what it does, you need to make
sure you include it in your app. The following is just a one-liner to pop into each
HTML page:

<link rel="manifest" href="manifest.json">

You have the manifest created, and you have it inside index.html and your other
HTML pages. If you navigate to the app in Chrome and open DevTools, you can see the
Manifest option on the left side of the Application tab like in Figure 6-1. In there, you
have details about your app manifest and can even test the prompt to add your app to
the home screen. So let’s give it a shot.

e WA B i 4 e e s i s
B Comsm BosoW Mwh Pwamis erey ApMSCh Dearty A ACE

Figure 6-1. App manifest details in DevTools

99

CHAPTER 6 ADDING YOUR APP TO THE HOME SCREEN WITH WEB APP MANIFEST

Installing the App to the Home Screen

If you visit the page in Chrome on Android, it’s still hitting your local dev server, so

the pages won’t be served over HTTPS. That is one of the requirements for Chrome to
prompt a user to install your app to the home screen. Later on you'll deploy your app so
that it will be served over HTTPS, and I'll go over how to run an HTTPS server locally. For
now, you can use the Add to Homescreen button in DevTools to test the pop-up, which
I'll talk about in just a moment.

The other criteria for Chrome prompting users to install your app are the name and
short_name properties in your app manifest, a start_url property that works while the
user is offline, a png icon that’s at least 144px, and the user needs to visit the site twice, at
least five minutes apart. This list is in a bit of flux, though, and is frequently updated. It’s
best to test your app frequently if this prompt is something that’s important to you.

It’s up to Chrome as to when the user will have the opportunity to respond to a
prompt. However, when the prompt does show up, there are some things the browser

will allow you to do to exercise more control over the user’s experience.

Handling Installation Events

You may have analytics or other tracking tools that would be nice to use when it comes
to how users respond to the installation prompt. To do this, you can listen to the
beforeinstallprompt event anywhere that you have access to the window object:

window.addEventListener('beforeinstallprompt', (event) => {
event.userChoice.then((result) => {
console.log(result.outcome);

if(result.outcome === 'dismissed') {
console.log('The app was not added to the home screen');
} else {
console.log('The app was added to home screen');
}
s

};

Once the event fires, the userChoice object on the event returns a promise with the
result. From there you can check whether the user dismissed the installation dialog.

100

CHAPTER 6 ADDING YOUR APP TO THE HOME SCREEN WITH WEB APP MANIFEST

Additionally, you can stop the prompt from happening and store it to display to
the user at a later time. This is useful because users tend to be wary about pop-ups and
prompts to do things. So it’s a best practice to show the prompt once the user either
asks for it or has a positive experience with your app, rather than seemingly randomly
asking them to add the app to the homescreen. You can do that by calling event.
preventDefault(); and assigning the event to a variable for later usage:

var deferredPrompt;
window.addEventListener('beforeinstallprompt', (event) => {
event.preventDefault();
deferredPrompt = event;
1;
document.getElementById('install-to-home-screen').addEventListener('click",
0 =1
if(deferredPrompt) {
deferredPrompt.prompt();
deferredPrompt.userChoice.then((result) => {
console.log(result.outcome);

if(result.outcome === 'dismissed') {
console.log('The app was not added to the home screen');
} else {
console.log('The app was added to home screen');
}
;s
delete deferredPrompt;
}
1);

Manually Adding the App to the Home Screen

Of course, all of this assumes Chrome prompts the user, which is not guaranteed. Luckily
for us devs, we can test adding the app to the home screen via DevTools (see Figure 6-1)
and users can manually add the app to their home screen from Chrome’s menu, shown

in Figure 6-2.

101

CHAPTER 6 ADDING YOUR APP TO THE HOME SCREEN WITH WEB APP MANIFEST

y 192.168.1.1
. : New tab

New incognito tab

Bookmarks

Recent tabs

History

Downloads

Share...

Find in page

Add to Home screen

Request desktop site O

Settings

Help & feedback

Figure 6-2. Adding the app to the home screen

If you launch the app, you can go ahead and tap Add to Home screen. Like in
Figure 6-3, Chrome will present you with a pop-up showing your app icon and an input
box pre-filled with the name of the app. Users are welcome to change the name to
whatever they’d like.

102

CHAPTER 6 ADDING YOUR APP TO THE HOME SCREEN WITH WEB APP MANIFEST

Add to Home screen

£ ipatch

CANCEL ADD

Figure 6-3. Icon and name of app

Once the user chooses a name and taps ADD, Figure 6-4 shows how the app gets
added to the home screen.

103

CHAPTER 6 ADDING YOUR APP TO THE HOME SCREEN WITH WEB APP MANIFEST

$

iPatch

4 "y

Phone Hangouts Chrome Apps

Figure 6-4. The app on the device home screen

This is fantastic! Your app is available for launching right there on the device. It is
worth noting, however, that the app really is just on the home screen. If you go looking
for it in the app drawer, you're not going to find it.

The App Splash Screen

In the early days of having web apps launchable from an icon on the home screen, the
experience was fairly janky. The user would launch and see a white screen for several
seconds before any content was visible. Now, of course, you've cached everything, and
your app loads very quickly. But in case of super slow connections, or if you're less
aggressive in your caching, Chrome has the ability to show the user a splash screen at
launch, rather than just waiting for content to load. The best part about the splash screen
is that it’s automatically shown based on properties you've already put in your app
manifest.

104

CHAPTER 6 ADDING YOUR APP TO THE HOME SCREEN WITH WEB APP MANIFEST

The splash screen is generated from name, background_color, and the icon in the list
of icons that is closest to 128dp, with a minimum of 48dp for the icon to show.

Note If the dp is a unit you’re not familiar with, 1dp is the same thing as 1px on
a screen with a density of 160dpi. The Samsung Galaxy S7, for example, has a dpi
of 576. So an image of 128dp would need to be a 460px image. In the example
manifest, the highest resolution image is 192px. This is the equivalent of 53dp.
That’s on the small side, but workable for this particular device. Anything smaller
than 192px, though, and Lighthouse will penalize you!

Now that you have your PWA added to the home screen of the device, go ahead and
launch the app using the icon. As it launches, you should see your app icon with the
name of the app right below it, along with the background color specified in the app
manifest, just like in Figure 6-5.

iPatch

Figure 6-5. Splash screen
105

CHAPTER 6 ADDING YOUR APP TO THE HOME SCREEN WITH WEB APP MANIFEST

The display Property

The display property in the example app manifest is set to fullscreen, which means
that none of the web browser will show. That means your PWA will look like a native app
to the user. In this case, the Pirate App is “designed” (using the word in the loosest sense)
to look like a web app, not a mobile app. But if your app has a very mobile look and feel,
getting rid of the browser chrome around the app will really give the app a native feel.
Take a look at Figure 6-6 to see what a PWA would look like on a mobile device without

any browser chrome.

Note When referring to the “chrome” of the browser, this is not a reference to the
Chrome browser. Instead, a browser’s chrome consists of its visible features, such
as the address bar, navigation buttons, menu options, etc.

Figure 6-6. No browser chrome is visible with the fullscreen option

106

CHAPTER 6 ADDING YOUR APP TO THE HOME SCREEN WITH WEB APP MANIFEST

Note If you try making changes to your app manifest, make sure to clear out
your mobile device’s browsing data. Remember, you’re caching a lot of things now,
so it can be frustrating when you make a change and don’t see it reflected in the
app. Most of the time, simply clearing browser data and opening the app in a new
tab will do the trick. Also, when testing changes having to do with adding the app
to the home screen, don’t forget to delete the app you have already added to the
home screen.

Try a few different settings for display to see which one you prefer for your app.

The start_url Property

You initially set the start_url of the manifest to index.html, which is the default main
entry point of your app anyway. Feel free to tweak that to other pages of the app to see
that the app launches to the set start_url. This seems like a small feature, but think of
the flexibility this affords developers for web apps. With the combination of a fullscreen
display, a different manifest with a different start URL, your PWA could actually consist
of numerous apps. Maybe you want an app dedicated solely to pirate books. In that case,
you could reference a different manifest on pirate books.html with a start_url of
pirate_books.html so that when a user installs it with no browser chrome, the entire
app consists of just that page. That’s pretty powerful for a simple old web app.

It’s also possible to track certain metrics in your PWA by adding query string params
to the start_url. With that, you can track whether a user installed your PWA and when
and how often the app is launched.

Looking Ahead

You're now able to bring your apps closer and closer to their native counterparts. Your
apps work offline, load super-fast with the cache, and users can launch them from the
home screen. Next, I'll talk about giving your users the capability to stay engaged with a
web app like never before by using push notifications.

107

CHAPTER 7

Notifications

This chapter is going to cover something that has become a little bit controversial
recently. While push notifications on the Web are a powerful feature that inches the Web
ever closer to native apps, some developers have started to transform them into trite
annoyances that have conditioned users to ignore notifications or turn them off outright.
How often do you give an app the okay to send you notifications on your phone? On the
Web? There’s a good chance you're pretty stingy with which apps you give permission to
send you notifications. So before we dive in to the technical aspects of this feature, let’s
examine the responsibility that will be bestowed upon you.

Imagine, if you will, that you walk into a store. Maybe it’s a clothing store or a
grocery store, doesn’t matter. And the second you walk in the door, an employee of the
establishment is in your face, asking if he or she can call you regularly. Or text you. Or
mail you something or even show up at your house.

Best case, you'll try a nifty spin move to get around this crazy person and get to the
shopping you desire. Worst case, you're going to turn around and just leave the store.

No one wants to be harassed in this way. Perhaps you think this is overstating the
problem. A push notification never hurt anyone, right? True, but they can be a nuisance,
and a good way to drive away users if they’re not done correctly. As an example, just in
doing some research about this very topic, you might run across a site that looks like
Figure 7-1.

109
© Dennis Sheppard 2017

D. Sheppard, Beginning Progressive Web App Development, https://doi.org/10.1007/978-1-4842-3090-9_7

CHAPTER 7 NOTIFICATIONS

Do you want to Learn about
how our customers are
generating 3X sales, and 20%
conversion rate?

Give your email, and we'll send you the secret Sauce.

—
| Enter Email Address Here |

Yes, Sign me up

No, thanks, i don't want your e book.

Figure 7-1. Overly aggressive engagement attempts—pretty meta

Within seconds of arriving on this page (that shall remain unidentified), the user is
bombarded with a request for notifications and to sign up for a newsletter. Take it easy,
site; we just met! If you haven’t even had a chance to show users what your app is or what
it’s offering them, there’s very little chance a user is going to automatically sign up for
your notifications.

I could talk about opt-in statistics by industry and platform, and that Android users
are more likely to allow an app to send push notifications than iOS, or that both numbers
are declining in general. I could talk about engagement rates and how they go up once a
user does accept push notifications. But all of those stats miss the point that waiting for
the right opportunity to ask your users if they would like you to send them notifications
is the real key. And that opportunity is not the very second they land on your page!

The opportunity will vary from app to app. Ideally, though, you'll want to wait until
the user has done something that indicates an interest in whatever the push notifications

110

CHAPTER 7 NOTIFICATIONS

are about. Maybe you even wait for the user to click a big button that says Enable Push
Notifications. Whatever the opportunity is, remember to treat your users how you'd like
to be treated.

Now that the PSA portion of the chapter is out of the way, let’s look at how you might
(responsibly) engage with your users via notifications!

Web Notifications

This chapter will cover two different types of notifications: web notifications and push
notifications. The former is done entirely using front-end code, with no need for a server
to be involved. If a user has your app open on a desktop browser, web notifications are
a possible option. If, however, you need to send your user a notification even when the
browser tab is closed or the device is in a pocket, push notifications are your only option.
They originate from a server and use a web notification to notify the user even if the app
isn’t active.

Of course, while the “push” flavor of notifications is more powerful, it also is quite a
bit more complex. So let’s start with web notifications to ease our way in here.

Requesting Permission to Notify

What would a pirate app be without a parrot? So Figure 7-2 introduces... Peggy the
Parrot!

Figure 7-2. Say hi to Peggy the Parrot.

111

CHAPTER 7 NOTIFICATIONS

Peggy gets hungry a lot, and once you visit her, it’s your responsibility to feed her. It'd
be helpful if you got a notification reminding you to feed her, lest she get cranky and fly
away. If that happened, you might have to walk the plank for losing the Captain’s bird. So
let’s create that notification:

document.addEventListener('DOMContentLoaded', initPage, false);
function initPage() {
if (!'('Notification' in window)) {
// this browser does not support notifications
} else if (Notification.permission === 'denied') {
// the user denied notification permission!
} else if (Notification.permission === 'granted') {
// setup UI to show notifications already enabled

}

notificationsBtn.addEventListener('click', () => {
Notification.requestPermission();

};
}

Create a peggy parrot.html file, or download the repo from the Chapter7-
example-1_web notifications branch. You can just tuck your script into that file for
now.

Once the DOM is finished loading, you can get started with your initPage function.
You want to check a few things first. Does this browser support notifications? Just about
every modern desktop browser does nowadays. But if this user’s doesn’t, you can display
a message when you check if window has the Notification object. You also can go ahead
and check if permission for notifications has already been denied or granted, and you
can adjust the Ul accordingly.

If after making the initial checks the user’s browser is good to go, and permission
hasn’t been granted or denied, you have to ask for it. You do that by calling
requestPermission on the Notification object. That method returns a promise, so if
you want to do anything after permission is granted, this is the place. For now, you don'’t
need anything in there, so you'll leave the then function off.

112

CHAPTER 7 NOTIFICATIONS

Sending a Notification

Next, go ahead and create your function that sends a notification to the browser:

function sendNotification(opacityRemaining) {
let options = {

body: 'Peggy wants a pretzel! You have ' + (opacityRemaining * 10 * 3)

+ ' seconds to feed her!',
icon: 'images/peggy parrot.jpg’

};

let notification = new Notification('Peggy says', options);

}

Notifications take an options object. The options object has a lot of properties you
could set on it, including an icon the notification can display, actions (which is an array
of actions the user has to interact with the notification), body for text the notification
displays, vibrate (which allows a vibration pattern on mobile devices), and a lot more.
For now, you're going to keep things simple and just have an icon and body text. Feel
free to experiment with some of the other notification option properties. You can find a
list of all of them here: https://developer.mozilla.org/docs/Web/API/Notification/
Notification.

To send the notification, you just make a new Notification object, passingin a
title (which is just a string) and your options object. You can do some things with the
Notification object that is returned, such as closing it after a certain amount of time, or
listen for events about the notification such as an error if the notification couldn’t sent
for some reason or a click event if the user interacts with the notification. But it’s not
required to do anything with that returned object.

The opacityRemaining variable is linked to how hungry Peggy is before she
disappears. Let’s go ahead and make Peggy the Parrot hungry. That will be represented
symbolically by having Peggy fade from the user’s view over 30 seconds. When Peggy is
halfway faded, you should notify the user that they need to feed the bird. Feeding the

113

https://developer.mozilla.org/docs/Web/API/Notification/Notification
https://developer.mozilla.org/docs/Web/API/Notification/Notification

CHAPTER 7 NOTIFICATIONS

bird, in this case, simply consists of the user pressing a button that resets the bird image’s
opacity to 1.0:

function makeParrotHungry() {
let parrotPic = document.getElementById('parrot');
let interval = setInterval(() => {
parrotPic.style.opacity -= .1;
if (parrotPic.style.opacity <= 0) {
clearInterval(interval);
// Peggy has flown away to find food
} else if (parrotPic.style.opacity < .5) {
sendNotification(+parrotPic.style.opacity);
}
}, 1000 * 3);

}

function feedParrot() {
let parrotPic = document.getElementById('parrot');
parrotPic.style.opacity = 1.0;

}

Every three seconds, you decrement the opacity on the image by .1. When
the opacity gets under .5, you want to send the browser a notification, so call the
sendNotification function. To display how many seconds the user has to feed Peggy,
you have to pass sendNotification the remaining opacity. If the opacity gets down
to zero, you can clear out the interval because by that point, it’s too late. The bird has
abandoned you from lack of love and care.

To get this going, you need the image of the parrot in your HTML view, along with a
button to enable notifications and a button to feed Peggy:

<button id="enable-notifications">Enable Notifications</button>

<button id="feed-parrot">Feed Peggy</button>

Go ahead and run this if you've been typing along or you've pulled down the branch
Chapter7-example-1_web notifications from github.com/dennissheppard/pwa. If
you're simply typing along, that branch has some items you might need, like the picture
of Peggy and a couple of other assets. You could also apply something similar to your

114

CHAPTER 7 NOTIFICATIONS

own app. When you load the peggy parrot.html page, you should see our beautiful
bird. Wait a few seconds, and you'll get a notification! Depending on your OS, the
notification should look something like Figure 7-3.

G anosceoso 2

Peggy wants a pretzel! You have 12 seco... B

Figure 7-3. Notification you created letting you know to feed Peggy

This is pretty great. That’s all it took to get a notification.

But wait another few seconds, and you'll see your notification change to 9 and then
another few seconds 6, etc. Because you send a notification on every interval once the
opacity reaches a certain point, you're getting a little bit clogged up.

Imagine if you had an app that sent a notification every time a new message arrived.
If your user is a popular person, all of those notifications could stack up really quickly.
Take Figure 7-4, for example.

Figure 7-4. Notifications stacking up!

115

CHAPTER 7 NOTIFICATIONS

Tagging Notifications

To alleviate this problem, you can use the tag property. The tag property should contain
any string that you would like to identify a notification. When you tag a notification, the
browser will pick up that the notification was already sent and will replace the older
notifications with the ensuing notifications. Just change the options object to include a

tag property:

function sendNotification(opacityRemaining) {
let options = {
body: 'Peggy wants a pretzel! You have
+ ' seconds to feed her!',
icon: 'images/peggy parrot.jpg',
tag: ‘feed-peggy’
}s

+ (opacityRemaining * 10 * 3)

let notification = new Notification('Peggy says', options);

}

Now if you neglect to feed Peggy, you should see just the most recent notification.
This is great for the Web, but pretty basic. The biggest drawback is that this will only work
on desktop browsers. If you try to run the preceding code on a mobile device, you're not
going to get anything. On a mobile device, the browser tab won’t stay active to notify
you. Instead, you'd need to move the notification to the service worker level. You knew
service workers were going to get involved sooner or later! Let’s take a look at how you'd
do this and how you can improve the interactivity of the push notification to help your
users feed Peggy.

Web Notifications with Service Workers

When you get service workers involved with notifications, they’re called persistent
notifications. It really just means you're going to use a service worker to handle your
notifications. Service workers remain persistent in the background of the app, whether
it’s running or not.

Almost all of your code is going to be the same as before. You'll just tweak the line
that actually sends the notification in the sendNotification function and add an
actions property to the options object:

116

CHAPTER 7 NOTIFICATIONS

function sendNotification(secondsLeft) {
let options = {
body: 'Peggy wants a pretzel! You have ' + (secondsLeft * 10 * 3) + '
seconds to feed her!',
icon: 'images/peggy parrot.jpg',

actions: [
{
action: "feed", title: "Feed Peggy"
}s
{
action: "wait", title: "Wait to Feed Peggy"
}

]
};

navigator.serviceWorker.ready.then((sw) => {
sw.showNotification('Peggy says', options);

};

First, let’s look at that actions property. You have an array with two objects in it.
Both have an action property and a title property. The action property is essentially
an ID that you'll use to know if the user clicked that action. The title property is the text
you’ll show the user.

Note The actions property is currently quite limited in its browser support.
Only Chrome supports it. If you’d like to use it, make sure it’s a progressive
enhancement, and that your entire app doesn’t rely on it.

The next change is at the bottom of the function. You need to wait until the service
worker is ready, and once it is, you can call showNotification on the registration object
passed in via the promise, called sw. Other than that, it’s the same idea.

You'll actually be able to listen for user interaction events on the notification so that
you can detect if a user selected Feed Peggy or Wait to Feed Peggy. You listen for those in
the service worker, though, and since you'll need the service worker to set up your whole

push notification feature, let’s circle back to listening for those events.
117

CHAPTER 7 NOTIFICATIONS

Push Notifications

Now that you've laid some groundwork for notifications by requesting permission,
sending a notification from the browser, and setting up some actions for use while
wiring up the service worker, you can get down into the weeds of push notifications. As
mentioned, these notifications originate from a server, so the browser doesn’t even need
to be open to receive these notifications.

The process (also viewable in Figure 7-5) in which this works is as follows:

1. After the user grants permission to receive notifications, the app
asks a web push service for a PushSubscription object. Each
browser is in charge of implementing that web push service. You
don’t particularly care what that service is, as long as you can
request a PushSubscription and it returns one.

2. The web push service returns the PushSubscription object to the
browser.

3. The app sends the PushSubscription object to your app server for
safe keeping.

4. When some action requires a push notification, the app server
tells the web push service to send a notification based on a set of
keys (more about those in a bit).

5. The web push service sends the notification to the browser, where
it'’s handled by the service worker.

118

CHAPTER 7 NOTIFICATIONS

WWW
App @
=)
Push service

Figure 7-5. Push notification architecture

That'’s a lot of steps, but I'll make sure to cover each one. As mentioned, however, this
part does get significantly more complex. Here be dragons.

Subscribing a User to Push Notifications

To send a push message to a user, you need a PushSubscription object from the
browser. That object contains all the information the server needs to identify your
browser and send a push message. So as soon as you get the PushSubscription object,
you can send it off to your own server, and the battle is half won. Let’s go over how to
subscribe the user.

The first thing you need are Voluntary Application Server Identification (VAPID)
keys, also known as application server keys. This is a set of alphanumeric strings that
identifies your application on the web push server. Using them, the server will know
who is requesting the push and who will receive it. This is a security precaution to make
sure there’s nothing iniquitous happening between the application and the server,
such as the push service reading message data rather than it being private to the end
user or someone sending you push notifications that shouldn’t be. Imagine spam push
notifications... Yuck.

119

CHAPTER 7 NOTIFICATIONS

This set of keys contains a public key and a private key, one that you can share,
another that you shouldn’t. You can generate a set of keys a couple of different ways, but
the easiest is by visiting https://web-push-codelab.appspot.com/. This is a site created
by Google and is pretty self-explanatory. Just hit the Refresh Keys button to get a public
and private key. Keep that page open, because you're about to use the public key.

In pirate-manager.js, let’s throw the public key at the top of the file and assign
it to a variable called publicServerKey. Then add a reference to a method you’ll call
subscribeToPush. Then you just need to create that method to subscribe the user to
push notifications.

var publicServerKey =
' BIPFAXHI5YOZQF IU4bUyyKgKxqPWIIMF7WHZkMg1u7XeljjeNpwadsfvIXwtbOENT
cvEA_6pzwjYsY9_glLQFnRs';

return {
getComments: getComments,
postComment: postComment,
registerServicelWorker: registerServiceWorker,
subscribeToPush: subscribeToPush

};

function subscribeToPush() {
const options = {
userVisibleOnly: true,
applicationServerKey: urlB64ToUint8Array(publicServerKey)
};
navigator.serviceWorker.ready.then((reg) => {
return reg.pushManager.subscribe(options);

1)
.then((subscription) => {

console.log('subscription:
return subscription;

1

, JSON.stringify(subscription));

120

https://web-push-codelab.appspot.com/

CHAPTER 7 NOTIFICATIONS

function urlB64ToUint8Array(base64String) {
const padding = '='.repeat((4 - base64String.length % 4) % 4);
const baseb4 = (base64String + padding)
.replace(/\-/g, '+")
.replace(/ /g, '/');

const rawData = window.atob(base64);
const outputArray = new Uint8Array(rawData.length);

for (let i = 0; i < rawData.length; ++i) {
outputArray[i] = rawData.charCodeAt(i);
}

return outputArray;

}

Let’s get that 6001b gorilla out of the way. That ur1B64ToUint8Array function is
ridiculous. Don’t even look at it. Okay, fine, take 10 seconds because you know you're
going to. Done? Alright, yes, it’s ridiculous, and it’s borrowed directly from Google’s
push notifications repo on GitHub: https://github.com/GoogleChrome/push-
notifications/blob/master/app/scripts/main.js. You need it because the push
subscription needs the public server key as a UInt8Array. So you'll use that function to
get it into the appropriate format and be on your way. Thanks, Google!

Looking above that crazy function, the subscribeToPush method has an options
object. One of the options is userVisibleOnly, which has to be set to true and has to
be included. There was a plan once upon a time to allow devs to send users silent push
notifications in case they wanted to update the app or do something without bothering
the user with a visible notification. A sneaky dev could use that for shady purposes, so for
now only visible pushes are allowed.

Note That silent push notifications plan is now encompassed in the Budget API,
which allows limited background work without notifying the user, like a silent push
notification. Each site will be given a “budget” of resources to use to limit how
much happens in the background without the user being notified.

121

https://github.com/GoogleChrome/push-notifications/blob/master/app/scripts/main.js
https://github.com/GoogleChrome/push-notifications/blob/master/app/scripts/main.js

CHAPTER 7 NOTIFICATIONS

The next option is your applicationServerKey that you're converting. Once you
have them, you need a reference to your service worker registration object that has
access to the pushManager that has a subscribe method on it. You pass in your options
and wait for a successful then that should have your PushSubscription object.

Note You may be wondering what actually happens in that subscribe method
on the pushManager. The browser is making a call to a push service with your
public server key to register your app with an endpoint. That endpoint will be
returned to you in the PushSubscription object. Each browser has a different
push service, but lucky for us the API is all the same. The only thing you need
concern yourself with is sending off your key to the subscribe method.

Add a call to pirateManager.subscribeToPush in the peggy_parrot script on
the check to see if notifications have been enabled. That way if the user had granted
permission on a previous page load, you can just subscribe to push right away. If
permission wasn’t granted before, you want to make a call to subscribe to them down in
the enableNotifications function.

document.addEventListener('DOMContentLoaded', initPage, false);
function initPage() {
if (!('Notification' in window)) {
// this browser does not support notifications

} else if (Notification.permission === 'denied') {
// the user denied notification permission!
else if (Notification.permission === 'granted') {

pirateManager.subscribeToPush();

}

function enableNotifications() {
Notification.requestPermission().then((result) => {
pirateManager.subscribeToPush();
D;
}

122

CHAPTER 7 NOTIFICATIONS

You can go ahead and run this, and if you have DevTools open, you should see
something like Figure 7-6.

Toals - jparrot.htm|
(% (] Ewments Console Sources MNetwork Perfonmance Memory Application Sscurty Audits AdBlock

Sources | Contert scripts % ([pirate-managers pirate-managerjs x b, T 5 O

Asyre
¥ O top D Serving from the file system? Add your fles into the workspace, more never show * | @ Debugger paused
v .Q,bc:-houam S.E 1L?§;:?nnz=.nscrme{ensncl i ¥ Treeads
i fmages 57 userVisiblednly: true, * Main paused
> [styles 58 applicationServerkey: url364TolintBArraylpublicServerkey)

; service-worker js #8524 (activated)
60 narlw\or. serviceworker, ready. then({reg) => { reg = ServiceWorkerRegistration {installimg: null, W » Watch
e e peansier SLbse b0 apt s

62 n ¥ Call Stack
* o senvice-warkecs 63 Mr(is.mscrlouonb == (subseription = PushSubscription \ere:om “https://fen. googleapis. con .
[64} trnnm\r ription: *, JSOM.Bstringify(subscription)) # navigator senviceWarker.ready then then
c ._.E pirate-n 565
66
67 } ¥ Scope
- ‘ ¥ Local
{} Line 85, Cobumn 11 ® subscription: PushSubscription
¢ Console Remote devices "
® | wp ¥ | Filter Verbose ¥ -
3:15:26.153 subscription: {“endpoint™:=hitps://fcn.googleapis. con/fon/send/ chOBMypWEBA: 91bF olMng IAwEDh Kz Skelir 23001 IghTSBEMW3 {9 1@50-2CAx grETT 164
vrug&s’smmmr L]’Dwuﬁl “keys” { p25Bah™ : " EMYkybx Lt mv.nnzm.ln.\ﬁnmmuurrmw 17-R-nl2)y 3AnpaT riNr&STRPCF Mtaurlx\.[.mwhs!w;na * "auth®s vfcl!anmb&mdm:nﬂ— }}

Figure 7-6. PushSubscription returned from subscribe call

Slaying these dragons one step at a time. You can now check to see if your user has a
subscription before making a call to subscribe:

function subscribeToPush() {
const options = {
userVisibleOnly: true,
applicationServerKey: urlB64ToUint8Array(publicServerKey)
};
navigator.servicelWorker.ready.then((reg) => {
return reg.pushManager.getSubscription().then((subscription) => {
if (subscription === null) {
return reg.pushManager.subscribe(options);
} else {

let promise = new Promise((resolve, reject) => {
resolve(subscription);
D;
return promise;
}
D;
1))

123

CHAPTER 7 NOTIFICATIONS

.then((subscription) => {
console.log('subscription: ", JSON.stringify(subscription));
return subscription;

};

When you get your registration object once you check if the service worker is ready,
you can make a call to getSubscription on the pushManager object. If the subscription
exists, you can just return that in your own promise; you don’t need to subscribe the user
again. If that subscription does not exist, you can call subscribe, passing in your options
just like before. In either case, you will still hit the then function at the bottom of the
code snippet with a subscription object passed in.

Note Checking if the user is already subscribed is also good practice so that you
can update your Ul accordingly. For example, if you have a button asking the user
to subscribe to push notifications, checking beforehand can allow you to disable
the button or let the user know they’re already subscribed.

Saving the PushSubscription Object

Your next step is to save that subscription information on your own back-end server. You
might be thinking, I don’t have a server. You're right. You don’t have a server. Now what?
Build one?

You'll be using a very simple Express server to handle your server-side push
notifications. If you haven’t worked with Express before, don’t panic. Don’t let your eyes
gloss over. Just another dragon to slay.

To get a full understanding of what’s happening with push notifications, try to follow
along with the server-side code. There are a few parts that are particularly relevant to
push notifications that will be called out. If you'd really like, though, you can ignore
most of this server-side code and just use this file. When it comes time to implement
push notifications on your own projects, though, the pattern and steps will largely be the
same, but there is logic specific to the pirate app. Just change the endpoints to whatever
you need, and update the timing of when you want the push notifications to show.

First, in your terminal run, type

npm install --save express web-push body-parser

124

CHAPTER 7 NOTIFICATIONS

This will install your necessary libraries, including web-push. That’s a library
that’s going to make your life significantly easier by handling all of the necessary
authentication and security protocols with the VAPID keys.

Now, create a directory in the root of your app and call it server. Inside there,
create a blank JavaScript file. You'll use server. js in this project, but feel free to call
it whatever you'd like. I'm going to cover what goes in that file in chunks so it’s not too
overwhelming.

let express = require("express");

let webPush = require('web-push');

let bodyParser = require('body-parser');
let app = express();

let subscriptions = [];

let timeleft = 15;

let timer;

At the top of the file, declare some variables. You need to bring in both ExpressJS
and the web-push libraries. You also need to bring in a package that allows you to grab
the body of whatever you post to your server’s endpoints. That’s what the body-parser
package does.

You create an instance of Express, an array that will hold your PushSubscription
objects, and then some variables to deal with the timing for how long it takes Peggy to
fade out.

If you were really setting this up to be accurate, most of the logic for managing
Peggy’s state would live on the server. As it stands, the logic is a little spread out and
leads to some inconsistencies that you'll see. But for the purposes of push notifications,
you just need to know when to show them. So I've moved just enough logic to the server
to be able to handle that.

app.use(bodyParser.json());

app.use(function(req, res, next) {
res.header("Access-Control-Allow-Origin", "*");
res.header("Access-Control-Allow-Headers", "Origin, X-Requested-With,

Content-Type, Accept");
next();

D

125

CHAPTER 7 NOTIFICATIONS

Here you're telling your Express app to use the body parser. Then you need to add
in a block of code for cross-origin resource sharing (CORS). This allows you to hit your
API from a different domain. You need that because your server will be running on a
different port than the front end of your code. You don’t have to set it up this way. If you'd
like, Express can serve all of your front-end code as well. For now, though, you're sticking
with your original dev server for the front end, and Express will live one port higher.
You'll see that code in a bit.

const vapidKeys = {

publicKey:
'BCi3AfGIVfxoDOB3IGMbvyAzOBI8KigRrUn60hYals fUrwOq6hohI1x464A0aVyaNFhAGNiO
thYCtSxRmyoP8SI"',

privateKey: 'tjl2sNdpoilYqUhR_TjSSZNq1U2fcBNw2LT76C_nCOM'

};

webPush.setVapidDetails(
'mailto:dennissheppard+pwa@gmail.com’,
vapidKeys.publicKey,
vapidKeys.privateKey

);

Here is a code block that’s particularly relevant to push notifications. Remember
those VAPID keys you created? You need to send those off to the web-push library. You
also have to include some kind of link that includes a mailto email address in case the
third-party push server needs to contact whomever is sending the messages:

app.post('/register', (req, res) => {
if (!'req.body || !'req.body.endpoint) {
// Invalid subscription.
res.status(400);
res.send('Invalid subscription');
return false;

}

console.log('Subscription registered ' + req.body.endpoint);
const found = subscriptions.some((sub) => {
return sub.endpoint === req.body.endpoint;

126

CHAPTER 7 NOTIFICATIONS

D;
if (!found) {
subscriptions.push(req.body);

}

if (!timer) {
setPushTimer();

}

res.sendStatus(200);

1

Here’s another section that’s pertinent to notifications. Remember that you have to
save your subscription on the server? This is the main part of step three in the overall
architecture from Figure 7-5.

This chunk of code sets up an endpoint with which you can POST that subscription
to from the front end. The route to the endpoint is just /register, and it will take
your pushSubscription object on the body of the POST. That object needs to have the
endpoint property on it so the push server knows where to send the notification. If any
of that stuff is bad, you return a 400 error telling the front end that the subscription is
invalid.

If everything went well, you will want to add the subscription object to your array
of subscriptions. There’s some code in there to ensure you're not saving duplicate
subscriptions. In your production apps, you'll likely want to save that subscription to a
database for future sessions, but let’s stay focused on the task at hand here.

After saving the subscription in your array, if you haven’t already set the timer in
motion, you do so with setPushTimer (). Let’s look at that function next:

function setPushTimer() {
timer = setTimeout(() => {
console.log('timeleft: ', timelLeft);
subscriptions.forEach(sendNotification);
}, 1000 * timeleft);

127

CHAPTER 7 NOTIFICATIONS

This is pirate app-specific logic. After a certain amount of time, you want to send the
notification. In your case, it’s about half-way through the time it takes Peggy to fade out.
In your apps, that logic will be up to whatever rules you have to show the notifications.
For this app, it’s a simple timeout. Once the timeout executes, you want to send the
notification for each subscription you have. Again, this will vary depending on the app.

Now, let’s look at what it takes to actually send that notification.

Triggering the Push Notification

This is the code that will actually send the notification to the push server, which will then
contact your browser. This is step four and five of the flow we went over before. Step five
is taken care of for you by the web-push library and the push server, but triggering all of
that is up to you.

function sendNotification(subscription) {
timer = null;
const notificationText = 'Peggy wants a pretzel! You have ' + timeleft + '
seconds to feed her!';
webPush.sendNotification(subscription, notificationText).then(function() {
console.log('Notification sent');
}).catch(function(error) {
console.log('Error sending Notification' + error);
subscriptions.splice(subscriptions.index0f(endpoint), 1);
D;
}

Once you're ready to send the notification, you can kill your timer. Then, whatever
data you want to send with the push notification along with your subscription object
you passed in to this function is included in a sendNotification method on the webPush
object. That returns a promise you can use to do something after the notification was
sent or to handle errors. In your case, if for some reason the notification didn’t send,
the subscription is no good, so you want to remove that subscription object from your
array of them.

At this point, your notification is sent! The cycle is complete.

You're not quite done yet, though. What happens when or if the user feeds Peggy?
You need to reset the timer and notify them again later. So you need something that the
front end can use to update that timer. Again, this is an item that’s really specific to this

128

CHAPTER 7 NOTIFICATIONS

particular app, but you'll see later how you can use the following logic to enable users to
interact directly with notifications:

app.post('/feed', (req, res) => {
timelLeft = 15;
if ('timer) {
setPushTimer();

}

res.sendStatus(200);

D

This is a very simple endpoint the front end can POST to that resets the timer. This
way if the user does feed Peggy, you can send off another notification when she’s hungry
again:

app.listen(8081, function() {
console.log(Listening on port 8081);

1

The last thing you need to do on your server is just start it up. As mentioned, you're
running it one port above where your front-end server is running, but configure your
ports and where your server is running however you'd like.

To get the server running, go to a new terminal window or tab, navigate to the root of
your app and run

node server/server.js

and you should see something like in Figure 7-7.

Termina

Denniss-MBP:PWA book dennissheppard$ node server/server.js
Listening on port 8081

Figure 7-7. When you run the server, it should let you know that it’s running and
listening on whatever port you configured it to use

129

CHAPTER 7 NOTIFICATIONS

Now that the server is running, you can hit one of your new endpoints to make sure
the timer is resetting when you feed Peggy. So you need to hop back over to the front end
to update your feedParrot function inside peggy parrot.html:

function feedParrot() {
let parrotPic = document.getElementById('parrot');
parrotPic.style.opacity = 1.0;
fetch("http://localhost:8081/feed’, {
method: 'post’
}).then(() => {
console.log('fed and posted");
1;
}

The front-end code should now be hitting your locally running API, though you may
need to change the URL in the fetch call to your local IP address instead of 1ocalhost.
Once that’s in, whenever the user clicks the Feed Peggy button, the server will be
updated to reset the timer that controls when a push notification will show.

And that’s it for the server! If you'd never worked with Express or node before, you're
basically an expert now. Time to move back to the service worker, because you need to
catch those notifications that the push server is now sending your way. And remember,
these will notify the browser even if your particular app was closed. What makes that
possible is your wonderful service worker. Let’s take a look!

Catching Push Events in the Service Worker

Your service worker is the part of your app that will handle displaying the push
notifications when it receives the push event from the push server. That means all of the

notification logic will live in the service worker and run when it receives the event:

self.addEventListener('push', function(event) {
console.log(Push received with this data: "${event.data.text()}"");

const title

'Peggy says:';

let options = {
body: event.data.text(),

130

CHAPTER 7 NOTIFICATIONS

icon: 'images/peggy parrot.jpg',

actions: [
{
action: "feed", title: "Feed Peggy"
1
{
action: "wait", title: "Wait to Feed Peggy"
}
]

};

event.waitUntil(self.registration.showNotification(title, options));

D

When you catch the push event, you have your familiar options object with your icon
and actions and body. Before, you were configuring that body text on the front end. You
can still do that if you'd like, but this example shows that you can just as easily display
text that you sent from your server. You can configure the server to send other data too,
but in your case it is a simple text string you want in the body of the notification.

You don’t want the push event to end until you've had a chance to actually show the
notification. So you throw your showNotification method inside the event.waitUntil
function. showNotification lives on the self.registration object and requires your
title and the options object, which is how you've been showing notifications all along.

You're finally ready to run all this code! Your server should already be running. Make
sure your front-end server is still going. At this point, it'd probably be helpful to clear
out anything from before. In DevTools in the Application tab, there’s an option to clear
application data (see Figure 7-8). Let’s do that and make sure you don’t have anything
cached that would mess us up.

131

CHAPTER 7 NOTIFICATIONS

e @ Devel Tools - hitp:/jlocalh B0/
= dal Elements Console Sources Network Pedormance Memory Application Security Audits AdBlock
Application Clear storage

[Manifest hitpe/localhost8080

Lt Service Workers

@ Clear storage Application

- i
Storage B Unregister service workers

» EE Local Storage

» 22 Session Storage

» = IncexedDB Local and session storage
= web SaL

» @ Cookies

Storage

Indexed D8

Web SOL
Cache

Cookies
» = Cache Storage
&8 Application Cache
Cache
Frames Cache storage

> 1
Bien & Application cache

Clear site data

Figure 7-8. Clearing application data

When this runs, navigate to the peggy parrot.html page. If the button is visible,
enabling you to show notifications, do so and accept permission. If you've done that
previously, it’s likely that the button won’t be there.

Wait about 15 seconds (or however long you set the timer for in server. js code) and
you should see a notification. It will look different depending on your OS, but not only
should you see a notification, but you'll also have options with which to interact with the
notification, like in Figure 7-9.

Peggy says: Close
‘. localhost:8080
Peggy wants a pretzel! You have 15 ¢ m
Feed Peggy
Wait to Feed Peggy

Settings

Figure 7-9. Notification from the server with action options

In fact, you should even be able to close the browser tab and still see the notification!
Maybe even more impressively, you can turn off your phone’s screen in that
15-second window and receive the notification there as well, but not before setting up
the ability to connect an Android device to the dev server via port forwarding.
132

CHAPTER 7 NOTIFICATIONS

Testing Push on Mobile

As previously discussed, service workers are only allowed on secure connections. The
exception to that is for using localhost. You can hit your development server from a
mobile device (if both are on the same internal network) by using the IP address, but

unless you set up TLS for your dev server, the service worker isn’t going to install when

you run your app on mobile.

The good news is that the desktop version of Chrome allows you to set up remote

debugging for your Android device by using port forwarding.

Connect your Android to your computer using a USB cable. On your Android device,

make sure the connection mode isn’t set to Charge Only. You may be presented with a

list of options on your device that looks like Figure 7-10.

Figure 7-10.

Use USB for

Pt

)
L

Transferring media files
Transfer media files to a computer via
an MTP connection.

Transferring images
Transfer imi and other files
viaaPT tion if MTP is not
supported

player or input source.

Charging

Charge your phone via USB.

CANCEL

Changing your Android connection from Charge Only

133

CHAPTER 7 NOTIFICATIONS

Either of the Transferring options will work.
Now open DevTools on Chrome and at the bottom next to the console, you should
see an option that says Remote Devices, as in Figure 7-11.

Console Remote devices x

Devices Settings
SM-N920V Discover USB devices
e Connected
Need help? Read Chrome remote debugging documentation.
l Settings

Port forwarding

Define the listening port on your device that maps to a port accessible from your
development machine. Learn more

1051:3000 localhost:8080

Add rule
| 1 device detected. Read remate debugging documentation for more information.

Figure 7-11. Remote devices option on DevTools

In Settings, you'll see a an option that says Port forwarding. Click Add rule and in
the left textbox, enter whatever port you'd like to use on your Android device to connect
to your dev server. This example uses port 3000, but put in whatever you’d like. In the
right textbox, enter the address you would like Android to connect to when you use
localhost:3000. In your case, that’s the machine’s localhost on port 8080.

Now you should be able to open a Chrome tab on Android, navigate to
localhost:3000, and you're hitting your dev server’s localhost:8080. The service worker
will install, and everything should work as expected, with a push notification on the
mobile device, just like in Figure 7-12.

| Peggy says: 12:17 AM
%O Peggy wants a pretzel! You have 15 seconds to feed her!

FEED PEGGY WAIT TO FEED PEGGY

L& localhost:3000

Figure 7-12. Push notification on mobile

134

CHAPTER 7 NOTIFICATIONS

Your last step is to enable those buttons on the notification to actually do something.
For that, you turn to your trusty service worker.

Handling Notification Click Events

Just like you listened for the push event in the service worker, so too can you listen to a
notificationclicked event. And because you put the action property on your actions
array on the notification options, you can also know if the user clicked on one of the
buttons or anywhere else. This gives you a lot of flexibility depending on what you want
your app to do or what purpose you want your notifications to serve. In this case, you can
feed Peggy without ever having to open your application. Let’s see how:

self.addEventListener("notificationclick", (event) => {
let promise = new Promise((resolve) => {
event.notification.close();
if (event.action === "feed") {
fetch("http://localhost:8081/feed’, {
method: 'post’,
headers: {
"Accept': 'application/json',
"Content-Type': 'application/json'
}
}).then(() => resolve());
} else if (event.action !== 'wait') {
self.clients.matchAll().then((clients) => {
if (clients.length > 0) {
clients[0].navigate("http://localhost:8080/peggy parrot.
html?feed=true");
} else {
self.clients.openWindow("http://localhost:8080/peggy parrot.
html?feed=true");

}

135

CHAPTER 7 NOTIFICATIONS

resolve();

};
}
};

event.waitUntil(promise);

};

In the service worker, you listen for the notificationClick event. Because you don’t
want that event to finish until you're done with everything, at the bottom of this function
you'll see event.waitUntil(promise) ;. Because of that, you're wrapping everything you
do here in a promise, and when you resolve it will depend on what action the user takes.

The first thing you’ll do is to close the notification regardless of what action the user
takes. That’s done with event.notification.close().

If the user clicked the button to feed Peggy, event.action should equal “feed.” If the
browser supports the action property, you can make a call to your feed endpoint, which
will update the timer on the server. As soon as that endpoint is finished, you can resolve
your promise. Remember, though, not all browsers support action, so have a backup
plan for your app in case event.property returns undefined due to a lack of browser
support.

If, however, the user clicked the button that says to wait to feed Peggy, you don’t
actually need to do anything. The notification will just close.

Your last check is whether or not the user clicked somewhere else on the notification.
When that happens, you want to take the user to your page. So you can check if the page
is running by looking at all of the clients the service worker has control of. If there some
are running, you can just navigate those clients to the appropriate page. If the browser
tab has been closed and there are no active clients, you'll want to open a new window
with self.clients.openWindow.

This example includes a query string parameter on that route. This is just to show
how you might pass data from the notification event into your page.

Note You may remember that a couple of chapters ago you used messaging
events to send information from the service worker back into your client. This is
just another way to do so.

136

CHAPTER 7 NOTIFICATIONS

You aren’t actively doing anything with that param, but you could take that data and
update the UI accordingly. Maybe based on what gets passed in there, you could set the
appropriate fade level of the image (or whatever else you might want to do in your future
apps).

Once the user has landed on the page, you can resolve the promise, and you're all
done!

Looking Ahead

Now that you're getting ever closer to catching up with native apps and features
that were previously exclusive to native, the next chapter is going to shift focus
back to another area that native apps have traditionally been ahead in: app loading
performance.
As soon as you've digested push notifications, let’s go make your app load super-fast!

137

CHAPTER 8

App Shell Architecture
and Loading Performance

One of the most important things you can do for your users is to give them the content
they’re looking for as soon as possible. When you launch a native app, you're usually
presented with a splash screen, and then you can see something in the app within a
second or two. On the Web, though, oftentimes we’re stuck with a white screen for
several seconds. Progressive web apps are here to help you change that with app shell
architecture.

One of the interesting things about the app shell is that you've been using it all along
and you've already implemented it. That’s how sneaky fast it is!

What an App Shell Is

The app shell is just the bare minimum of UI you need to show the user something. That
could be a navbar, a menu, some tabs, whatever. It's important that the user isn’t staring
at a blank white screen questioning if he or she really wants to be waiting for your app
to finish loading. Then, once this skeleton of your app is visible, you can pull in your
dynamic content.

The architecture part comes in when it’s time to decide how you'll separate your
static content (the app shell) from your dynamic content. App shell architecture is a
natural fit for any front-end—heavy app that uses AJAX for dynamic content. Even when
using front-end frameworks (which you'll see in a couple of chapters), you're able to
utilize this architecture because those types of apps are already set up to separate the
static content (the shell) from the dynamic content.

139
© Dennis Sheppard 2017

D. Sheppard, Beginning Progressive Web App Development, https://doi.org/10.1007/978-1-4842-3090-9_8

CHAPTER 8 APP SHELL ARCHITECTURE AND LOADING PERFORMANCE

If, however, your app relies on the server sending full rendered pages and postbacks
when responding to user input, you have a lot of architectural re-work to do.

Note If you're unable to separate your static from dynamic content because
you’re exclusively using server-rendered pages, the app shell is probably not
appropriate for your app.

To this point, our pirate app has already pretty much looked like a skeleton. There’s
really not that much content, and almost no styling, because we’ve focused on PWA
concepts. So for this chapter, I've given iPatch a very corporate and grown-up makeover to
illustrate what a proper app shell might look like, as you can see in Figures 8-1a and 8-1b.

140

CHAPTER 8 APP SHELL ARCHITECTURE AND LOADING PERFORMANCE

Leave & comment

Figures 8-1a and 8-1b. App shells for mobile and web

Admittedly, this app doesn’t have much more content than this anyway. But if you
can get this much on the page in under a second (depending on connection, device,
etc.), the user at least knows that, much like winter, more content is coming, as in
Figures 8-2a and 8-2b.

141

CHAPTER 8 APP SHELL ARCHITECTURE AND LOADING PERFORMANCE

= Home
718/2017 9:5:56

Welcome to the rox gh waters _ﬂ)(-
the PWed sea! g/{rr&h

TN8I2017 9:4:27

oA hoy mateys!

Leaue a comment

Flome
/82017 8:17:45 /B/2017 8:17:26
POST COMMENT B/B/2017 B:17:4 a2 B8:17:28
Lsts af comments 10 show all of the lovely I hape me eme is tived of this pivate sehrick,
Ponding comment goes here, arrgh drmanic comtene et
B/B/2017 B:16:18 B/8/2017 8169 THBI2017 9:5:56
AN of ehis dymawic comient iz presis sweet! oA pp ahell archiceceure recks! Welcome 1o the rongh waters of the FIWul seat
Arrgh

TABROT 9:4:27

ol hgy matgrsl

Figures 8-2a and 8-2b. Once the dynamic content loads

142

CHAPTER 8 APP SHELL ARCHITECTURE AND LOADING PERFORMANCE

Caching the App Shell

The most important part of app shell architecture, though, is that you need to cache your
app shell. Which makes a ton of sense, because your app shell doesn’t change often. And
ifit does, you can easily clear the cache by updating your cache version when you deploy
your UI changes.
In case you don’t remember how to cache, you can use sw-precache if you are
using a build system (or use it from the command line), or sw-toolbox, or you can just
manually cache resources. You've actually been doing this all along with sw-toolbox, but
in case you dropped into this chapter from the sky, let’s take a look at how you're doing it.
In the service-worker. js file, you cache the app shell like so:

toolbox.router.get('/images/*', toolbox.cacheFirst, {
cache: {
name: CACHE_NAME,
maxEntries: 20,
maxAgeSeconds: 60 * 30

}

1)

toolbox.router.get('/styles/*", toolbox.cacheFirst, {
cache: {

name: CACHE_NAME,
maxEntries: 20,
maxAgeSeconds: 60 * 60 * 24 * 7

}

1)

toolbox.router.get('*.html", toolbox.cacheFirst, {
cache: {

name: CACHE_NAME,
maxEntries: 20,
maxAgeSeconds: 60 * 60 * 24 * 7
}
s

143

CHAPTER 8 APP SHELL ARCHITECTURE AND LOADING PERFORMANCE

I've named the CACHE_NAME to some string somewhere else, but name it whatever
you'd like. Notice you're using the cacheFirst strategy for the app shell. That’s kind of
the whole point here is that you want the app shell as soon as you can possibly get it.

This method of caching will add to the cache whatever items the browser requests
from your images or styles directories, as well as any HTML files. So once the user loads
the app once, all subsequent visits to the site will use the cache instead.

Note Remember, if you would like to pre-cache any files that user hasn’t
requested yet, you can do so with pre-cache. For example, you’ll cache everything
the user requests from index.html, and for the app shell, that’s enough. But,
once the user hits the index page, if you want the browser to cache other HTML
files your app uses before the user visits them, you can do that with pre-cache.

At the top of the service worker, there are a few files you need access to in the service
worker, namely the one that makes the toolbox object available:

importScripts('sw-toolbox.js', 'pirate-manager.js', 'localforage.min.js');

Once the service worker is registered (if you don’t know how to do that, go back to
Chapter 3!), the cache will be filled with all of the files necessary to build the app shell.

Now, to the extent you want to optimize rendering, you could even drop the styles
directory from the cache and inline style the app shell for another notch of performance.
You could fairly easily insert all styles into a <style> tag in the <head> of index.html.

Of course, there are obviously trade-offs in performance vs. maintainability as well as
impacts to your caching strategy. If you inline styles you actually need elsewhere in your
application, those styles won’t be cached. Play around with various tweaks to inlining
and caching to see what works for you. If you'd like to see any differences in rendering
speed by moving around the styles, give it a shot and post a comment on the pirate
comment board to let us know. As for this instance of iPatch, keep your separate CSS files
for now.

Note In another chapter you’ll see if you can have the best of both worlds with
HTTP/2 server push.

144

CHAPTER 8 APP SHELL ARCHITECTURE AND LOADING PERFORMANCE

Being able to pull these resources from the cache (or even inlining them) instead
of making a trip across the wires to a server can result in great performance benefits, as
well as enable your app to show the application shell even while the user doesn’t have an

Internet connection.

Measuring App Shell Performance

In the case of the current pirate app iteration, caching the app shell took page load
times on a laptop with a fast broadband connection from about 1.75 seconds on average
without cached assets, down to about .75 with the cache, with some loads finishing in
under .4 seconds! Again, this is not a very content-heavy site, but a 57% decrease in load
time is still pretty fantastic.

Then, using WebPageTest with an emerging markets 3G connection on an Android
device, subsequent page visits (using the cached app shell) resulted in about a 54%
average reduction in the first page view. You can see the results at wow.webpagetest.
org/result/170809 0D FK8/ and in Figure 8-3.

Performance Results (Median Run)

Document Complete Fully Loaded
First Interacti Bytes
Load Time First Byte Start Render Speed Index $ Time Requests BytesiIn| Time Requests In Cost
First View (Run 3) 6.350s 2.171s 2.284s 4335 2.390s 6.350s 12 171 KB | 11.768s 19 288 KB §—--

Repeat View (Run

2) 2.886s 2.1155 22158 2483 2.8425 2.886s 6 39KB | 6.346s 12 156 KB

Figure 8-3. WebPageTest results with cached app shell

Keep in mind that these numbers will vary depending on what measuring tool you're
using, what device you're using, how heavy the network load is, what phase the moon
is in, and if you're properly hydrated. Simply saying an app loads in under a second is
meaningless without context.

For example, Lighthouse (discussed in Chapter 2) tends to show much higher load
times than other tools like WebPageTest or browser plugins like “Page Load Time” and
“Analyze Page Performance” because Lighthouse throttles both your network connection
and your CPU to try to emulate a Nexus 5X. So if you can get your Lighthouse numbers
down to something you're happy with, your desktop numbers should be superb!

145

http://www.webpagetest.org/result/170809_0D_FK8/
http://www.webpagetest.org/result/170809_0D_FK8/

CHAPTER 8 APP SHELL ARCHITECTURE AND LOADING PERFORMANCE

Note You can also simulate different connection speeds using DevTools under
the Network tab. This will load your page as though your connection is limited to
whichever option you choose.

Going Beyond the App Shell

If you've already pulled down the chapter8 branch from github.com/dennissheppard/
pwa, you may have noticed a couple of additional changes I haven’t discussed. There are
seemingly an infinite number of tips and tricks for performance to try to eke out another
few milliseconds. While web apps are still fighting the performance perception wars
against native apps, each blink of an eye can be important.

In Figure 8-4, let’s compare what the Lighthouse performance section looks like if
you run it with the code in the last chapter vs. the code in this chapter with the new app
shell (and other performance tweaks I'll mention in a moment).

146

CHAPTER 8 APP SHELL ARCHITECTURE AND LOADING PERFORMANCE

Performance 70
These your app's per
Metrics
These metrics. YOUT app's p across a number of dimensions.
B&7 ms 118 178 228 2Bs 33s 398 458 Bs 563

[bk e)

¥ First meaningful paint 4,440 ms

* First Interactive (bela) 4,750 ms

* Consistently Interactive [beta) 4,750 ms

+ Perceptual Speed Index: 5,420 (target: < 1,250) 51
+ Estimated Input Latency: 16 ms (target: < 50 ms) 100
Opportunities
These are opportunities 1o speed up your ian by optimizing the following
+ Feduce rencer-blocking scripts 650 ms
+ Reduce render-blocking stylesheets 600 ms
» Serve images as WebP — 80 M
16 KB
Diagnostics
Mare ion about the of your appli
» Critical Request Chains: 6
» 7 Passed Audits
Performance a4
These your app's p
Metrics
These metrics f YOUr app's across a number of dimensions.
337 ms 674 ms s 138 178 2s 248 27s s 343
" First meaningful paint 3,350 ms
" First Interactive (beta) 3,350 ms
* Consistently Interactive (beta) 3,350 ms
+ Perceptual Speed Index: 2,786 (target: < 1,250) 83
+ Estimated Input Latency: 16 ms (target: < 50 ms) 100
Opportunities
These are opporunilies 1o speed up your ication by optimizing the following
+ Enable lext compression 270 ms
SIKR

Diagnostics
More ink ion aboul the per of your

+ Critical Request Chains: 2

» 9 Passed Audits

Figure 8-4. Lighthouse performance comparison

147

CHAPTER 8 APP SHELL ARCHITECTURE AND LOADING PERFORMANCE

You can see that not only did the pirate app get a Ul and UX makeover, but it also got
a pretty nice performance boost! Of course, going from a 70 to an 84 doesn’t mean much
without context. Notice that the time before the app was first interactive (that a user can
actually do something on the page) was about a second and a half faster on the new
site, and the Perceptual Speed Index (which measures how quickly content lands on the
page) was almost 3 seconds faster.

So how did all this magic happen? Most of that magic is found right there in
Lighthouse. Look at the first image under the Opportunities section. Lighthouse says that
you have render blocking scripts and styles to take care of.

Render Blocking Scripts

A render blocking script is just what it sounds like. Once the browser has HTML markup,
it begins to build the DOM by parsing the HTML. But while parsing the markup, the
browser just goes in order. So that means if the HTML references a script, it stops the
parsing to download and execute the script. As you can imagine, between fetching that
new resource, executing it, then going back to parsing, all of this could significantly delay
how fast the page loads.

Note Stylesheets count as render blocking resources as well! If you're
referencing stylesheets that aren’t absolutely necessary to render your app shell,
move them to the bottom of the HTML just before the </body> tag.

In order to fix this, you just need to move your scripts out of the head of your site and
into the body so that the HTML isn’t blocked. The head of the index.html file now just
contains the manifest:

<head>
<link rel="manifest" href="manifest.json">
</head>

Whereas before, the head contained a reference to each of your scripts and the CSS file:

<head>
<script src="node_modules/localforage/dist/localforage.min.js"></script>
<script src="pirate-manager.js"></script>

148

CHAPTER 8 APP SHELL ARCHITECTURE AND LOADING PERFORMANCE

<script src="script.js"></script>
<link rel="stylesheet" type="text/css" href="styles/pirates.css"/>
<link rel="manifest" href="manifest.json">
<script src="companion.js" data-service-worker="service-worker.js"></
script>
</head>

Each of those resources was delaying your page from rendering. Of course, if there is
a script that is absolutely necessary to execute before you show your app shell, you can
leave that in the head. But you should keep that script as small as possible, and consider
inlining the script to keep the browser from having to fetch and download the file.

To inline a script, just put the contents of it between <script></script> tags. You're
actually already doing this on a few of the pirate app pages, like pirate books.html.
Of course, in that case, none of that script is necessary to render the app shell, so you
could (and probably should!) move that code to an external file and reference it near the
bottom of the HTML.

Async and Defer

For modern browsers, there are a couple of additional options to keep your scripts from
blocking the page rendering process.

The async keyword in a script tag will tell the browser to continue rendering the
page while the resource is being downloaded, and will only pause parsing the HTML
to execute that script. This is helpful for times when you want your script to execute as
soon as possible, but don’t need it to render your app shell. The drawback, however, is
that async scripts aren’t guaranteed to execute in any particular order. So if you have
library.js and scriptThatNeedsLibrary.js, you can’t use async without additional
code to ensure the dependent script doesn'’t try to execute before the browser loads and
executes script it depends on.

The defer keyword on a script tag tells the browser that the script can definitely
wait for the HTML to render. The browser will still download the file as it is parsing
HTML, but it won’t execute the script until it’s finished rendering. As a bonus, the
browser’s script execution stays true to the order in which you list the scripts. So scripts
dependent on one another will execute in the order you would expect while using
defer. Again, unless your app shell is absolutely dependent upon a script, this should be

149

CHAPTER 8 APP SHELL ARCHITECTURE AND LOADING PERFORMANCE

your go-to. While it’s support isn’t completely universal (Opera doesn’t support it), it’s
widely enough supported that you should probably always use defer. You get the best of
both worlds by putting your scripts at the bottom of your HTML file while also using the
defer keyword:

<!-- some HTML here —

<script defer src="https://code.getmdl.io/1.3.0/material.min.js"></script>
<script defer src="localforage.min.js"></script>

<script defer src="pirate-manager.js"></script>

<script defer src="script.js"></script>

<script defer src="companion.js" data-service-worker="service-worker.js">
</script>

</body>
You can compare the loading timeline of async and defer to the “regular process” in

Figure 8-5.

script >

parsing download execute parsing render
async >
parsing execute parsing render
download
defer >

parsing render execute

Figure 8-5. How the browser handles regular script tags vs. the defer tag vs. the
async tag

150

CHAPTER 8 APP SHELL ARCHITECTURE AND LOADING PERFORMANCE

Deferring Stylesheet Parsing and Execution

So this takes care of your scripts, but what about your stylesheets? The same principles
apply here. Any CSS you don’t need to render the app shell should be referenced at the
bottom of the page. With stylesheets, however, we don’t have the luxury of the defer or
async keywords. So there are other... hacks, so to speak, we can use to defer the parsing
and execution of stylesheets.

The link tag we use to reference stylesheets takes a media attribute that tells the
browser to only parse that stylesheet if the provided media query is true. So if you give
the media attribute a media query that is always going to be false, say the string “none”
for example, the browser won't parse that stylesheet. That doesn’t do you a lot of good if
you do eventually need the stylesheet, so step two of this... hack is to include an onload
event in the 1ink tag that updates the media query:

<link rel="stylesheet" type="text/css" href="styles/pirates.css”
media="none"
onload="if (media != 'all') media = 'all' "/>

This sets the media query to true, and the browser parses and executes the
stylesheet once the onload event fires.

Of course, if you do that with all of your CSS, you’ll notice the page first render on
the screen with a flicker of unstyled content, which is probably not what you want. If you
run the Chapter8-example-1_app_shell branch of the PWA repository, try adding the
media property and onload events to the link tags and you'll see this happen. While this
could boost your rendering time in some benchmarks, it’s not very helpful to the user. So
any CSS you need to properly render your app shell you could separate out into an app_
shell.css file and include that in the head. Of course, if your app shell is dependent
upon a CSS framework, that’s much trickier because you typically wouldn’t split apart
the framework’s CSS file to pull out just what you need for the app shell. In that case, you
don’t have much of a choice but to include the CSS file in the <head> tag.

Preloading JavaScript and CSS and Other Resources

There is a way to tell the browser that you'll need certain resources right away, before
any of the rendering happens. This can be an important performance strategy because
it can cut down on the number of steps the browser has to perform if the CSS the page
needs is already downloaded and in place, for example. Or maybe you have a script that

151

CHAPTER 8 APP SHELL ARCHITECTURE AND LOADING PERFORMANCE

is needed for early DOM manipulation or animations that should be in place before
rendering starts. Because you request these so early in the page lifecycle, there’s less of a
chance that page rendering will be blocked.

You can preload these resources with the rel="preload" attribute. This tells the
browser you need to preload that particular resource:

<link rel="preload" href="libs/styles/material-icons.css" as="style" />
<link rel="preload" href="libs/styles/material.blue grey-indigo.min.css"
as="style" />

<link rel="preload" href="styles/pirates.css" as="style" />

Note that you've added preload to the 1ink tag, and you've also included the as
attribute, which tells the browser what kind of resource the file is. It also allows the
browser to properly prioritize resource loading and match any future requests that might
use that same resource.

This 1ink, however, simply tells the browser to download the resource. To actually
use the resource, you need to reference the files again using your regular link tags as well.

You can use this feature on several types of resources, including stylesheets, scripts,
video, audio, fonts, images, and even fetches, and more.

If you include a MIME type on the resource, the browser can tell immediately if that
resource is supported by the browser, and if not, the browser won’t download a resource
it can’t use anyway:

<link rel="preload" href="libs/styles/material-icons.css" as="style"
type="text/css" />
<link rel="preload" href="videos/pirate-video.mp4" as="video" type="video/mp4" />

Note Unfortunately you won'’t find a pirate video in the repo. That was just to
show a non-CSS example.

Preload has good browser support and won’t break older browsers, though if you
try to preload a resource you're not actually using, Chrome will throw a warning in the
DevTools console that you may have preloaded a resource unnecessarily. If you would
like to preload resources you won'’t use until future page navigations, you can use the
prefetch attribute instead of preload.

152

CHAPTER 8 APP SHELL ARCHITECTURE AND LOADING PERFORMANCE

Telling the browser to prefetch resources doesn’t guarantee they're downloaded
right away. After all, you're not going to use them immediately. Instead, it’s basically a
heads up to the browser that you think they’ll be needed in the future, and it’s up to the
browser to decide when to download them.

<link rel="prefetch" href="libs/styles/material-icons.css" />
<link rel="prefetch" href="libs/styles/material.blue_grey-indigo.min.css" />
<link rel="prefetch" href="styles/pirates.css" />

Notice that prefetch loses the as attribute of 1ink.

Looking Ahead

Now that you've optimized a fair bit on the front end, it’s time to shift focus to a server-side
technology. In the next chapter I'll discuss HTTP/2 server push and how you might be
able achieve the best of both inlining resources as well as caching them.

153

CHAPTER 9

Exploring HTTP/2
and Server Push

We have a lot to be thankful for from HTTP. Wikipedia calls Hypertext Transfer Protocol
the “foundation of data communication for the World Wide Web.” Established way back
in 1991, with version 1.1 coming onto the scene in 1999, HTTP has been around the
block a few times. It has allowed us to communicate with others from every corner of the
globe. It has created relationships and knowledge sharing and the ability to look at cute
puppy pictures on a whim. And for all of these things and many more, we are grateful.
But as is so common as time slips by, our beloved Hypertext Transfer Protocol has shown
its age. As the Web has grown, bandwidth has increased, and users are demanding richer
content, HTTP 1.1 (the version you're probably most familiar with) has shown some
fundamental problems.

Chief among them are head-of-line blocking and lack of header compression. In this
chapter, I'll briefly cover what those are and the trouble they’'ve caused. But only as a
backdrop to the solution we have before us: the successor to HTTP 1.1, which is HTTP/2.
The bulk of this chapter will talk about what HTTP/2 is and how it’s going to change your
life as a developer and as a user of the Web. I'll cover how to implement HTTP/2 and one of
the most important aspects of it with regards to PWAs and performance: server push. The
history lesson won’t be long, so if you're really itching to get to the implementation details,
just remember what your good friend Billy Shakespeare said: What's past is prologue.

Head-of-Line Blocking

We teach our youngest children in school to form orderly queues and to wait their
turns. HTTP 1.1 is really good at forcing requests to stay in line and to make each one
wait its turn. This is why we have the render blocking issues discussed in the previous

155
© Dennis Sheppard 2017

D. Sheppard, Beginning Progressive Web App Development, https://doi.org/10.1007/978-1-4842-3090-9_9

CHAPTER9 EXPLORING HTTP/2 AND SERVER PUSH

chapter. Oftentimes, we put a lot of demands on HTTP; lots of requests to fill the rich
media needs our sites and apps require. But HTTP 1.1 is only able to handle a handful
of requests before it blocks subsequent requests, so that they have to wait for whatever
resource is at the head of the line.

Let’s take a look at our beloved pirate app and the requests it makes via HTTP 1.1 in

Figure 9-1.
® 0 Developer Tools - https:/fipatch.surge.sh/pirates.htm|
[ﬁ_ Elements Conscle Sources Per Memory pplication Security Audits AdBlock
® O =T Vew IZ Group by frame Preserve log Disable cache Offline Mo throtting ¥
Filter Regex ~ HidedataURLs [} XHR JS CSS Img Media Font Doc WS Manifest Other
Mame Method Status Protocol Scheme Type Time Waterfall 1.00s 1.50s 2.08 s
_| pirates.html GET 200 http/1.1 https document 426 ms | -
| material-icons.css GET 200 hittpd1.1 hitps styleshest 291 ms - m
material.blue_grey-indig... GET 200 httpd1.1 https stylesheet 345 ms | - e
pirates.css GET 200 httpd1.1 https stylesheet 281 ms | - my
5 i-love-pirates.jpg GET 200 http/1.1 https. ipeg 818 ms i —
«1| pirate-clip-art.jpg GET 200 httpd1.1 https ipeg 387 ms | |
| material.min.js GET 200 http/1.1 https script 273 ms | « will
pirate.ttf GET 200 hitpe1.1 . https font % T
2forYFNaTjcSBgaUat-¥5... GET 200 http/2+qui... https font e o B
Queueing 1.12s
Stalled | 40.33 ms
DS Lookup | 237 ms
Initial connection o 111.55ms
S5L] 56,89 ms
Request sent B4 ys
Waiting (TTFB) B 11763ms
Content Download | 1.10ms
Explanation 1.40s

9 requests | 924 KB transferred | Finish: 1.93 5 | DOMContentLoaded: 1.87 s | Load: 184 s

Figure 9-1. HTTP 1.1 requests forming an orderly queue after the first three
requests

Here you see that HTTP 1.1 is able to make a few requests in parallel. Eventually,
though, you can see the requests start to queue up. You can even see how long a resource
has to wait its turn before the request is fulfilled. They're so well behaved and patient!

But when you do the same thing using HTTP/2 (with multiple useless scripts added
in just to show what HTTP/2 is capable of), you can see in Figure 9-2 that the requests
are all kicked off at the same time.

156

CHAPTER9 EXPLORING HTTP/2 AND SERVER PUSH

@ @ Devel Tools - i i html
[w f—| Elernents Console Sources Metwork Performance Memory Application Securty Audits AdBlock
® O m Y | Vew IZ = Group by frame Preserve log Disable cache Offine No throttfing ¥
commen Regex Hide data URLs ,__ XHR JS CSS Img Media Font Doc WS Manifest Other
Name Method Status Protocol Scheme Type Time ‘Waterfall 1.00s 45
| pirates.htmi GET 200 h2 hitps. documant 87 ms |
_| material-icons.css GET 200 h2 https stylesheet 104 ms]
__| material blue_grey-indigo.mi... GET 200 h2 hitps shylashest 12T ms]
pirates.css GET 200 h2 https stylesheet 178 ms I
material. min.js GET 200 h2 hitps script 92 ms =
ajs GET 200 h2 https: script 118 ms]
| bjs GET 200 h2 hitps. script 154 ms]
lels GET 200 h2 https script 150 ms ==
| dis GET 200 h2 hitps script 87 ms []
ajs GET 200 h2 https script 157 ms =
fis GET 200 h2 https script 347 ms [
£ i-love-pirates.jpg GET 200 h2 https g 878 ms il
«| pirate-clip-art.jpg GET 200 h2 https ipeg 208 ms [1]
_| pirate.ttf GET 200 h2 https font 169 ms []
| 2MerYFNaTcS6g4UBt-YSUE.., GET 200 http/2+quic/3T hitps font a5 ms]

15 requests | 831 KB transfarrad | Finish: 1.37 s | DOMContentLoaded: 122 5| Load: 1.41 8

Figure 9-2. HTTP/2 requests kick off as soon as the browser reaches them in the
HTML, which usually results in better load times

This is because HTTP/2 uses a single, bidirectional stream between client and server,
rather than the multiple connection architecture HTTP 1.1 uses because it’s only able to
deliver one request at a time. Multiple requests are made via this single connection. This
is called multiplexing. All of this magic allows requests to happen at the same time inside
of that one request so that any particular request isn’t blocked by others closer to the
head of the line.

Note Multiplexing in and of itself isn’t new. In all of your additional research,
you may run across a technology called SPDY. This technology modified existing
requests via HTTP 1.1 and contained a few of the improvements that HTTP/2 has.
Multiplexing was one of those. SPDY is now deprecated in favor of HTTP/2.

Because of multiplexing, requests using HTTP/2 are much more efficient. As a
result, concatenating and bundling files, one of the big performance improvements
often utilized with HTTP 1.1, is actually an anti-pattern with HTTP/2. Instead

of a giant bundled or concatenated file that might take a couple of seconds to
download, if code is split up into smaller packages, you’re able to utilize the cache
more efficiently while not having additional requests cost anything. For example,

157

CHAPTER9 EXPLORING HTTP/2 AND SERVER PUSH

when you make a code change with one big bundle, you have to invalidate the
cache for that entire bundle and re-download the asset. If that bundle is broken
into ten files, and you need to update one of them, the remaining nine files can
remain cached. Because of multiplexing, the original ten requests didn’t cost any
more than what the one bundled file would have.

Header Compression

If this was 30 years ago and you were going to mail a letter, there was a bunch of
additional information on the outside of that letter that let the mail carriers know where
it should go, how it should get there, and where to send it back in case something
unforeseen happened along the way.

Now imagine if you had a pen pal and you each wrote these packets of data to each
other, back and forth, and the amount of data on the exterior of each of those packets
kept adding up. Your hand would get tired from writing out the full addresses, and then
your pen pal would have to do the same. You might shudder to think that if you became
famous you would have had bags and bags of fan mail! So many requests that require an
equal number of responses.

It would've been more efficient if there was a way to reduce the amount of data that
the postal service required to send your actual data.

Much like the postal service in the days of yore, HTTP headers contain information
about data that’s passing across the wires, whether that data is a request to a server
or aresponse to a client. And sure, individually each header doesn’t require a lot of
bandwidth; just a few bytes here and there. But if your site has dozens of requests and then
dozens of responses (and remember that as good PWA devs, we're also conscious of low-
bandwidth users!), those bytes really add up. Additionally, headers aren’t very efficient
and oftentimes header data that isn’t needed for each request is attached to all requests
anyway. So there is lots of room for improvement with header compression, which would
essentially shrink the amount of bandwidth required to transmit header data.

Even though HTTP 1.1 didn’t supply a way to reduce all of this extra data, SPDY did.
Unfortunately, that mechanism for header compression had security vulnerabilities
that led to the ability for hackers to hijack browser sessions, even for sites served over a
secure HTTPS connection. This was known as a CRIME attack, or “Compression Ratio
Info-leak Made Easy.’

158

CHAPTER9 EXPLORING HTTP/2 AND SERVER PUSH

So that wasn’t good.

Header compression, as an idea, is good, though. And that’s why HTTP/2 uses
a compression algorithm called HPACK that not only compresses headers, but also
reduces redundant header data. The details of HPACK are out of scope of what I'll cover
here, but rest assured those security flaws are all patched up.

Introducing HTTP/2

Now that you know some of the problems that HTTP/2 solves, and how it does it, let’s
take a step back and talk about what HTTP/2 actually is.

HTTP/2 is the first upgrade to HTTP since 1999. The primary goal of HTTP/2 is to
improve website performance and security. I talked about some of the performance
benefits, but on the security side, if you want that sweet performance boost, browsers
require TLS connections in order to use HTTP/2.

So now with HTTP/2, we have better performance with multiplexing, header
compression, and server push (more on that in a moment), and better security
with HTTPS requirements. HTTP/2 does all of this while maintaining backwards
compatibility with HTTP 1.1. Browser support for HTTP/2 is excellent, but if you're stuck
supporting old browsers, don’t sweat it. You're in good shape.

By now you're probably jumping out of your seat with excitement. Enough of all this
talk; let’s actually use HTTP/2!

Implementing HTTP/2 in Node.js

If you want to run a local dev server, you can actually implement an extremely
rudimentary one with HTTP/2 pretty easily. If you don’t have the PWA Book project, go
ahead and pull down the Chapter9-example-1_http2 branch. The completed code from
this chapter will be in server. js, so if you want to follow along, change the name of that
file and follow along with us. It'll be fun!

First, let’s install your dependencies by running

npm install --save spdy express mz

The spdy npm package will allow you to create an HTTP/2 server with a SPDY
fallback. You've used Express before; you'll use that to serve your files. And finally mz will
allow you to use some ES6 syntax like promises.

159

CHAPTER9 EXPLORING HTTP/2 AND SERVER PUSH

Now, create a new directory in the PWA Book directory. Call it http2-server. Create a
new JavaScript file in there and call it server. js or whatever you'd like. There are about
a dozen and a halflines of code that you need to create your server:

const port = 8081;

const express = require('express');
const spdy = require('spdy');

const fs = require('mz/fs');

const app = express();

const cert = {
key: fs.readFileSync('./localhost.key"),
cert: fs.readFileSync('./localhost.cert")

};
app.use(express.static('../"));

app.get('*', (req, res) => {
res.status(200);

};

spdy.createServer(cert, app)
.listen(port, console.log('Listening on port: ' + port));

This is all the code you need to serve the pirate app on HTTP/2. First, you define your
port and bring in your dependencies. You reference Express, and then because HTTP/2
requires SSL, you need to give the server a key and cert file. If you were running this in
prod, you would need to procure an actual cert. But for local testing, you can generate
one yourself. To do so, in your terminal, navigate to the http2-server directory and run
the following command:

openssl req -nodes -new -x509 -keyout localhost.key -out localhost.cert

The result of this will be a series of questions that will be used to generate your key
and cert files. Once that’s done, you have your HTTPS site, but it won’t be trusted by the
browser. Browsers don't like self-signed certificates. You'll see the repercussions of that
in a moment, but for our purposes, this will work just fine.

160

CHAPTER9 EXPLORING HTTP/2 AND SERVER PUSH

After you assign your cert, tell Express to serve up the directory with all of your
front-end files in it. Next, define a route for any GET requests, returning a 200 if the
request is successful. Feel free to put code in there to handle any bad requests, but you
won'’t be using this code for long, so don’t sweat it if you don’t feel like it.

Finally, you ask your spdy package to go ahead and create the web server using your
cert and app objects. That’s it. You have a working HTTP/2 server.

Head back to your terminal and if you're still in the http2-server directory, you can
run

node server.js

Your server is now running and you can navigate to https://localhost:8081. As in
Figure 9-3, you will be greeted rather rudely by your browser.

] @ privacy error x Dennis

“ C A NotSecure hitps:/localhost8081 « H v = 2 HOBgm™ U gm

A

Your connection is not private

Attackers might be trying to steal your information from localhost (for example,
passwords, messages, or credit cards). Learn more
NET:ERR_CERT_AUTHORITY_INVALID

] Automatically send some system i ion and page content to Google to help detect

dangerous apps and sites. Privacy policy

HIDE ADVANCED Back to safaty

This server could not prove that it is localhost; its security certificate is not trusted
by your computer's operating system. This may be caused by a misconfiguration or
an attacker intercepting your connection.

Proceed to localhost (unsafe)

Figure 9-3. Don't take it personally. Browsers don’t trust any self-signed certs.
They aren’t secure!

161

CHAPTER9 EXPLORING HTTP/2 AND SERVER PUSH

You created the certificate, so you can safely click the Advanced link (or whatever
your browser shows) and choose to proceed. Again, in production, you'll want a cert
signed by a Certificate Authority.

Once you proceed, you should see the pirate app! Maybe that’s a little anti-climactic.
After all, you've seen this trifling little app for like a million chapters at this point. But in
this case, it’s not about what the app shows. Pull up DevTools and refresh the page. Go to
the Network tab.

If you don’t see the Protocol column, right-click on one of the column headers and
add it. In Figure 9-4 you will see h2 almost all the way down, indicating that your files
were served from HTTP/2. The exception here is your API call, because the API server
isn’t using HTTP/2.

L Developer Tools - h flocalhost:B8081/
% 04l Blements Console Sowrces Network Performance Memory Application Security Audits AdBlock o3
® 9 W YT | Vew = = Group by frame Preserve log Disable cache Offine Mo throtting ¥
Filter Regex HidedataURLs] ¥MR JS CSS Img Media Font Doc WS Manifest Other
Name Method Status Protocol Scheme Type Time | Waterfall 1.00 s 1.50 &
localhast GET 200 h2 https decurnent 1M ms ||
__ material.blue_grey-indigo.min.css GET 200 h2 https. stylesheat 22ms | |
material-icons.css GET 200 h2 https stylesheat 15ms| |
_ pralescss GET 200 h2 hitps slyleshest 16ms| |
material.min.js GET 200 h2 https script 1Bms| |
localforage.min js GET 200 h2 hitps seript 1Bms| |
_| pirate-manager. s GET 200 h2 hitps seript 19ms| |
scripljs GET 200 h2 https script 19ms| |
| companion.js GET 200 h2 https script 20ms | |
commeniList json GET 200 hitp/1.1 hitps fetch 167.... T
| pirate.ttf GET 200 h2 hitps: font 5ms [
HerYFNaT|cSBgaUL-YSUEWEBOIGES. .. GET 200 http/2+quic/3T hitps font 644... i i e —i

13 requests | 320 KB traneferred | Finish: 1.54 & | DOMContentLoaded: 912 ms | Load: 1.56 5

Figure 9-4. The pirate app now uses HT'TP/2, as you can see in the Protocol
column.

Simply by doing this, because of multiplexing, you've improved the performance
of your app. But you're not done yet. The crown jewel of HTTP/2 is a feature that takes
things a step further.

Server Push

In the normal course of your request-response lifecycle, the client asks for an index page
and the server responds. The client parses that page and sees that there are additional
resources it needs, like CSS files or JavaScript or whatever. The client requests them and
the server responds. Request-response, request-response, and on and on it goes, as you
can see in Figure 9-5.

162

CHAPTER9 EXPLORING HTTP/2 AND SERVER PUSH

Request Owm v
WWW > B
Qoo

Response

T\ e Om oo

Client Request Server

Figure 9-5. Normal request-response pattern between a client and server

What if, though, you knew ahead of time that the client was going to request certain
resources? Couldn’t you push those resources to the client at the same time that you
delivered the original index file? That would save multiple request-response cycles and
even further improve performance. You'd be a hero! If only there was a way...

Introducing HTTP/2 server push! You can configure your server to send certain files
along with routes that you specify, thereby reducing as many round trips to the server as
files you push to the client. Compare Figure 9-5 with Figure 9-6.

\ Request N Om oo
WWW ’ Oom .o

E % E Qwm oy
Client ' — Server
——
, &,
L L]
Response with

multiple files

Figure 9-6. Server push pattern, where the server sends certain resources along
with the initial request

There are, of course, drawbacks. If you push files to the client that were already
cached, that’s a waste of bandwidth and could actually slow down your app. Thus,
like with most of the features I've talked about that deal with performance, you should
test your app and experiment with these technologies to see what works best for your

particular situation.
163

CHAPTER9 EXPLORING HTTP/2 AND SERVER PUSH

For the pirate app, try pushing your main CSS file and your pirate-manager. js

file. You, of course, could push more than this, but this is for illustrative purposes, plus

remember the caveat about pushing resources vs. caching them. Let’s take a look at how

you can implement server push with your HTTP/2 Express. js server:

const
const
const
const

const

const

const
const
const

port = 8081;

express = require('express');
spdy = require('spdy');

fs = require('mz/fs');

app = express();

cert = {
key: fs.readFileSync('./localhost.key"),
cert: fs.readFileSync('./localhost.cert")

};

index = fs.readFileSync('../index.html");
css = fs.readFileSync('../styles/pirates.css');
pirateManager = fs.readFileSync('../scripts/pirate-manager.js");

app.use(express.static('../"));

app.get('/home', (req, res) => {

let cssResource = {

};

path: '/styles/pirates.css’,
contentType: 'text/css',
file: css

let pirateManagerResource = {

};

164

path: '/scripts/pirate-manager.js',
contentType: 'application/javascript',
file: pirateManager

CHAPTER9 EXPLORING HTTP/2 AND SERVER PUSH

pushResource(res, cssResource);
pushResource(res, pirateManagerResource);

res.writeHead(200);
res.end(index);

};

function pushResource(res, resource) {
let stream = res.push(resource.path, {
req: {'accept': '**/*'},
res: {'content-type': resource.contentType}

};

stream.on('error', err => {
console.log(err);

};

stream.end(resource.file);

spdy.createServer(cert, app)
.listen(port, console.log('Listening on port:

+ port));

This is quite a bit more code than before, but you are doing quite amazing things
with it! Let’s break it down.

Everything up top all the way down past your cert is the same. Right after that, you need
to grab the files that you want to push. In your case, that'll be index.html, pirate.css,
and pirate-manager. js. The server file is currently nested in your http2-server
directory, so you have to move up a level to access those files. So far so good.

Your setup to use the express static file server is the same as before. Then you set up a
route just like before, but in this case you're changing your route a little. It’s likely that you
wouldn’t want to push the same resources to every part of your app. So here you've set up
a new route to your landing page, called home. You could set up a route to Peggy’s page
and call it peggy, or a route to the books page and call it books. In each of those cases,
though, it’s extremely likely that you would have already cached all of your resources, so
pushing those same ones to them might not make sense. Your mileage may vary here.

165

CHAPTER9 EXPLORING HTTP/2 AND SERVER PUSH

Inside of the route, you're setting up a couple of resource objects that contain
information about each resource, including their path, content type, and a reference to
the files you created further up. Last, you call the pushResource function, passing in a
reference to your response object and the resource object, respond to the request with a
200, and close the response by sending your index.html file.

Note The path here is different than the reference to the file because at this point
you’re in the context of the request, so there’s no need to move up a directory to
access the file.

Let’s now peek inside the pushResource function. response. push is the key here
because it is telling the response to push the file found at that path. You pass in header
information, check for errors, and close up the stream that is pushing the file.

You can run this server from the http2-server directory just like you did the last
version of your HTTP/2 server:

node server.js

Load up the site at https://localhost:8081/home. If you didn’t already have
DevTools up, bring them up, go to the Navigation tab and refresh the page. Look at the
Initiator column in Figure 9-7 (right-click on the columns and add it if you don’t already
see it).

166

e @
= 4

Elements Console

® O W= T Vew = %

Filter Fegex
MName
] home
material. blue_grey-indigo.min.css
|| material-icons.css
pirates.cas
|| material min.js
| localforage.min.js
| pirate-manager.js
| scripljs
COMpanion.js
|_| commentList.json
pirate.otf
| 2ferYFNaTjeS6g4U3t-YEUEWDE...

Sources Network

=

Group by frame

o

Tools -

CHAPTER 9

Memory

Preserve log @ Disable cache

1/home

Security Audits AdBlock

Offine Nothrotting ¥

Hide data UALs [} XHR JS CSS Img Meda Font Doc WS Manifest Other

Method
GET
GET
GET
GET
GET
GET
GET
GET
GET
GET
GET
GET

Status

Protacol

1.1

5%535555553

Ittp/2+quic/37

Scheme

hitps
https
hitps.
hitps
hitps
hitps.
hitps.
https
hitps
hitps.
hitps
hitps

12 requests | 320 KB transferred | Finish: 1.11 s | DOMContentLoaded: 1.04 s | Load: 1.13s

Type
documant
stylesheat
stylesheat
stylesheet
seript
seript
seript
seript
seript

Initiator
Othar
home

home
Push / home

hgme
home
Push / home
g
home

home

EXPLORING HTTP/2 AND SERVER PUSH

0141

Waterfall
Sams |
Bms
24 ms
3ms
25ms
3 ms
3ms
28ms| I
30ms)

98 ms (]
ams |
Bams ol

Time 1.00 54

Figure 9-7. The Initiator column tells what resources were pushed to the client

You're actively pushing resources to the client! You can hover over the little slice of

the bar chart for either resource that was pushed and see the breakdown of why it took

so long, like in Figure 9-8. Three whole milliseconds is just ridiculous!

L
 dl

Elemants Cansole

Sources Network

® O W T Vew I= T

Filter Regex
Mame
|| home
material blue_grey-indigo.min.ces
| material-icons.css
| pirates.css
material.min.js
_ lecalforage.min.js
| pirate-managerjs
scripts
|| companicn.js
| commentList.json
| pirate.tif
_| 2lerYFNaTjeS6g4Uat-YSUEWDIE. .

Group by frame

Method
GET
GET
GET
GET
GET
GET
GET
GET
GET
GET
GET

Status

D Tocls - h Ihost:8081/home
Memary Security Audits AdBlock 1 41
Preserve log @ Disable cache Offine Nothrotting ¥
Hide data URLs [[[] | XHA JS CSS Img Media Font Doc WS Manifest Other
Protocol Scheme Type Initiator Time: Waterfall 1.00 s&
ha hites document Othar sams |
h2 hitps. stylashest home 33ams | |
h2 hitps stylesheet heme 24ms | |
h2 https. stylashest Push / home Ams
he hitps Loz hen Queved at 12.06 ms
ne ittps scrgt B2 earted at 12,76 ms
h2 https. script Pus
he hit i h
it n " Gueveing 0.70ms
h2 hitps. scripl hon
hittp/1.1 https fetch pir i
ha hitps font hort Reading Push [] 0.31 ms
hitp/2equic/37 hitps font henl Explanation 324ms W

GET

12 requests | 329 KB transferred | Finish: 1.11 s | DOMContentLoaded: 1.04 5 | Load: 1.13 s

Figure 9-8. The breakdown of a pushed resource

167

CHAPTER9 EXPLORING HTTP/2 AND SERVER PUSH

Deploying HTTP/2 and Server Push

As you've learned, load times without context are meaningless. Of course what you
have here is super-duper fast; you're running your server locally. Measuring a true
performance improvement using a local server like this is basically impossible. And to
tell you the truth, it’s very rare that you would want to write your own file server like this
for anything in production. So to really see what this is capable of, you'll need to host
your site somewhere that is HTTP/2- and server push-compatible.

There are a lot of places you can do this, but sometimes hosting services don’t make
it obvious whether they support these features. Google Cloud Platform does, but it’s
overkill for what you need. Azure supports HTTP/2, but not server push. Heroku doesn’t
support either one.

A nice sweet spot for your needs is Firebase. It will allow easy deployment and
supports HTTP/2 with server push. I won’t walk through the steps to set up a Firebase
project because its documentation does a good job of that and the steps are liable to
change.

You might be wondering, though, how you actually implement HTTP/2 and server
push if you're not writing the server yourself. The good news is that if your hosting
provider supports HTTP/2, it will be enabled by default. And that in and of itself should
provide you some performance improvements over HTTP 1.1. Oh, multiplexing, we're
not worthy!

Server push is obviously a little different, though. You need a way to specify which
files should be pushed and on which routes. This is a different process for different
servers. You should check the documentation for whichever server you're using to host
your app as to how you specify files for routes and server push.

In the case of Firebase for the pirate app, there is a firebase.json that allows you to
include additional header information. In this case, you use a Link header. Link headers
tell the client to look for additional resources. In the deployment here, you've included a
Link header that as a value takes your script. js file as well as the pirate-manager. js
and the pirates.css resources:

"headers": [
{
“source": "/",
"headers": |
{

168

CHAPTER9 EXPLORING HTTP/2 AND SERVER PUSH

"key": "Link",

"value": "<scripts/script.js>;rel=preload;as=script,
<scripts/pirate-manager.js>;rel=preload;as=script,
<styles/pirates.css>;rel=preload;as=style"

]

You're saying here that any route originating from your home directory, you should
push these resources. The rel=preload and as= syntax might even look familiar. This is
technically not the original intended purpose of those properties, which were intended
for the browser to download those resources immediately. But lots of servers use this
syntax now for server push. It’s what you have for now, and it works as you can see in

Figure 9-9.
e @ Daveloper Tools - xyzf
IR (] |Hements Conscle Souces MNetwork Perormance Memory Applicaion Security Audts AdBlock
® ©® = F Vew IZ % 7 Groupbyfame Preserve log @ Disable cache Offine Mo theottling ¥
Regex | Hidedata URLs (] XHR JS CSS imp Media Font Doc WS Manifest Other
Nama Mathad St Protocol Schema Type Tima Wiatartml 2.00%
| || ipatchpwa.xyz GET 200 e htips document 2a8ms | [
script.js GET 200 h2 https script Bms
| pirate-managers GET 200 na https script ush / Ot 7ms |
pirates.css GET 200 he https styleshoot Push / Other BEms
t || material bhue_grey-indiga.min.css GET 200 h2 https styleshest (i) 158ms | I |
| || materiat-icons.css GET 200 n2 htips stylesheet (ingex) 220ms |
materialmin js GET 200 h2 https seript (ingr) 218 ms | |
localiorage. min.js GET 200 ha https script fingex) 24 ms |
companion js GET 200 e htips script lingex) 244 ms | N |
cammentList jaon GET 200 Hitp1.1 https fatch pirate-managesj&:15 170 ms m
| pirate.ntt GET 200 n2 htips font {ingex) 242 ms -
HorYFNaTIcSgaUat-YSUEWOIEBOIGE... GET 200 MipZequicdT hitps font (ingex) 503 ms ——
@ service-workerjs GET 200 h2 https janvaseript senvice-workenis 70 ms 1 |

Figure 9-9. Server push when your app is deployed to Firebase

Measuring the Impact of HTTP/2 and Server Push

To see any performance difference, you should deploy the app to an HTTP 1.1 provider
as well as an HTTP/2 provider. There might be times when HTTP 1.1 wins, particularly if
you're more aggressive with your caching strategy.

This pirate app now lives in two places: https://ipatch.surge.sh, which is
an HTTP 1.1 hosting service, and https://ipatchpwa.xyz, which is the Firebase
deployment using server push. Figure 9-10 compares these two directly.

169

https://ipatch.surge.sh/
https://ipatchpwa.xyz/

CHAPTER9 EXPLORING HTTP/2 AND SERVER PUSH

Developer Tools - betps:|atch s
% A] Burets Consce Sowoim Network Palomancs Memory Applcation

OO T Vew =%
g

funits AudBiech

Sty

Creus by bume | Presenveiog 8 Disabiecache | Ofiea Mo teiting ¥

o cata LLs (] XMR S5 OS5 img Medda Fot Doc WS Mantest Otter

Meh... Status Protoool Scheme Type Lo Time Wanerts 280
ipmchaugesh GET 20 mpnd b cocumen Cwr LT |
material bie_gray-indgosn... GET M0 mEpnt L Wyeaneer o G s | el
material-doon.ou GET 20 mipna heps wyehest fnge] 478 | e—
praiecn T w0 Mt b wpeee oo T3 | -
material e OET M0 et heps et e e | -
naturage mo s CET 00 Mptd s g e 513 v | sl
prate manager s CET 200 Mpna heps gt o) 512 s | el
sorpts GET E0 M@ heps ot) B2 e | —
comganionju T WO e ke st Inse 107 1 | el
ot = e GET 0 et eps fen oeema.. TeEes [
| praemt CET 0 mepid heps fort:) e]
HerYFMaT RS8N YSUEN.. GET W0 Mpeq. hops ot o) oEms 1
O pervoe-worked s GET 200 MY Prpe [avancript In2ms -
O pw-mciton s GET 20 mpNa heps [EF R —
O prate-marager s CET 20 Mgt bpe e 00 rs -
@ ioatorags mn OET M mepna repa vt LT —
|| © ngewromi? swomcaches... GET 200 mipnd heps e 1 ms
O ofinaimi?_pe-pracachs... GET 200 MDY heps et 0 ms
O peggy_paToLRm? swrpr... GET 200 MY heps st/ - B

21 rocpoests | 131 KD raretomnes | Finish: 3.37 5 | DOMContorntLoadet: 1.50 8 | Loas: 3,008

LI Developer Tosis - Bilpafpatc g xys]
P | (3] ewets Corsc Sowees Mewol Pulomence Mumery Applemion Seery Aust AdSuck
® 6 B F Vew IZ % | Guetylme | Peseneieg 0 Dusbiecscne | Ofine Notwomng ¥
Fiter foge MosastaURLs () 0 U5 OS5 g Muds Fort Dot WS Manfem Cther
1,00 Name Meln_ | Smus Pomcol Sceme Tpe Inteior Tme [waters 1ous
Bashpwa e oET 0 " = socum..
scrgtjs @ 20 e s scree
_| peata-managecis aET 0 2 hrios scrist
peam o ;o " et st
atws e grwn OFT 300 w e sty
ruescoacss GET O @ heten sty
el s aET 0 e trees serse
Loatagemng GET 20 2 rioe: scrict
wompanion s GiT 20 wa teen st
comretlatien OFT 20 wp b toich "
| plwn i GET 0 " hecs et u
HeAFHATRSeGHE . GET X0 nepen.. s et [}
Osevcowoes GET 200 2 hriges imvascran »
| O wetcotons GET X0 " eton pvmscrot Oer
O peworeragecs OET 20 " s prvascript b %m
Oucatongamian OFT 20 @ hee [a2ma
wfll| | @ nceihtn? sw-p.. GET 200 2 (o) testhomi O 3 ma
wfl| | O oMt eep . GET 20 w2 W mttam Ofer =me
wofl| | O peggypamoitere. GIT 0 n fetos Sesttam Civer s2ms
1 recuests 1128 KB rnsferrea | Firisf 2.04 8 | COMContent_caded: 1.31 8 | Losc: 1398

Figure 9-10. Comparing HTTP 1.1 and HTTP/2 with server push

If you haven’t read it before, you should read it now. Measuring page load speed

without context is meaningless. There are just too many variables, particularly when

using a mobile connection and comparing across different servers, etc.

So you should try it out for yourself to see which one performs better and feels better.

Try with and without server push. Check out the second page visit in Figure 9-11 with

caching and see how it performs.

Deveioper Toois - hitps.[fipatch surge shy
® (] Demerts Consoe Soumtes Meteork Peomance Memory Appicaion Secuty Audis Adfhock
® 8 =7 Vew D %

Geoup by ame | | Presenvalog | Diabigcache | | OMine Nowoming ¥

Fiter Regex ' HewosaURts) ¥R J5 £35 img Mesa Fort Doc WS Mandest Crher
same Prmcest Schara | Typa st e Tera | et 2084
fpach suga sh MDAl Wps document Over o Sorvcalin . 12ma |
e R] Tmai
mastera mes MRl g st Lo 0 i
lecafirageminjs mpta teps we foen)
A Mty ps st e ol
st MpAt mps sl et oma||
companian s WMo mme st e e
mawabugundge L. MR Mpe wyeshest dooen 290 s | -
materil o oo] 300 |
commaneLas on [P R Y DT 2 [
| BMoYPMATESSQIUR YRUE. . hapeq... hops et] oms I
e Mpiy s ot e . 10ms [
© commerts on Wi heps jsen e M0 Xm]
R — MpA teps st momE o8 wam

2l 1i8alinad 1318

i | @] Demes Conscls Soues Mebeork Pedomance Memory Appication Secusty Audts Adfock
@ O B P Vew = % Gumbykme Peevikg (Ossblcache | Ofine Notvoting *
Regex Hice dua URLs [T) | 3R U5 £S5 img Meda Fom Doc WS Munsfest Cther

& ysiame Prmesl fchea Type st frn Tew [Wt oas

oachoma " rape. dooum... Ot rom Sarcicaic ams ||
raesce L] rios wytest.. (ngex) Ml
msterial gy " Htps st (e 2|
leeatragemin s " rees s (g sl
pratemaniges " ritg sl (noen ama ||
sorptis " tips sopl (e amal|
companion s "2 reips. st (g s |
material b gy R Hipe wytesh... (ngmd ams ||
matigesracs W tazs - 2wl
eememere.at pen 2 rgs M Graemane 230 ma
orVFNATRESQANL . Nep2eq... g fot (nded oms
e 2 reips o (nded - ams
O commendlstjson HEDA1 hiips Ison Other. ST BT

- | 0wy woiep W Hitps veneret EOcoR c s

14 et | 3. Finiahe 1. 12881 Loa 1318

Figure 9-11. Comparing the repeat page visit of HI'TP 1.1 and HTTP/2 with

server push and cached files

On repeat visits, you're mostly using the service worker cache anyway, so there’s

hardly any visible difference between the two, and the load times are definitely within

any margin of error due to whatever network hiccups or randomness you might

experience.

However, the biggest difference here is one you can’t see. Using DevTools doesn'’t

allow you to see that the server is still pushing files and taking up bandwidth. That’s

170

CHAPTER9 EXPLORING HTTP/2 AND SERVER PUSH

because pushed files reside in a server push cache, which is the last cache the browser
checks for files. If the browser finds files that are still eligible in the service worker cache
first, it will use those instead of the pushed ones. That means that the browser could
actually use older (but unexpired) assets sitting in the service worker cache rather than
newer assets that the server pushes.

These are trade-offs you have to consider when choosing whether to use server push.
In the pirate app example, you get a noticeable performance improvement on first load
when you use HTTP/2, but less so with server push. On subsequent page loads, because
you’re making heavy use of the cache, there isn’t a significant performance boost from
HTTP/2 over HTTP 1.1 on a broadband connection. What about over 3G, though? Check
out Figure 9-12; to the Lighthouse!

Results for: hitps:/fipatchpwa.xyz/ <
Aug 18, 2017, 9:52 PM CDT - * Runtime settings
Performance 91
These encapsulate your app's performance.

Metrics

These metrics encapsulate your app's performance across a number of dimensions.

263 ms 526 ms 789 ms 11s 13s 16s 18s 21s 24s 26s

" First meaningful paint 2,610 ms

" First Interactive (beta) 2,610 ms

* Consistently Interactive (beta) 2,610 ms

» Perceptual Speed Index: 2,169 (target: < 1,250)]

» Estimated Input Latency: 16 ms (target: < 50 ms) 100

Figure 9-12. Lighthouse results with HTTP/2 and server push

171

CHAPTER9 EXPLORING HTTP/2 AND SERVER PUSH

The Firebase-deployed HTTP/2 with server push app is now rocking a very robust
performance score of 91! Obviously if we ran this a few more times, that score could
fluctuate up or down. But it is the highest we’ve seen so far, so let’s take it and run! For
this app, it looks like HTTP/2 with server push is the way to go.

Note Of course, your app here is quite trivial, and there is a lot more to think
about regarding your app’s infrastructure and performance considerations. For
a deeper look at HTTP/2 and various points | didn’t cover here, check out Jack
Archibald’s blog post: https://jakearchibald.com/2017/h2-push-
tougher-than-i-thought/.

Looking Ahead

Now it’s time to really apply your PWA knowledge. With the conclusion of this chapter,
the theory portion of your PWA education is complete. You've learned about service
workers, caching, background syncing, app manifests, notifications, app shells, push
notifications, and HTTP/2 server push. And while you've applied all of that theory to the
frivolous little pirate app, it might really help these concepts to sink in if you apply some
of them to an existing web app that’s just begging to be PWA-ized. That’s where you're
headed next. Say goodbye to our pirate friends! For now...

172

https://jakearchibald.com/2017/h2-push-tougher-than-i-thought/
https://jakearchibald.com/2017/h2-push-tougher-than-i-thought/

PART il

Putting the Features to Use

CHAPTER 10

Turning a Real App into
a PWA

This is the moment you've been training for. Everything you've learned in the previous
chapters has prepared you for this: your first chance to take an actual application and
turn it into a PWA. None of that pirate stuff. This is the real deal. Kind of. Mostly. You'll
be taking a fantastic open source app from GitHub that’s in need of a little PWA love.
First, you'll check out the app’s Lighthouse scores for PWA and Performance. That'll
give you an idea of where to start. You'll try to get as close to a perfect Lighthouse score
as you can, but the main focus will be on making all sorts of PWA enhancements.
You'll be adding a service worker (of course), you'll use pre-cache for the app shell,
runtime caching to make the app work offline, an app manifest for adding an icon to
the home screen (among other benefits), you'll implement server push, and any other
suggestions Lighthouse has for you so you can crank up those PWA and Performance
scores. Basically, you're taking the knowledge you've learned throughout this book (and
maybe some things I haven’t covered yet), and applying it to an existing, open source
application. By the end of this chapter, you'll have a real live Progressive Web App!

The Movies Finder App

There are hundreds of thousands of open-source JavaScript projects on GitHub. After
scouring that list for an inordinate amount of time for the perfect app to transform into
a PWA, Mohammed Lazhari’s Movies Finder app (https://github.com/Lazhari/
Movies-Finder) appeared like an oasis in a desert.

You can see the current production version of the app at https://movies-finder.
firebaseapp.com/ and the version that contains our updates lives here:
https://github.com/dennissheppard/Movies-Finder.

175
© Dennis Sheppard 2017

D. Sheppard, Beginning Progressive Web App Development, https://doi.org/10.1007/978-1-4842-3090-9_10

https://github.com/Lazhari/Movies-Finder
https://github.com/Lazhari/Movies-Finder
https://movies-finder.firebaseapp.com/
https://movies-finder.firebaseapp.com/
https://github.com/dennissheppard/Movies-Finder

CHAPTER 10 TURNING A REAL APP INTO A PWA

It’s an Angular application built off of the Angular CLI. If you don’t know Angular,
don’t panic. Nothing you've learned in this book is framework dependent, so this won’t
be any different. I'll stop to point out any places that you might need to tweak depending
on your particular app’s setup. I'll also stop to cover any Angular-specific concepts you
need to make this app a PWA. It’s likely, though, that you won’t even have to dive deeply
into the code, and you certainly won’t be writing any Angular code.

Note This is not to say you shouldn’t fork either repo and experiment on your
own. As you’ll see, to really unlock the potential of this app, it’s likely that you
would need to make some functional and structural changes. Those types of
changes, however, are simply out of scope for what you're trying to learn.

Let’s start with is a brief description of the app. Movies Finder is an app that shows
the most popular movies out right now and allows users to search for movies and view
them by category. The movie data is from The Movie Database (tmdb.org), which
provides an open API.

It's already mobile friendly, as you can see in Figure 10-1, so thankfully you won’t
need to do any visual makeovers.

176

CHAPTER 10 TURNING A REAL APP INTO A PWA

Movies Finder =

Search for a movie using the
form below

Top Rated Movies

Figure 10-1. Movies Finder on mobile

There’s no service worker and no caching, though. Because this is an image-heavy
app, that’s a lot of data being passed across the wires, and a big opportunity for caching.

The Angular production build process bundles and minifies the files, which is going
to save some bytes. But the main bundle weighs in at 548KB, while a few other library
files tack on another 40KB or so. Looking at Figure 10-2, you can see that the total first
load is going to cost just under 2MB. That'’s a pretty hefty load, and unfortunately there’s
not a whole lot you can do to change it. It will just add to the challenge.

177

CHAPTER 10 TURNING A REAL APP INTO A PWA

o @ Developer Tools - https://movies-finder.firebaseapp.com/
™ E Elements Console Sources Network Performance Memory Application Security Audits AdBlock a1
® O W T Vew = = Group by frame Preserve log Disable cache Offine No throttling ¥
| Fitter Regex | Hide data URLs @ XHR JS CSS Img Media Font Doc WS Manifest Other
Mame Protocol Scheme Domain Initiator Size Time Waterfall 2.uDs A
| movies-finder.firebaseapp.com h2 hitps movies-fin... Other 1.6 KB 2ms ||
__| bootstrap.min.css h2 https bootswatc... (index) 244 KB 151 ms | of
| style.css h2 hitps movies-fin... (index) 766 B 31ms||
__| iquery-3.1.1.min.js h2 https code.jguer... (index) 34.6 KB 136 ms | of
_| bootstrap.min.js h2 https maxcdn.bo... (index) 1M1.2KB 109 ms |
|| inline.js h2 https movies-fin... (index) 1.6 KB 30ms ||
| styles.bundle.js h2 https movies-fin... (index) 3A7KB 30ms||
main.bundle.js h2 hitps movies-fin... (ingex) 548 KB 947 ms |
|| css?family=Lato:300,400,700 http/2+qu... https fonts.googl... (index] 788 B 90 ms |
| list?callback=__ng_jsonp__.__req... http/1.1 htips api.themov,.. browser js... 1.1 KB 209 ms]
|_| movie?callback=__ng_jsonp__.__... http/1.1 https api.themov... browser js... 53 KB 240 ms o
_| movie?callback=__ng_jsonp__.__... hitp/1.1 https api.themov... browser js... 57 KB 226 ms =
|| top_rated?callback=__ng_jsonp_... http/1.1 hitps api.themov... browser js... 6.0KB 205 ms)
| MDadn8DQ_3cTékvnllg_2r_esZ... hitp/2+qu... htips fonts.gstatl... (index) 13.8 KB 2T ms]
| 22JRxviANXxSmnAhzbFHEPGLUu... hitp/24qu... htips fonts.gstati... (index) 134 KB 28 ms]
& 2gvbZMiV1ZsITFedJaSysbpBx2G... h2 https image.tmd... browser a... 324 KB 173 ms i
B xq1UgdB2d23K2knAUXBXxUALTZ... h2 https image.tmd... browser a... 320KB 137 ms |
B rPdtLWNsZmAtoZISPKTS2wE3qi... h2 https image.tmd... browser a... 17.0KB 155 ms L |
B egWvzbeQdAO3gCINBm7ZF1hjn... h2 https image.tmd... browser a... 216KB 144 ms]
B yPisiyLweCl1tbgwgtzBCNCBle.jpg h2 hitps image.tmd... browser a... 353KB 196 ms m
B WiQinFozddip5U4I06HaIskOZ jpg h2 https image.tmd... browser a... 16,6 KB 200 ms B
= cnMOaDouZekBI7BcydVBrBIWegi... h2 hitps imagetmd... browser a. 182 KB 131 ms]
A ynXoOxmDHNQ4UAyOoUBavWT... h2 https image.tmd... browser a... 234 KB 190 ms B

57 requests | 1.9 MB transferred | Finish: 3.37 s | DOMContentLoaded: 1.78 s | Load: 3.39 s
Figure 10-2. The first page load of Movies Finder

Because so many images are pulled down on that first load, performance times
are going to be tough to improve. Repeat visits should fly, in comparison, once you put
caching in place. But that first load is probably going to make Lighthouse very unhappy.
The good news is that the app is hosted on Firebase so HTTP/2 is already in place, and it
looks like those images are all getting kicked off simultaneously.

178

CHAPTER 10 TURNING A REAL APP INTO A PWA

Speaking of Lighthouse, let’s see the baseline (Figure 10-3).

Results for: hitps:/imovies-finder firebaseapp.com/ <
Aug 17, 2017, 9:39 PM CDT - * Runtime settings

) %)

Progreashe Web App 45 Progressive Web App Performance
Performance 30
Progressive Web App 45
These audits validale the aspects of a Progressive Web App, as specified by the baseline PWA Checlist
6 failed audits
+ Does not register a Service Worker ®
» Does not respond with a 200 when offiine ®
» Page load is not fast enough on 3G x

First InMeractive was at 10,830 ms. Mara details in tha "Perdormance” saction.

User will not be prompted to Install the Web App ®
Fallures: Mo maniast was felched, Site dogs not registar a Saervice Worker, Manifest start_url s nat cached bya Sarvice Workar,

Is not configured for a custom splash screen %
Failures: No manifest was faiched.

Address bar does not match brand colors x
Fallures: No manilest was fetched, No "<meta name="theme-color"" tag found,

5 Passed Audits
» Manual checks to verify

Performance 3&

These encapsulate your app's performance.

Metrics
These metrics encapsulate your app's performance across a number of dimensions

1088 1268 1448 1638 1818

Gds 728 os

Figure 10-3. Initial Lighthouse scores of Movies Finder

18s 36s

Considering there’s almost no PWA features in place here, a 45 for PWA and 30 for
performance really isn’t bad. It looks like the first meaningful paint arrived around the 9s
mark. You'll make your target 5s, but again because the first load is so image heavy, that’s
going to be a challenge. Repeat visits, however, should be able to get into the 2s-3s range

for mobile on 3G.

179

CHAPTER 10 TURNING A REAL APP INTO A PWA

The Plan to Make a PWA

There’s definitely some work to do here, but all in all you have a solid foundation to
build on. This app is using a modern framework, it’s already using HTTP/2, and the build
process already bundles and minifies, and also should make it easy to add in
sw-precache. There’s already an app shell in place because the Ul is separated from the
logic; you just need to cache it. So that will be your first order of business. Once you set
up sw-precache, you'll throw in runtime caching with sw-toolbox and make sure all of
those images are in place for subsequent visits.

After those are in place, you'll check up on the Lighthouse scores and see
where you're at. Then you should move on to the app manifest. That will be pretty
straightforward and will improve the PWA score a healthy amount.

Next, you'll see if server push can cut a few ms off the load times for the main
JavaScript bundle and see if there’s anything else you can push, too. The app is already
using a CDN for Bootstrap, but you may need to tweak that some if it’s causing any
problems.

Note A CDN is a content delivery network. In short, a CDN is able to deliver
content to users fast because the resources are distributed on a network, resulting
in files being physically close to the user. Typically you’d want to use a CDN, but
part of optimizing for performance is in experimenting to see what works.

You want the app to have a lot of offline-first capability, but there’s a lot of data here,
and it’s not practical for the entire app to have offline availability. But the app should at
least return a 200 and show something with no Internet connection.

That will cover almost every PWA and performance feature I've covered. Finally,
depending on where the scores are after that, you'll see what other suggestions
Lighthouse has for you to try to get closer and closer to PWA perfection. But don’t stop
there if you want to keep going! Once you've reached the PWA pinnacle of perfection
with your Lighthouse score, there’s still more to do. So there will be an exercise for you
at the end of this chapter that takes the offline functionality a step further, if you're up to
the challenge. Sound good? This is going to be fun!

180

CHAPTER 10 TURNING A REAL APP INTO A PWA

Note What we’re about to undertake, we’re undertaking as a team. This app
wasn’t transformed in advance, so whatever scores we come out with, we’re in
this together. It’s possible we’ll fall short of some goals, but regardless of our load
times and scores, we’ll have a proper PWA at the end.

Getting the Code and Running It

The first thing you need to do is pull down the code for the app. As a reminder, there’s a fork
of the app available at https://github.com/dennissheppard/Movies-Finder. You're using
a fork instead of the original repo because you'll be creating branches each step of the way,
and I've upgraded this version of the app to use the latest version of Angular and the CLI

(as of September, 2017, anyway). That’s all been done for you. To get started, all you need to
do is run the following in your terminal in whatever directory you want the app to live in:

git clone https://github.com/dennissheppard/Movies-Finder.git
cd Movies-Finder
npm install

Normally in an Angular app, you would now be able to run ng serve to run the
application on port 4200 by default. However, ng serve bundles the app’s assets and runs
the app in memory. While this is fine for development of the app, you need to be able to
set up caching for resources that you'll ultimately be deploying. For example, if you ran
sw-precache on the root of the application, it would try to cache lots of TypeScript files
that you aren’t even going to deploy. So ng serve isn’t going to do you a lot of good.

Note One other thing about this project. It’s written in TypeScript, a language
created by Microsoft that compiles to JavaScript. TypeScript is a superset of the
JavaScript syntax you’ve been using all along. What that means is that although every
example you’ve seen so far is just JavaScript, it is also valid TypeScript. So don’t let
TypeScript intimidate you if you haven’t used it before. It’s likely, however, that you
won’t even see any TypeScript with what you’re doing because you’re not planning

to change the actual application. Your job here is to be stealthy and tactical, trying to
upgrade the app in place and get out before anyone notices. If you end up knee deep
in TypeScript, call for reinforcements because something has gone terribly wrong.

181

https://github.com/dennissheppard/Movies-Finder

CHAPTER 10 TURNING A REAL APP INTO A PWA

Instead of running the app with resources served from memory, you need to actually
build the app and work with the a dist directory. So at this point all of your npm
packages should be finished downloading. Run the following command in the
Movies-Finder directory:

npm run build --prod --aot

When this is finished and if all goes well, you'll see the dist directory in the project
root. You can use your trusty http-server in this directory to run the app locally. Before
you do, though, let’s go ahead and set up sw-precache.

Setting Up sw-precache

The first thing you need for sw-precache is to install it via npm:

npm install --save-dev sw-precache
npm install --save sw-toolbox

You're going to be using sw-toolbox shortly, so you might as well install it while you're
installing things. Let’s create your sw-precache-config. js file first to let sw-precache know
what you want it to cache. If you think back to Chapter 4, you did this very same thing.

module.exports = {
navigateFallback: '/index.html',
stripPrefix: 'dist',
root: 'dist/',
staticFileGlobs: [
'dist/index.html’,
"dist/**.js’,
"dist/**.css’
]
};

Save that block in your config file in the root of the app. This is telling sw-precache
that you want any route that it can’t find to use index.html instead of that route. All of
your files are in the dist directory, so you can strip that prefix and give your config that
value for the root property. Then you want to tell sw-precache which files to cache. That

182

CHAPTER 10 TURNING A REAL APP INTO A PWA

will include index.html as well as all of the . js and . css files. All of these files will
end up in the cache. Again, this won’t help the first load, but all repeat visits should be
much faster.

The next step is to go to the package. json file in the root of the app. This not only
contains all of the dependencies for npm to install, but it also has a list of scripts to run,
like npm start, npm build, etc. Here you can add another one to build your pre-cache
file. You need to tell sw-precache about your config file and where to build the resulting
service worker. So in the scripts object, include the following property:

"pre-cache": "sw-precache --root=dist --config=sw-precache-config.js"

When you run npm run pre-cache, this command will create the service worker file
in the dist directory and point the config file. Go ahead and type npm run pre-cache
and check out the dist directory to see what you've got.

If all went as planned, you should see service-worker. js in that dist folder. If you
peek in there, it’s a ton of code, very little of which you're concerned about. But the first
line of code should show you all of the files that are going to get pre-cached.

The last step is registering the service worker. You don’t want to edit the index.html
file in the dist directory because that gets generated by the build process, which will
overwrite anything you change in there. Instead, go into the src directory to find that
index.html. Just above the ending </body> tag, let’s register the service worker like so:

<script>
if ('serviceWorker' in navigator) {
navigator.serviceWorker.register('/service-worker.js').then((reg) => {
console.log('Service Worker registered');
}).catch((err) => {
console.log('Service Worker registration failed:

};

, €rr);

}

</script>

This isn’t anything you haven’t seen before. The only part that’s notable is the path
you're giving to register the service worker. Remember that this file gets re-generated
and put into the dist directory, so you need to point to where that service worker will be
in relation to the dist/index.html file.

183

CHAPTER 10 TURNING A REAL APP INTO A PWA

You should be all set to try this out. In your terminal, run npm run build --prod
--aot to generate and move the index.html file into the dist directory. Finally, building
the app again requires a rebuild of the service worker file. Run npm run pre-cache again
and you're ready to go.

Once that’s finished, cd into the dist directory and run your http-server, then in
Chrome, navigate to http://localhost:8080. You should see the Movies Finder app!

Pop open DevTools and move over to the Application tab, then down to the Service

Workers section. There and in Figure 10-4, you should see your service worker installed
and running.

2 @ Developer Tools - http:/localh P
[® O] | Bements Consols Sources Mstwork Memary icati Security Audits AdBlock 02 A4
Application Service Workers

| Manifest

Offline Update on reload Bypass for network Show all
Claar stoea
L] o httpeiflocalhost:B080/ Lnregiter
Storage £
» E2 Local Storage
» 52 Session Storage
IndexedDB
8 loce Clients hitp:fiocalhost 8080/ focus
= Web SOL
» & Cookies

#B166 activated and Is running stop

Cache
£ Cache Storage
EZ Application Cache

Frames

»Ctop

Figure 10-4. Movies Finder now has a service worker

184

CHAPTER 10 TURNING A REAL APP INTO A PWA

Moving down to the Cache Storage section, you should now see some files being
cached as well, just like in Figure 10-5.

*e 9 Developer Tools - of
s i Elements Console Sources Network Perdormance Memory Application Security Audits AdBlock oz

Application
| Manifest
X Service Workers
W Clear storage

Request Response
8080/ index. hMmi7_sw- 8ada... OK

*
o
1 Winline.adfe 1017453 bundie.js?_sw-precache=... OK
2 i iAo, bundle.js?_sw-p he=... | OK
3
4

bundle.css? h... |OK
-B08 0 vendor.8d. 20494, bundle. [s7_sw- h,,. | OK

Storage

* B8 Local Storage

» 58 Session Storage
= IndaxedDB
= Web SOL

» & Cookies

Cache
¥ = Cache Storage
EE sw-precache-v3-sw-precache-t
EE Application Cache
i Consols Fandering Remote devicas Recquest biocking x

& top ¥ | Filter Custom levels ¥

469 Movies service is ready

+659 Service Worker registered

Figure 10-5. Movies Finder is caching its JavaScript, CSS, and index.html files

Now that you have that working, it’s worth noting that the order that you build the
app and run the pre-cache script is important. If you run pre-cache first, the bundle
file names it will try to cache are going to be incorrect once you build the app because
those files get renamed if any file in them changes. To ensure you always run these in the
correct order, set up the scripts section of package. json to run them sequentially:
"scripts": {

‘ng": "ng",

"start": "ng serve",

"build": "ng build --prod --aot &&% npm run pre-cache && cd dist &&
http-server”,

"test": "ng test",

"lint": "ng lint",

! "ng e2e",

"pre-cache": "sw-precache --root=dist --config=sw-precache-config.js"

eze :

185

CHAPTER 10 TURNING A REAL APP INTO A PWA

This will allow you to just type npm run build in the terminal and the app will build,
sw-precache will run using the config file, the directory will change to dist, and launch
your server. Once you're ready to deploy the app somewhere, you'll need to edit that or
add a new command, but for the purposes of development, this should speed things up
quite a bit.

If your server is still running, stop it, go to the app’s root directory in terminal, and
type npm run build. It will take a few seconds, but at the end you should be able to
navigate to http://localhost:8080 and you'll be all set.

Caching All the Things

You have your app shell (and really the whole app) pre-cached. Now about all of those
images and API calls. You can cache the dynamic files with sw-toolbox. You don’t want
to edit the service worker directly, though, because it’s a generated file and you’d lose
those changes when you run precache again. Luckily for you, the sw-precache config
works well with sw-toolbox and will allow you to set up your dynamic caching without
touching the service worker file.

Open the sw-precache-config. js file and add a new property called
runtimeCaching:

runtimeCaching: [

{

urlPattern: '/*',

handler: 'cacheFirst',

options: {
origin: 'tmdb.org',
cache: {

maxEntries: 100,
name: 'movie-cache'

}
b
{

urlPattern: '/*',
handler: 'cacheFirst',

186

CHAPTER 10 TURNING A REAL APP INTO A PWA

options: {
origin: 'themoviedb.org',
cache: {
maxEntries: 10,
name: 'movie-cache’

Once you have this in your config file, you can type npm run pre-cache in your
terminal and you should see this at the bottom of the service-worker. js file in the dist
directory:

toolbox.router.get("/*", toolbox.cacheFirst, {"origin":"tmdb.org","cache":{

"maxEntries":100, "name": "movie-cache"}});

toolbox.router.get("/*", toolbox.cacheFirst, {"origin":"themoviedb.org",

"cache":{"maxEntries":10,"name": "movie-cache2"}});

You've seen something like that before! This is going to cache all of your calls to
tmdb.org, which is where all of these images originate from, and calls from themoviedb.
org, which is where the movie data comes from. You didn’t make any changes to the
app’s code, so there’s no need to fully rebuild the app. If you still have the server running,
clear out the application data using the Clear Storage section of DevTools. Reload the
app a couple of times. On that second load, most of your calls should be coming from the
service worker, so your DevTools should look something like Figure 10-6.

187

CHAPTER 10 TURNING A REAL APP INTO A PWA

e e Toals -
[x] | Elements Consocle Sources Network F Memory Appiicati Security Audits AdBlock
® O = 7 View I = _ Groupbyfame Preserve log @ Disable cache Offine Mo throttling ¥
Filter Regex Hide data URLs m ¥HR J5 CS5 Img Media Font Doc WS Manifest Other
MName Protocel Scheme Domain Initiator Size Time Waterfall 200s &
| | Ist?callback=_ng_jsenp__.__reqQ.finished8lan... http/1.1 hitps apithemovied.... vendorBJ7oBbS... (from ServicelWorker) gms |
meovisTealbacks_ ng jsenp__ real finished&... hitpdd 1 hips apithemovieds..., vendorBATBBES .. (from SenicaWorker) Sms |
movie?callback=__ng jsonp__.__req2 finishad&... hitp1.1 hitps apithemoviedd.... yendor8d7oBbS... (from ServiceWorker) Sma |
top_rated Pcallback=__ng_jsonp__,__reqd.finish... httpM1.1 hitps api i {from ams
| MDadnaba_3cTekvnla_2r_esZWax00-xsNgO... hitp/2equic/37 hitps fonts gstatic.com fingex} 136 KB 19ms| |
|| 22JRcdANKSmNARZEFHEPGLULERTyOUSIGEm... hitp2equic/3T hitps fonts gstatic.com [ingex) 13.4 KB 26ms | |
» GORderx2SehcEEQEKYObkideFy.jpg http1.1 hitps imagetmdb.org vendorBdToBbS... (from SerdceWorkear) 11ms |]
& WoifoYuwLETmmasnGHOTxBIE jpg http/1.1 hitps image.tmdb.og vendor8aToBbS... (from ServiceWorkar) 10ms |]
& cPasvEweTHPsmDATIEMNOm2 PIAT pg http/1.1 mtps image.tmdb.org vendorBITBBDS... (from ServiceWorker) 11 ms]
B thas{8VCVadZnzfBiBcliesiaM.jpg https1.1 hitps image.tmdb.ong vendor8d7bBbs... (from ServiceWorker) 10ms | 1
&y i lirmhaz.jog hitp/1.1 hips image.tmdb.org {from Servi 13ms | |
I 5qcUGqWeWhEsoCwiNUrifdy3feWn pg http1.1 https image.tmdb.org vendor8d7pBbS... (from ServiceWorker) 13ms |
y52mjaCloJoxfcDDsKDNgiDx.jpg http/1.1 hitps image.tmdb.og vendorBGTRELE... (from SenviceWorker) 10ms | I
M zecMELPBUSYMOpCE1ZBImaaXutd.jpg hitpr1. 1 mps image.tmdb.org venderBaTBBRS .. (from ServceWorker) 7ms| |
& bOXBV303Fgkzn2K4FaKDo003 104 jpg http/1.1 hitps imaga.tmdb.omg vendor 8dToBbS... (from SarviceWorker) 10ms |]
a o TBENDE jpg hitg1.1 htps image.trmdb.org {frorm Send 12 ms)
B y210B3n3xSudA1SIVTUWREXLUW, jpg http1.1 hitps image.imdb.org vencor8dib@bs... (from ServiceWorker) 12ms I
B myRzRzCxdfUWkJWaeHHZ 10Gkd g httpr1.1 hitps image.tmdb.og {frorm Servi 13ms I
B 2EUAUWSIHFIKSFRyohHECROD jog hitp1.1 hitps image.imdb.org vendorBdTpAbS .. (from SarviceWorker) 10ms | (|
B inVg3FRGeYIRI2IaBiZIKYYXFNR.jpg http/1.1 hitps image.tmdb.og vendorBgTRBLS... (from ServiceWorkar) 10ms | I
58 requests | 130 KB transferred | Finish: 2.33 s | DOMContentLoaded: 1.17 s | Load: 1.58 s
Conscle Rendering Remote devices Reqguest blocking x
@ top ¥ | Filter Custom levels ¥ 2 items hidden by fiters | ¢
1:44.891 Movies service is ready main,52584ce. . bundle, is:1
21:11:45.013 Service Worker registered index):3
»

Figure 10-6. The images and API calls for Movies Finder use the service worker

cache now

You're making steady progress. Your caching work is almost done. Open up

index.html and you'll notice that there are two items in there that are being fetched

from CDNs: a Bootstrap file and a jQuery script.

Neither of them are going to get pre-cached, so you can add them to
sw-precache-config. js just like you did for the API calls and images, except
this time you'll leave off the maxEntries and name options:

{

urlPattern: '/*',
handler: 'cacheFirst',
options: {

origin: 'bootstrapcdn.com'

urlPattern: '/*',
handler: 'cacheFirst',

188

CHAPTER 10 TURNING A REAL APP INTO A PWA

options: {
origin: 'jquery.com'
}
}
With those two additions, the app should retain its styling even when your users are
offline.

It won’t do a lot of good to run a Lighthouse test on the project while you're hosting
locally. So deploy to Firebase again to test your improvements. It’s super easy, and I'll
walk through the steps. But feel free to choose whatever hosting provider you'd like to

deploy the app.

Deploying to Firebase

It’s possible the steps here will change by the time you're reading this. If that’s the case,
check out the Firebase documentation (it’s currently at https://firebase.google.com/
docs/hosting/deploying, but if the steps change, that URL could change, too, so just
google “Firebase hosting”).

The first step is to go to the Firebase console at https://console.firebase.google.com.
Hopefully it looks something like in Figure 10-7. Sign in with your Google account and click
the big Add Project button.

189

https://firebase.google.com/docs/hosting/deploying
https://firebase.google.com/docs/hosting/deploying
https://firebase.google.com/

CHAPTER 10 TURNING A REAL APP INTO A PWA

@ Firebase console

e

< & Secure | https://console.firebase.google.com/7pi

’3 Firebase Go to docs

Welcome to Firebase L

Tools from Google for developing great apps,
engaging with your users, and earning more through

mobile ads.
-
Q Learn more = Documentation [Support i
Your projects using Firebase IMPORT GOOGLE PROJECT

il @

Add project Explore a demo project

Figure 10-7. The Firebase console

Once you click that button, you can give your project a name. Let’s name it
movie-finder-pwa. After you name your app, you'll be taken to an overview screen. Scroll
down a bit to see the hosting section and click GET STARTED, which will take you to
another screen with another opportunity to click GET STARTED. Firebase will guide you
through the steps of deploying your app, but the following is how Movies Finder was
deployed:

1. Open your terminal and install the Firebase CLI usingnpm i -g
firebase-tools.

2. Goto the app root in terminal and run firebase login, and type in
your Google credentials.

3. Delete the existing firebase.json and .firebaserc files in the root
of the project.

190

CHAPTER 10 TURNING A REAL APP INTO A PWA

4. Inthe terminal, type in firebase init.Choose the “hosting”
option like in Figure 10-8. This will create a new firebase. json and
.firebaserc files.

@ @ Movies-Finder — node /usr/local/bin/firebase init — 100x17
JUsers/dennissheppard/random projects/Movies-Finder — node Jusr/local/bin/firebase init =F

‘Denniss-MacBook-Pro:Movies-Finder dennissheppard$ firebase init

o O & W8 W)
& L & B W LaTi)

You're about to initialize a Firebase project in this directory:
[fUsers/dennissheppard/random projects/Movies-Finder

? Which Firebase CLI features do you want to setup for this folder? Press Space to select features,
then Enter to confirm your choices.

(O Database: Deploy Firebase Realtime Database Rules

(O Functions: Configure and deploy Cloud Functions

>OHosting: Configure and deploy Firebase Hosting sites

Figure 10-8. The Firebase CLI

5. Choose the Firebase project you created in the console.

6. Open the firebase. json file and paste in the following:

{
"hosting": {
"public": "dist"

7. Backin the terminal, type firebase deploy.

Once you finish those steps, the app will be deployed to <whatever-app-name-you-
chose>.firebaseapp.com. Run the app to make sure everything is working and then get
Lighthouse going. Check out the results in Figure 10-9.

191

CHAPTER 10 TURNING A REAL APP INTO A PWA

Results for: hiips:) ia-finder-p i com/ <
Aug 20, 2017, 10:15 PM CDT - * Funtime setings

0 >

Progressive Web App Performance
Progressive Web App 73
These audits validate the aspects of a F ive Web App, as ified by the baseline PWA {:
4 failed audits
» Page load is fast enough on 3G -

Firgt Interactive was found at 7,490 ms, howevar, the netwark request latencies were nat sufficiently reakistic, so the performance
MEASURGMOnts cannot bo trusted.

User will nat be prompted to Install the Web App ®
Falures: No manifest was fetched, Maniest start_url s not cached by a Service Worker.

Is not configured for a custom splash screen x
Falures: No manifest was feiched.

Address bar does not match brand colors x

Falures: No maniles! was leiched, No "<meta name="theme-color>" tag found,

v

7 Passed Audils

= Manual checks to verify

Results for: hiips:) ia-finder-p i com/ <
Aug 20, 2017, 10:15 PM CDT - * Funtime setings
Performance 51
These encag Your app's

Metrics

These metrics encapsulate your app's pefformance across a number of dimensions.

749 ms 158 22s as als 455 528 -E] 675 758

First meaningful paint 6,750 ms

First Interactive (beta) 7,490 ms

Consistently Inleractive (beta) 7,420 ms

» Perceptual Speed Index: 5,552 (larget: < 1,250) 49

» Estimated Input Lalency: 17 ms (targel. < 50 ms) 100

Opportunities

These are opportunities to speed up your application by optimizing the following resources.

» Offscreen images 12,810 ms
1,120 KB

» Reduce render-blocking siylesheels — 1,000 ms

Diagnostics

Mare information about the performance of your application.

» Critical Request Chains: 12

» User Timing marks and measures: 24

+ 7 Passed Audils

Figure 10-9. Lighthouse results after adding in the service worker and caching
192

CHAPTER 10 TURNING A REAL APP INTO A PWA

After adding the service worker in, you've improved the Lighthouse scores from
45 and 30 to 73 and 51. Not bad for just a little bit of work!

There’s clearly some work to do in the performance department. Looks like there is a
render blocking stylesheet. Let’s take care of that and implement server push before you
reevaluate Lighthouse.

Moving the Render-Blocking Stylesheet

Let’s move all of the resources to the bottom of the index. html file so they don’t block
rendering. For your purposes, that’s just the https://bootswatch.com/superhero/
bootstrap.min.css file. You can’t server push it because it’s served from an external
CDN. So let’s move that line right beneath the </app-root> tag:

<link rel="preload" href="https://bootswatch.com/superhero/bootstrap.min.

css" as="style" onload="this.rel="stylesheet'">

Remember that telling the browser to preload that file will cause it to download right
away;, as early in the page’s lifecycle as possible. The hope is that you can get that file
early enough that it doesn’t block any part of the rendering process. Last time we looked
at this, you set an invalid media query that you changed to a valid one onload. Now you’ll
use a more concise trick that just changes the rel property to a stylesheet.

Note Just like with a lot of these performance based changes, it’s worth trying to
load that file with and without preload to see which helps rendering the most.

Implementing Server Push

You'll recall that when the browser makes a request for your app, you have the ability

to send files along with the index.html file so that the browser doesn’t have to make
additional requests for files you know it will need. But remember that you're focused on
rendering speed. So you don’t want to push everything you possibly can; you just want
the files that impact rendering. For your purposes, that’s going to be the CSS bundle and
the two main JS bundles.

193

https://bootswatch.com/superhero/bootstrap.min.css
https://bootswatch.com/superhero/bootstrap.min.css

CHAPTER 10 TURNING A REAL APP INTO A PWA

You'll need to rebuild the app to make sure you know what the bundle files are
called so you can tell Firebase to push those to the client. After you build the app using
ng build --prod --aot, open the firebase.json file. This is where you're going to add
link headers containing the files you want Firebase to push. Let’s look at what you want
the config file to contain:

{
"hosting": {
"public": "dist",
"headers": [
{
"source": "/",
"headers": [
{
"key": "Link",
"value": "<styles.6d60183618c88cc81e16.bundle.css>;
rel=preload;as=style,<vendor.8d7b8b5b26cc9e120d94.bundle. js>;
rel=preload;as=script,<main.c1a2e8f5346167c93597.bundle. js>;
rel=preload;as=script"

You've already used the config file to let Firebase know what directory you want to
deploy. Now you can add a headers property that adds a key that tells Firebase what kind
of header you want and then the value contains the file. That's it. You redeploy the app
using firebase deploy in the terminal and you can measure again.

194

CHAPTER 10 TURNING A REAL APP INTO A PWA

Note Your bundle names will be different. If you’re copying and pasting code,
make sure you grab your actual bundle names!

If you’d like to try to push additional files, just add them to that string. It’s definitely
worth taking a little time to see if there’s a noticeable performance improvement
when pushing other files.

After deployment, if you clear the application data and reload, go over to the Network
tab to verify the CSS bundle is getting pushed by looking in the Initiator column, like in
Figure 10-10.

e 9 Tools - finder-
[# (] FEements Console Sources Network Podormance Memory Application Security Audits AdBlock
PO WF Vew = N Group by frame Preserve log Disable cache Offine No throttling ¥
Filter Regex Hide data URLs {‘_: XHA JS CSS mg Meda Font Doc WS Manifest Other
Marne Method Protocol Domnain Initistor Size Time Waterfall 1003 1.50s 200s -
_| movie-finder-pwa firebaseaop.... GET h2 movie-finder-pw... Other 30 KB 137 ma [
styles BIE01BIBIBCEBocATe16.... GET h2 mevie-finder-pw... Other BI0B 301 me |
| vendar BaThabSh2Bec9e12009... GET w2 mevie-findor-pw... Push / 157 KB, o71 ms e E—
i ' b... 1 ... Push/ 5
main.c1a2e8f5346M67c83587.b... GET h2 monie-finder-pw. h 9.1 KB 67 ms 2 12.58 ma
_| boatstrap min.css GET h2 bootswatch.com fndax) 24.3KB 30M8 aved ot 13,08 me
boatstrap.min.cas GET hz maxedn bootstra. .. ([ndex) 236 KB BE ms
' -3.2.1.slienumin 2 GET h2 code.j GO 2TAKB 104 ms
jouery- TN js jgueny: ndax) Recaving Push 765,46 ms
boatstrap.min.js GET h2 maxcdn.bootstra... ndex) 112KB Tims
inline.c470810d5c485610c643... GET h2 movie-finder-pa... [ndex) 2088 152 ms.
casParmily=Lat0:300,400,700 GET M. foris.googeaps... (ndex) 788 8 G1mg Queueing e
boatstrap.min.cas GET h2 maxedn bootstra. .. ndax) 236 KB 23ms
EstTeallback=_ng jsonp__._r.. GET hiip.1 apithemeviedboong vendor,... 1.1 KB 211ms Reading Push T csoems
monvieTeallback=__ng jsonp_.... GET http/1.1 api.themoviedb.org yendor... 53 K8 245 ms Explanation 971.80 ms [st v
moviecallback=_ng jsonp_.... GET htip/1.1 apithemeviedb.ong yendor... 58KB 217 ma i
top_rates?callback=__ng_json... GET hitp/1.1 apithemeniedb.org yendor,... BOKB 198 ms el

Figure 10-10. The Movies Finder bundles are getting pushed to the client

So everything is looking really good here. You've pushed assets that you need early
on and you moved the render blocking library file. Let’s now look in Figure 10-11 to see if
Lighthouse finds any improvements.

195

CHAPTER 10 TURNING A REAL APP INTO A PWA

Results for: https:/movie-finder-pwa.firebaseapp.com/ <
Aug 20, 2017, 11:36 PM CDT « * Runtime settings

Progressive Web App Performance
Progressive Web App 73
These audits validate the aspects of a Progressive Web App, as specified by the baseline PWA Checklist.
3 failed audits
» User will not be prompted to Install the Web App b4

Failures: No manifest was fetched, Manifest start_url is not cached by a Service Worker.

» s not configured for a custom splash screen x
Failures: No manifest was fetched

» Address bar does not match brand colors X
Failures: No manifest was fetched, No *<meta name="theme-color">" tag found.

» B Passed Audits

» Manual checks to verify

Performance 70
These encapsulate your app's performance.

Metrics
These metrics encapsulate your app's performance across a number of dimensions.

31s 36s

15s 21s 26s

" First meaningful paint 4,640 ms

513 ms 1s

" First Interactive (beta) 5,130 ms

Figure 10-11. Movies Finder Lighthouse scores after moving the Bootstrap file
to the bottom of the index and preloading it, plus adding server push for the CSS
bundle

196

CHAPTER 10 TURNING A REAL APP INTO A PWA

Hey look at that! The performance score went up almost 20 points! You can see that
something shows up on the screen at just over two seconds, and you get a meaningful
paint in under 5 seconds. We hit our original goal! Under 5 seconds isn’t bad!

For our purposes here, that’s all you're going to do for initial page load. But you
should play with different server push options, try the Bootstrap file as a local resource
instead of the CDN, and anything else you can think of. There will be additional tips to
try in a couple of chapters, like code splitting and lazy loading. Remember that while
using HTTP/2, large bundle files are an anti-pattern. So you could probably get that
performance score up a bit more.

Note If you're following along (of course you are!) and your Lighthouse score
was different from the one posted above, remember that performance scores
are always going to vary. Try running Lighthouse a handful of times to get a good
sense of where your score ends up.

Now you'll shift your focus to a couple of the items in the PWA score. Lighthouse is
yelling at you about splash screens and installing the app. And that means one thing: you
need an app manifest! Let’s get to it.

Adding the App Manifest

So that you can have a splash screen and allow the user to install your app on Android
devices, you need to add an app manifest. This is a super straightforward process. You
can borrow the manifest you used back in Chapter 6 and tweak it, or you can use a tool
like https://app-manifest.firebaseapp.com/. There are a number of sites like this if
you search around. This one allows you to fill in a few blanks to generate the file, and
also allows you to upload an icon that it will downsize to create all of the app icons for
you. This is a huge timesaver.

For the movie app, type in whatever info you'd like in those fields, and upload an
icon to see them all generated. If you want to just pull down the app-manifest branch

197

https://app-manifest.firebaseapp.com/

CHAPTER 10 TURNING A REAL APP INTO A PWA

of the https://github.com/dennissheppard/Movies-Finder repo, it will have all of the
icons and the completed manifest file that you can also see here:

{

"name": "Movie Finder",

"short_name": "Movie Finder",

"start url": "index.html",

"theme color": "#df691a",

"background_color": "#2b3e50",

"display": "standalone",

"description”: "The only movie app you'll ever need",
"icons": [

{

src": "assets/app-icons/icon-72x72.png",
"sizes": "72x72",
"type": "image/png"

src": "assets/app-icons/icon-96x96.png",
"sizes": "96x96",
"type": "image/png"

src": "assets/app-icons/icon-128x128.png",
"sizes": "128x128",
"type": "image/png"

src": "assets/app-icons/icon-144x144.png",
"sizes": "144x144",
"type": "image/png"

1

198

https://github.com/dennissheppard/Movies-Finder

CHAPTER 10 TURNING A REAL APP INTO A PWA

src": "assets/app-icons/icon-152x152.png",
"sizes": "152x152",
"type": "image/png"

src": "assets/app-icons/icon-192x192.png",
"sizes": "192x192",
"type": "image/png"

src": "assets/app-icons/icon-384x384.png",
"sizes": "384x384",
"type": "image/png"

src": "assets/app-icons/icon-512x512.png",
"sizes": "512x512",
"type": "image/png"
}
])

"prefer related applications”: false

}

There are a couple of properties I've left off, like related_applications and
orientation because you have no related apps here, and orientation can be anything for
this particular app.

Now you need to include a reference to the manifest in your index.html. Place the
following line as the last line of the <head> tag:

<link rel="manifest" href="/app-manifest.json">

199

CHAPTER 10 TURNING A REAL APP INTO A PWA

The last step for the manifest is to include a reference to the manifest file in the
angular-cli. json file. That file tells the build process what you need to copy over to the
dist folder. Add your manifest to the assets array like so:

"assets": [
"assets"”,
"favicon.ico",
"app-manifest.json"

]

Your manifest should be all set, and you can check on it in just a moment. First, there
was one other suggestion Lighthouse had having to do with a theme color meta tag. This
will make the address bar match the app’s colors on browsers that support that meta tag.
The goal here is to give users a completely immersive experience. You just need to throw
the following line into the <head> of the index.html file:

<meta name="theme-color" content="#df691a"/>

Obviously you can make the color there whatever you'd like; this one just matches
the manifest. So now you can build the app and run it locally to make sure the manifest
is in place. Check in DevTools under the Application tab and you should see something
like Figure 10-12.

200

CHAPTER 10 TURNING A REAL APP INTO A PWA

@0 @ Developer Tools - http://localhost:8080/
| [w ﬂ Elements Console Sources Network Performance Memory Application Security Audits »
Application App Manifest
l:Mmitest 18080/app-manifestson
X Service Workers
B Clear storage
. 2 Identity Add to homescreen
Storage Name Movie Finder
B B= Eoow Somage Short name Movie Finder
» == Session Storage
> £ IndexedDB —
resel ion
£ Web SQL
» @ Cookies Start URL index.html
Theme color M#dfé91a
Cache

» £ Cache Storage

Background color

image/png

128x128
image/png

W #2b3e50

£8 Application Cache Orientation
Display standalone
Frames
> 1o
Qe lcons
72x72
image/png i1
96x96

Figure 10-12. The app manifest should be visible in DevTools

Note It’s possible that when you first click on the Manifest section on the left
side of the Applications tab that you won’t see your manifest info on the right.
There appears to be a bug in Chrome DevTools that requires you to close DevTools
and re-open them before the manifest appears.

201

CHAPTER 10 TURNING A REAL APP INTO A PWA

If everything is showing up, you're all set to deploy. First, you can see what the app
looks like on Chrome for Android, and then you can look to see if you've made Lighthouse
happy. Just run firebase deploy and let it do some work. If you're able to launch your
app on Android, you should see some pretty cool stuff, as shown in Figure 10-13.

- Rl M) T 448

{) & wiefinder-pwa.firebaseapp.com

Movies Finder

Toggle nav

@ ®) Movie Finder X
.

movie-finder-pwa.firebaseapp.com

Figure 10-13. Android is asking if you'd like to add your app to the home screen

This is excellent! Notice that not only did Android prompt to install the app on its
own, but that Chrome address bar matching your own nav bar is absolutely sick!

Once you add the app and launch it from the device home screen, you're greeted by
the lovely splash page seen in Figure 10-14.

202

CHAPTER 10 TURNING A REAL APP INTO A PWA

Movie Finder

Figure 10-14. The Movies Finder splash page, courtesy of the app manifest

The splash page looks fantastic here. It’s almost a shame that you only see it for a
split second before the app launches and you see what’s in Figure 10-15.

203

CHAPTER 10 TURNING A REAL APP INTO A PWA

RnETRAEB

Movies Finder

Toggle nav

Search for a movie using the

form below

Top Rated Movies

Release Date: 1995- Release Date: 2016-

Figure 10-15. Chrome’s address bar disappears because of the standalone display
property in the manifest

You currently have standalone for the display property, but try out the different
properties to see what you like for the app.

204

CHAPTER 10 TURNING A REAL APP INTO A PWA

Now that you've seen how great the app is looking, let’s see if you've made
Lighthouse as happy as Chrome appears to be in Figure 10-16.

Results for: hitps:imovie-finder- i om/ -:
Aug 22, 2017, 10:58 PM CDT - * Runtime settings

Lighthouse -

Progressive Web App 100 Progressive Web App Performance Accessibility Best Practices
Performance 70
Accessibility 83 Progressive Web App
These audits validate the aspects of a Progressive Web App, as specified by the baseline PWA Checklist.
Best Practices 100

» 11 Passed Audits

» Manual checks to verify

Performance 70
These encapsulate your app's performance.

Metrics
These metrics encapsulale your app's performance across a number of dimensions.

518 ms 18 16s 21s 26s AR 36s

415 478 5.2s

¥ Consistently Interactive (beta) 5,180 ms

¥ First meaningful paint 4,630 ms

* First Interactive (beta) 5.180 ms

» Perceptual Speed Index: 2,471 (larget: < 1,250) 87
» Estimated Input Latency: 17 ms (larget: < 50 ms) 100
Opportunities

Thasza ara annnrunitias tn snaad on unur { b imi tha fnl

Figure 10-16. A perfect Lighthouse PWA score!

It looks like you've made Lighthouse very happy. You did it: a perfect PWA score! You
can expand that section and see what you've accomplished. But that’s not all, because
now you're actually looking at the other couple of Lighthouse sections as well. You're
following all of the best practices already, but each item in that list is straightforward to
fix if you're seeing anything different. That’s a fairly high accessibility score, too, though
there are a couple of items to work on there.

You have yourself an actual, live, genuine PWA!

205

CHAPTER 10 TURNING A REAL APP INTO A PWA

Thoughts on Movies Finder Performance

We set out knowing that the Lighthouse Performance score was going to be a steep hill
to climb. There are a couple of factors working against us here. One is that the vendor
bundle is really big. Angular is a relatively heavy framework, and as you'll see in the next
chapter, of the current crop of popular frameworks, it is the bulkiest and gives developers
the least amount of time to work with for optimizing time to first meaningful paint.

The second factor working against us is that the way the app functions leads to
pulling down a lot of images on the home page. If you're super curious, you might find
that if you take away all of those images and render just the actual app shell, you can
boost that Performance score up into the mid 80s. That would require changing the
functionality of the site, though, which would not only require some Angular knowledge,
but is out of scope of our focus here.

It’s also worth pointing out that the app uses two not-insignificant JavaScript files
just to have the mobile menu appear on click. Those files are the JS used for Bootstrap
(bootstrap.min.js)and jQuery. The version of jQuery in this repo is a slightly slimmed
down version than the original, but it’s still about 100KB of JavaScript just to have the
menu appear.

So there are a number of things you could do really boost that score up:

1. Write a custom JS handler to show the menu on mobile, thereby
eliminating 100KB of JavaScript.

2. Inline the styles needed to render the app shell and defer the need
for the entire Bootstrap theme.

3. Change the functionality of the app so the user can click a
button to see the most popular and newest movies, rather than
automatically loading them. Or only show the top three of each
section.

There are surely additional things you can do to squeeze every drop of performance
out of this app. So give it a shot and see what you're capable of. Post your best
performance scores in the pirate app comments, and if you can get into the 80s, let us
know what you did to achieve it!

206

CHAPTER 10 TURNING A REAL APP INTO A PWA

Looking Ahead

In this chapter, you focused on optimizing your Lighthouse scores, and you achieved
those goals using much of what you learned in previous chapters. In the next chapter,
you're going to rewind to the creation of apps using various popular front-end
frameworks and see how they can get you started on the right PWA foot out of the box.
Before you move on, though, you may have noticed there were a couple of features
you didn’t use in the Movies Finder app. And because you're obviously itching to take on
such a challenge (and you haven’t been assigned any homework up to this point!), here

is a very open-ended exercise for you to try.

BACKGROUND SYNC AND PUSH NOTIFICATIONS EXERCISE

There is undoubtedly an opportunity in this Movies Finder app to use background sync and
push notifications. And so it is your mission to come up with the most creative way to do so.

1. Fork the https://github.com/dennissheppard/Movies-Finder repo.

2. Make sure you use the app-manifest branch so you have a service worker
and app manifest in place.

3. Come up with a creative way to use background sync and/or push notifications.
Remember, to use push notifications, you need to set up a server like you did in
Chapter 7.

4. If you host your solution somewhere, comment about it on the pirate app
comments section or on the https://github.com/dennissheppard/
Movies-Finder issue tracker! Or at the least, share your ideas with
everyone else.

Hint: It is worth noting that to use background sync, you will obviously need to make
changes to the service worker file. But as | talked about earlier in this chapter, you can’t
directly edit that file because it’s generated by the build process. So in order to extend

the generated service worker with your custom changes, you’ll need to utilize the sw-
precache importScripts option in the configuration file. You can put your service
worker-specific background sync and push notification code in separate JS files and import
them via configuration. Don’t forget to include those files in the angular-cli. json build
configuration too, so they get deployed!

207

https://github.com/dennissheppard/Movies-Finder
https://github.com/dennissheppard/Movies-Finder
https://github.com/dennissheppard/Movies-Finder

CHAPTER 10 TURNING A REAL APP INTO A PWA

If you're stuck, you could use Jake Archibald’s Offline Wikipedia app as inspiration. Check out
the repo here: https://github.com/jakearchibald/offline-wikipedia. It’s a great
example of an offline app that notifies users when a previously un-cached article is available
for reading. You can apply that same concept to the Movies Finder detail pages, showing a
friendly offline message allowing the user to sign up for push notifications to let them know
when the app is back online with a link to the route they were trying to view.

That’s definitely a challenge, but you’re absolutely capable of crushing it! Or, go off on your
own and see what you can come up with. No matter which direction you go, have fun, and
good luck!

208

https://github.com/jakearchibald/offline-wikipedia

CHAPTER 11

PWAs From the Start

To this point, you've cobbled together a Pirate PWA piece by piece and you took a movie
app and totally transformed it (at least in the eyes of Lighthouse and the PWA world).
There’s nothing devs love more, though, than starting a new project from scratch. Just
mention the words “greenfield” or “starter kit” to a software developer and watch their
eyes light up. So in this chapter I'll talk about creating a progressive web app even before
you add in any application logic. To do that, I need to talk about the most popular
frameworks and libraries in the JavaScript ecosystem today. While it is a completely valid
option to stick with VanillaJS to write your JavaScript apps (just look at that beautiful
pirate app, after all), nowadays it’s probably most common to use some kind of library
or framework. There are just too many advantages to using React or Angular or lots

of others to completely and purposely avoid them. And now that PWAs are taking the
world by storm, those frameworks and libraries are following suit by giving you a PWA
with just a few keystrokes. In this chapter, I'll talk about those keystrokes by covering a
handful of the PWA-friendly frameworks and libraries available today: React, the ultra
popular library originating from Facebook; Preact, a smaller and faster React alternative;
Vue.js, the tiny view-focused library that has really blown up in the past year; Angular,
the revamped component-based solution from Google; and Ionic, the mobile-centric
framework built on top of Angular.

In comparing and contrasting these libraries and frameworks, though, it’s important
to remember that none of them should be considered a better alternative over the others.
Sometimes it comes down to deciding on the right tool for the job. A hammer isn’t
inherently better than a screwdriver. Other times it comes down to personal preference.

That being said, each solution I'll cover has pros and cons in the PWA world. I'll
focus on the performance of each framework and library so that if you need to be
performance obsessed, you know just how much each of these solutions is going to cost
you on that first page load before you add any of your own code and logic.

209
© Dennis Sheppard 2017

D. Sheppard, Beginning Progressive Web App Development, https://doi.org/10.1007/978-1-4842-3090-9_11

CHAPTER 11 PWAS FROM THE START

Just like in the Movies Finder app, your goal is for the app to be interactive within
five seconds on a 3G connection. So you can measure how much time each framework’s
starter template takes to load out of the box. By doing so, you can see how much time

you have to work with after adding in your own code.

Note These will not exactly be robust, scientific tests that would hold up to
extreme scrutiny. The testing method is simply running Lighthouse three times on
each generated PWA. If one of the three is obviously out of line with the other two
scores, you can drop that one and run another test. Each PWA will be available for
you to test, so if you want to set up something more in depth, you’re welcome to do
so. Tell the rest of us about it on the iPatch comment board or in the book’s GitHub
issues. | look forward to seeing if your results match what we’re about to see!

Regardless of the results you find here, though, and regardless of the differences
in each framework and library, one of the great things about them is that each one
empowers developers to focus on building great applications from the start.

Note This chapter will not be a tutorial for each library and framework. Instead,
I'll outline how to create a PWA with each of these at project creation, and look at
how much flexibility developers have given each solution with regards to rendering
speed and PWA features.

React PWA

The first library I'm going to talk about is arguably the most popular JavaScript library
today. React.js is a project from Facebook that focuses on the view portion of front-

end applications. It touts composability and speed along with being backed by one of
the largest tech companies in the world. The main concept behind React is the use of

components and managing their state.

210

CHAPTER 11 PWAS FROM THE START

Creating a React App

It’s easy to start a React app using the Create React App tool. And as a bonus all apps
created via this tool are PWAs by default. Let’s take a look at what this means.

To get started, create a new directory somewhere on your machine and run the
following to see the results from Figure 11-1:

npm install -g create-react-app
create-react-app react-pwa

~[random projects/frameworkpwas — -bash

‘Denniss—-MacBook—-Pro:frameworkpwas dennissheppard$ create-react-app react-pwa

Creating a new React app in /Users/dennissheppard/random projects/frameworkpwas/react—pwa.

Installing packages. This might take a couple of minutes.
Installing react, react-dom, and react-scripts...

yarn add ve8.20.3

info No lockfile found.
4 Resolving packages...
#e Fetching packages...
A’ Linking dependencies...

Figure 11-1. The terminal when you run create-react-app react-pwa

This is going to run for about a minute, installing various packages and
dependencies. It will scaffold the app for you and generate a starter template that you
can launch and see. When everything is finished running, just like in Figure 11-2, your
terminal will tell you which yarn commands you can run with a helpful suggestion that
you cd into the react-pwa directory and run yarn start.

211

CHAPTER 11 PWAS FROM THE START

[NON) frameworkpwas — -bash — 100x24

} T
~frandom projects/frameworkpwas — -bash -+

| Success! Created react-pwa at /Users/dennissheppard/random projects/frameworkpwas/react-pwa
Inside that directory, you can run several commands:
Starts the development server.

yarn build
Bundles the app into static files for production.

1 tes
Starts the test runner.

yarn eject
Removes this tool and copies build dependencies, configuration files
and scripts into the app directory. If you do this, you can’'t go back!

We suggest that you begin by typing:

{ cd react-pwa
| Happy hacking!

Figure 11-2. Create React App is finished creating a project and even gives helpful
hints on how to run it

Let’s go ahead and follow directions by running yarn start.

Note The latest version of Create React App uses Yarn, a package management
tool much like npm. Yarn was also created by Facebook, so it’s a natural fit that the
React setup would use it.

This launches a dev server on port 3000 and opens the corresponding web page. You're
greeted with a warm welcome to React and instructions on which file to edit to make
changes. You won’t be making any changes, but let’s check out DevTools and see if you can
spot a service worker, an app manifest, and if any caching is happening right out of the box.

Open up DevTools and choose the Application tab. You can see right away that you
have an app manifest. It defines theme colors, has names, a display property, and an app
icon. Only the 192px icon is visible here, so you can already tell that Android won’t show
the install prompt to users. Lighthouse will double check that for you. Let’s move on to
the service worker section.

It's empty. Looks like no service worker is getting registered for this created app. And
because there’s no service worker, obviously there’s nothing cached here, either. You
were promised a PWA right out of the box. What’s going on here?

212

CHAPTER 11 PWAS FROM THE START

Configuring the Service Worker

If you look at the README .md file in the root of the app, there is an entire section on
Progressive Web Apps with a wealth of information on how the Create React App setup
deals with service workers and other PWA features.

Reading through this, you learn that the way the Create React App is configured,
the service worker only gets registered for production builds. You can also see that
sw-precache is baked into the production build process. That’s great news!

Note There are some valid explanations here for why the offline functionality is
only enabled in production builds. Developers who aren’t as familiar with service
workers as you are would really be thrown off as to why all of their changes are
ignored during development. And let’s be honest, even you might forget that your
service worker cached that one JS file that’s nestled four levels deep in your app’s
directory structure.

Further reading shows that there is support for runtime caching, but the process is
slightly different from what you're used to:

By default, the generated service worker file will not intercept or cache any
cross-origin traffic, like HTTP API requests, images, or embeds loaded from
a different domain. If you would like to use a runtime caching strategy for
those requests, you can [run npm] eject and then configure the runtime-
Caching option in the SWPrecacheWebpackPlugin section of webpack.con-

fig.prod.js.
—Create React App, README.md

Eject? That sounds... interesting. What's going on here is that the Create React App
setup is trying to streamline everything for you. You're in the pilot’s seat, but the plane
is on auto-pilot. By running npm run eject, it takes you out of the normal workflow and
shows you all of your configuration files. Try running it and you can see you now have a
config directory with the Webpack configuration files mentioned above.

So you still have control of your service worker and your app caching strategy, but
the details are abstracted away from you. If you’re more comfortable manually writing
your service worker and caching everything yourself, that’s absolutely doable.

213

CHAPTER 11 PWAS FROM THE START

Moving on in the README . md, you can also see information on the app manifest, but
there’s nothing really insightful here. You're likely pretty well-versed on app manifests by
this point.

Essentially, in order to test your service worker, you need to build and run the app
much like the way you did the Movies Finder app in the last chapter. So let’s do that
because you want to see the service worker in action and want to run a Lighthouse
assessment to really see what you're working with here.

Running and Building the React App

In order to create your production build of this starter template app, you just need to run
yarn build in the root directory. That will tell you that an optimized production build is
getting created, and everything is now in a build directory. This is essentially the same
thing as the dist directory from last chapter. Let’s peek in there in Figure 11-3 and see

what you've got.

v build
v static
b 4 css
2

js
» ¥ main.dec794cb.js

media
+u 1000.5d5d%eef.svg
asset-manifest.json
favicon.ico
index.html
manifest.j

B service-worker.js

Figure 11-3. The build directory you want to serve up contains your JavaScript
bundle, some CSS, a service worker, a manifest, and the index.html file

Looks like everything you could possibly need is in there. Let’s go ahead and cd into
that directory in the terminal and run http-server. Go to localhost:8080 in Chrome

and you should see the same React welcome screen.

214

CHAPTER 11 PWAS FROM THE START

Note If you're following along in lockstep from last chapter, when you go to
localhost:8080 you might see the Movies Finder app. That’s because of the
service worker caching. Just go to the Application tab in DevTools and clear out
everything.

If you open up DevTools, now you'll see that a service worker is registered, activated,
and running. Let’s hop down to the Cache Storage (you may need to right-click and
choose Refresh Caches) and in there you can see that sw-precache has already cached the
index.html file, along with the JS and CSS bundles, and the main logo on the page.

Feel free to explore how the code is structured here, but you can see that you should
have a really solid PWA foundation to build on for the next time you want to create a
React app. Let’s do a little performance measuring.

Deploying and Measuring Your React PWA

You don’t particularly want to measure the performance of an app when serving from
localhost. So let’s throw these starter PWAs up on Firebase so you can poke and prod
them remotely. If you'd like to deploy to your own remote server, feel free to follow the
steps outlined in the previous chapter when you deployed the Movies Finder app to
Firebase. Alternatively, you can just look here for the React PWA deployment:
https://react-pwa-bd5da.firebaseapp.com.

215

https://react-pwa-bd5da.firebaseapp.com/
https://react-pwa-bd5da.firebaseapp.com/

CHAPTER 11 PWAS FROM THE START

Let’s open that up and run Lighthouse on it and see what’s what. See the results in

Figure 11-4.
Results for: hitps: pwa-bedSda f comf -
Aug 25, 2017, 11:38 AM CDT « * Runtime settings
@ @
Progressive Web App a1 Progressive Web App Performance Accessibility Best Practices
Performance 98
Accessibility 100 Progressive Web App 91
These audits validate the aspects of a Progressive Web App, as specified by the baseline PWA Checklist.
Best Practices 100
2 failed audits
* Is not configured for a custom splash screen ®
Failures: Manilest does not have icons al least 512px.
» Hasa<meta name="viewport">tagwithwidthor initial-scale o

imvalid properties found: {"shrink-to-fit":"no}
» 9 Passed Audits

» Manual checks to verify

Performance o8
These encapsulate your app's performance.
Metrics

These metrics encapsulate your app's performance across a number of dimensions.

Trams 168 23s a1s 39s 47% 558 B2s Ts TEs

" First meaningful paint 1,580 ms
" First Interactive (beta) 1,770 ms

* Consistently Interactive (beta) 1,770 ms
Figure 11-4. React.js Lighthouse results for Create React App starter project

Without adding any of your own code, the Create React App project gives really
impressive scores. We knew that Lighthouse was going to complain about the manifest
not having the right icon size, so the project got dinged for that one. There’s another minor
issue with a viewport meta tag. But those are easily fixable. Accessibility and Best Practices
start out at 100s, which is excellent. All you have to do as a dev is not mess that up.

Now you get to performance. Your goal with any PWA is a Time to First Interactive
on 3G in under five seconds. The way you'll compare these frameworks is by running
Lighthouse three times and taking an average. As you can see in the screenshot, you got

216

CHAPTER 11 PWAS FROM THE START

1.77 seconds here, and the average of three runs ended up being 1.8 seconds. So this tells
you that once you add in your own code, images, functionality, etc., you have 3.2 seconds
to work with, as you can see in the fantastic little graph in Figure 11-5.

B Framework Time

W App Logic Tme
Remaining

Resctjs

Figure 11-5. The amount of time React.js takes to reach First Interactive without
any application functionality

Summary of React’s PWA Effort

The setup of your React PWA was really easy. The Create React App made the developer
experience really seamless and you were up in running in very little time. With perfect
scores in Best Practices and Accessibility, it’s a little surprising that the manifest and a
meta tag kept the project from being perfect in the PWA section. That’s a particularly
minor gripe, though, and a 98 in performance while only using 1.8 seconds seems
impressive.

Of course, you don’t have much of a frame of reference. So now let’s move on to the
next library, Preact.js.

Preact PWA

Preact is an incredibly small library. It comes in at just 3KB. It’s positioned as a lighter,
faster alternative to React. It aims to be mostly compatible with the React API, but some
features were purposely left out for either performance reasons or were just out of scope
of Preact’s goal.

Jason Miller is the creator of Preact, and the project has around 100 contributors on
GitHub. While Preact has only been around for a couple of years, it’s already used by
some big name companies like Uber, Pepsi, and The New York Times.

217

CHAPTER 11 PWAS FROM THE START

Preact CLI

The Preact CLI claims a “100 Lighthouse score right out of the box.” You saw that React
was close to that, but you'll see shortly if Preact lives up to that claim. There is a section
of the Preact website dedicated specifically to PWAs and reasons for why Preact is a good
choice for one. I already discussed how small the library is, so that’s obviously going to
help performance.

Let’s follow the same steps as with React. In fact, the process is almost identical:

npm install -g preact-cli
preact create preact-pwa

Just like with React, this will install all of the necessary dependencies and get
everything scaffolded out for you, as you can see in Figure 11-6.

[NON preact-pwa — -bash — 100x24
~[random projects/preact-pwa — -bash ==

'Denniss-MacBook-Pro:preact-pwa dennissheppard$ preact create preact—pwa
v Done!

To get started, cd into the new directory:
cd preact-pwa

To start a development live-reload server:
npm start

To create a production build (in ./build):
npm run build

To start a production HTTP/2 server:
npm run serve

Denniss-MacBook-Pro:preact-pwa dennissheppards [

Figure 11-6. Preact installs all of the dependencies and creates a project structure
for you, and. it gives instructions on how to run the app

This looks a lot like what React does, but here you have npm instead of Yarn. Also,
that last line is interesting. You have the ability to run an HTTP/2 server out of the box
with the production build. That should give you an app manifest and service worker
functionality. Let’s run it and check it out!

218

CHAPTER 11 PWAS FROM THE START

Running the Built-in Preact HTTP/2 Server

In the terminal, cd into the newly created preact-pwa project and then type npm run
serve. You'll be prompted with a password to set up the SSL certs for the HTTP/2 server.
You can also catch the precaching already happening via the CLI, like in Figure 11-7.

. ® @ preact-pwa — simplehttp2server_darwin_amd64 « nom TERM_PROGRAM=Apple_Terminal T
simplehttp2server_darwin_amdé4 « npm TERM_PROGRAM=Apple_Terminal TERM=xterm-256color SHELL=/bin/k
(IDenniss-MacBook-Pro:preact-pwa dennissheppard$ npm run serve

> preact-pwa@1.8.0 serve /Users/dennissheppard/random projects/preact-pwa/preact-pwa
> preact build &% preact serve

EEE 1 91% (0.8s)

Total precache size is about 144 kB for 14 resources.
Setting up SSL certificate (may require sudo)...
Listening on https://localhost:8088@...

Figure 11-7. The Preact CLI is pre-caching assets before you ve configured a
single thing

Now go to localhost:8080 and open up DevTools and you'll discover not only an
app manifest, but also an installed and activated service worker. You see above that the
CLI is precaching 14 resources, and you can verify that in the Cache Storage section of
DevTools. There are a handful of icons in there, as well as the app manifest, the
index.html file, and some JavaScript and CSS files. If you had DevTools open before
loading the app, move over to the Network tab and you're in for a real treat. If not, just
clear out everything with the Clear storage section of the Application tab and reload.

219

CHAPTER 11 PWAS FROM THE START

In Figure 11-8, the Network tab shows that not only do you have an HTTP/2 server,
but it’s using server push by default. You're in PWA heaven!

(@ ® Tools - h hostBi

® a Elements Console Sowces Network Perlormance Memory Applcation Securty Audits AdBlock

® 0 W™ T Vew IZ Group by frame Preserve log) Disable cache OfMine Nothrottling ¥

Fiftar Regax Hide data URLs :;- XHR J5 CSS Img Media Font Doc WS Manfest Othor

Narne Method Pratocol Domain Iritiator Size Time Wéaterfal .
localhast GET h2 locainost Other 61T E 15ms ||
style.257da.css GET h2 locahost Push / (ndex) 11KB ams
bundie 930,58 GET h2 locainost Push / fingax) 19.1 KB 3ms

| raute-home.chunk e5901.ja GET nz lncainost Push / pootaty... 1.0KB 2ms
O swijs GET h2 Iocaihost WIS 0B Sms
O faviconico?, e 53 GET h2 locatost Other 4T KB T ms

(] & 1820192 png? GET h2 Iocahost Other 138 KB Wms
& androld-chrome-512x512.png?_sw-precache=ctidiTaf60a294d6... GET nz locatost Other 50.2 KB 4nms
© apple-touch-icon png?_sw-precache=alesBleb3ccSTT47801279... GET h2 locainost Other 125 KB 33ms
& favican-16x16.png?._ he=d? ... GET h2 localost Other 883 E 27T ms
o tavi png?. ... GET h2 localost Other 1.5KB 26ms
© mstile-150x150.png?_sw-precache=bal1 7517o2cde1batced02c... GET h2 locaihost Other BB KB 29ms
© bundle.963cd.js?_sw-pn 1b1612¢... GET h2 localest Other T.0KB 3 ms
& tavicon oo he=530c1 GET hz locahost Other 4THB 30ms

| @ incies htmi? ich GET nz Incaihost Other 618 35ms
© manifest json?_sw-precach ... GET n2 locanost Other 4mze 1 ms
o hunic 05901 j57_ h TaaSdbfal... GET h2 Iocalhost Other B40B Nms
© route-profile.chunk. fa?6i.js7_sw-precache=0dcT35c01775b31a1... GET h2 Iocainecst Other 928 Ims
© stylo.257dn.ces?_ GET hz locaiost Other 563 B 32ms
o7 GET hz locanost BOSNndaN ... 5858 7ms

Figure 11-8. HTTP/2 and server push right out of the box

Not only do you have all of these PWA goodies, but the setup was super easy. You
typed in four short commands, and you're given a fully featured PWA starter template.

Before you get too carried away, though, once you deploy let’s talk about something
that isn’t quite as easy: runtime caching.

Preact CLI Plugins

Runtime caching with React wasn’t quite as straightforward as the rest of the process
(remember the eject command?), and that’s also the case with the Preact CLI. The
service worker process is entirely abstracted away, so much so that you can’t simply eject
in this case.

Instead, you need to install a separate npm package to configure sw-precache. If you
want to try this out now, the process isn’t complex, it’s just quite a departure from how
easy the rest of the Preact CLI was. Let’s take a look.

The first step is to run

npm install --save-dev preact-cli-sw-precache

220

CHAPTER 11 PWAS FROM THE START

Next, you need to create a file in the root of the project called preact.config.js and
import the package you just installed and set up your sw-precache config:

const swPrecache = require('preact-cli-sw-precache');

export default function (config) {
const precacheConfig = {

staticFileGlobs: [
"/*¥* css',
"/¥E html',
'/assets/** . *'
"/*FELgs!

1,

stripPrefix: 'app/',

runtimeCaching: [{
urlPattern: /7,

handler: 'networkFirst'

H
};

return swPrecache(config, precacheConfig);

}

When you build with this file in the root of the project, you can customize your
sw-precache just like you did with the Movies Finder app. So while there are additional
steps to have this type of functionality, it’s really not so bad.

The last step to checking out the Preact PWA is to run it through the Lighthouse test
battery. You don’t really want to run your Lighthouse tests locally. So you will deploy it to
Firebase just like you did with React. You'll lose your built-in server push in that process,
but you're taking the rest of your built-in Preact PWA goodies and running away with them.

Running Lighthouse on Firebase-Deployed Preact

You want to deploy just like you have before, so you'll follow those same steps. Just

like last time, if you don’t want to go through the deployment process just to see some
Lighthouse scores, you can check out the deployed version here: https://preact-pwa-
27be0.firebaseapp.com/.

221

https://preact-pwa-27be0.firebaseapp.com/
https://preact-pwa-27be0.firebaseapp.com/

CHAPTER 11 PWAS FROM THE START

It should come as no surprise given everything I've discussed about Preact, but the
Lighthouse scores are absolutely phenomenal. Check out Figure 11-9.

Resulls for; hitps-ipreact-pwa-27bed. i sp.com/ <
. Aug 25, 2017, 3113 PM CDT - * Runtime settings
Lighthouse . - - J S
\) e
@
Progressive Web App 100 Progressive Web App Performance Accessibility Best Practices
Performance 98
Accessibilty wo Progressive Web App
These audits validate the aspects of a Progressive Web App, as specified by the baseline PWA Checklist.
Besl Praclicas 100
0 failed audits
» 11 Passed Audits

» Manual checks to verify

Performance 08
These encapsulate your app's performance.
Metrics
These metrics encapsulate your app's performance across a number of dimensions.,
216 ms 431 ms. 647 ms 863 ms 118 138 158 178 108 22s
- - -

b

First meaningful paint 1,570 ms

First Interactive (beta) 1,770 ms

-

Consistently Interactive (beta) 1,770 ms

Perceptual Speed Index: 1,753 (target: < 1,250) 95

Estimated Input Latency: 16 ms (target: < 50 ms) 100

Figure 11-9. Preact achieves Lighthouse perfection. Almost.

With no configuration and in a matter of seconds, you have an app that is as close
to Progressive Web App perfection as you could reasonably expect to get. It checks
off every PWA box, implements each best practice, and includes every accessibility
recommendation. These scores are so good, it’s almost annoying that you can’t
somehow grab those extra two points from the performance score. We'll take it anyway,
though.

After a few runs of Lighthouse, Preact performed at an average of 1.745 seconds in
Time to First Interactive, just barely beating out React. You can see just how close they
are in the return of the nifty graph in Figure 11-10.

222

CHAPTER 11 PWAS FROM THE START

W Framework Time

W App Logic Time
Remaining
Reacts

Preact)s

Figure 11-10. Preact narrowly edges out React in Time to First Interactive

Summary of Preact’s PWA Effort

This performance score will give your app about 3.25 seconds to load before hitting the 5
second Time to First Interactive goal. For all practical purposes, this is the same as React.
As for the PWA scores, the couple of items keeping React from achieving the perfect 100
are quickly and easily remedied, but the Preact setup took care of them for you.

Both solutions required a bit of extra configuration to get runtime caching (and any
other service worker features) in place, which is a minor concern, but it’s really only a
couple of extra steps.

These are both great solutions. So when choosing between the two, for PWA
purposes, your decision should really just come down to a personal preference.

One thing to keep in mind is that both of these libraries deal specifically with the
view layer of your application. Things like managing application and model state, data
fetching, and routing all require additional libraries. Just something to consider. The next
library I'll discuss has the same consideration, but is blowing up in popularity. Let’s see

how it measures up.

Vue.js PWA

Vue.js is a JavaScript framework that has a strong focus on being light, fast, and simple.
It’s focus is on the view layer of applications, but is capable of powering large front-end
heavy applications if it has some helper libraries to go along with it.

It's another relatively new-on-the-scene solution but already has well over 100
contributors to the project, and it has exploded in popularity over the last year or so.

223

CHAPTER 11 PWAS FROM THE START

On the PWA side of things, Vue provides a set of templates that allow developers to
have options around what kind of project they would like to start. One of these templates
is a PWA template that you can find here: https://github.com/vuejs-templates/pwa.
Much like React and Preact, let’s follow the instructions and spin up a project.

Vue CLI and PWA Creation

Run the following commands in your terminal in whatever directory you'd like to put
your Vue PWA project:

npm install -g vue-cli
vue init pwa vue-pwa

Note That last command looks a little convoluted. But the pwa part specifies
which template to use, while vue-pwa is the name of the project.

This setup requires quite a bit more configuration. There are about nine questions
the CLI asks you before you're ready to go. Most of them are quick and painless, so you
can breeze through them.

Once you cd into the project root directory, you need to run npm install. That’s
different from the previous two solutions that installed all of the needed dependencies
for you. Just one extra step, though, and it goes relatively quickly.

After the install finishes, you could either run the dev server or create a production
build. The dev build doesn’t create a service worker, though, so just like with Create
React App, you'll want to run a production build and serve your app from the newly
created folder. So ignore what the terminal tells you and instead run npm run buildin
the root directory.

Nothing fancy here; it simply creates a dist directory. Let’s take a look in there
(Figure 11-11) before deploying and testing with Lighthouse.

224

https://github.com/vuejs-templates/pwa

CHAPTER 11 PWAS FROM THE START

Figure 11-11. The dist directory contains the app manifest, a service worker, and
all of the needed icons

What the Deployed Vue PWA Offers

It looks like you should have all of the major parts of your PWA, so let’s go ahead and
deploy instead of running locally. You can check out the service worker and manifest
once everything is up on Firebase. If you'd like, you can see the base starter template
deployed up on Firebase here: https://vue-pwa-c7515.firebaseapp.com.

Open that up and let’s check out DevTools. You've got a service worker all ready to
go and the manifest looks like it’s in great shape. Let’s go down to the Cache Storage and
check out if you have pre-caching in Figure 11-12.

225

https://vue-pwa-c7515.firebaseapp.com/

CHAPTER 11 PWAS FROM THE START

‘o0 ® Developer Tools - https://vue-pwa-c7515.firebaseapp.com/
S ﬂ Elements Console Sources Network Performance Memory Application Security Audits AdBlock

Application
B Manifest # Request | Respone
n Sarvice Workers 0 https://vue-pwa-c7515.firebaseapp.com/index.html?_sw-precache=b2933511{534e76886...
B Clear storage 1 https://vue-pwa-c7515.firebaseapp.com/static/css/app. 1d063bc0cd301699760eB884e1e. ..
2 https://vue-pwa-c7515.firebaseapp.com/static/js/app.af348df9e637a2e43501.js7_sw-pre...
Storage 3 https://vue-pwa-c7515.firebaseapp.com/static/js/manifest.f45cfodb53Bcbfacaebe.js?_sw...
» S5 Local Storage 4 https://vue-pwa-c7515.firebaseapp.com/static/js/vendor.ae75c6b5beablfSd8cec.js?_sw-...
» =& Session Storage
£ IndexedDB
£ Web SQL
» @ Cookies
Cache
¥ = Cache Storage

Figure 11-12. The Vue.js PWA template gives you sw-precache out of the box

So you have your service worker, an app manifest, and pre-caching. The only thing
left to find out is how easy implementing runtime caching is.

Go back to the code and check out the build directory. In there you'll find a file
called webpack.prod. conf. js. This contains all of the build configurations. Just like the
other solutions, the Vue.js CLI build process is built on Webpack. You can edit this config
file to add in runtime caching. Look for the following block of code:

// service worker caching

new SWPrecacheWebpackPlugin({
cacheld: 'vue-pwa',
filename: 'service-worker.js',
staticFileGlobs: ['dist/**/*.{js,html,css}'],
minify: true,
stripPrefix: 'dist/'

1)

You can add a runtimeCaching property in there that takes an array of objects with
route patterns and caching strategies:

// service worker caching
new SWPrecacheWebpackPlugin({
cacheld: 'vue-pwa',
filename: 'service-worker.js',

226

CHAPTER 11 PWAS FROM THE START

staticFileGlobs: ['dist/**/*.{js,html,css}'],
minify: true,
stripPrefix: 'dist/',
runtimeCaching: [
{
urlPattern: “/*,
handler: 'cacheFirst'
b
9

For Vue, there was no need to eject or install a plugin. You could just directly change
the Webpack configuration. Nice and easy.

Running Lighthouse on Firebase-Deployed Vue

Now let’s go ahead and run the Lighthouse tests and see where the Vue PWA template
starts you off. The results are in Figure 11-13.

227

CHAPTER 11

Progressive Web App

Performance
Accessibility

Best Practices

100

a7

100

100

PWAS FROM THE START

Results for: https./) wa-c7515. fir comid!
Aug 26, 2017, 235 PM CDT - * Runlime seltings

@

Progressive Web App Performance Accessibility

Progressive Web App

These audits validate the aspects of a Progressive Web App, as specified by the baseline PWA Checklist.

0 failed audits
+ 11 Passed Audits

+ Manual checks to verify

Performance
These encapsulate your app's performance.

Metrics
These metrics encapsulate your app's performance across a number of dimensions,

188 ms 379 ms 568 ms 758 ms. 947 ma 118 13s

Best Praclices

©

First meaningful paint 1,770 ms

1835

First Interactive (beta) 1,890 ms

Consistently Interactive (beta) 1,890 ms

Perceptual Speed Index: 1,805 (target: < 1,250)

Estimated Input Latency: 16 ms (target: < 50 ms)

Figure 11-13. Vue.js comes in with fantastic Lighthouse scores, perfect in three of
four categories, with a near-perfect Performance score

Vue looks to be just about perfect when it comes to Lighthouse. It trails React and

Preact in the Performance category by just a single point. The Time to First Interactive

was just a hair higher than those other two libraries, but the amount wouldn’t be

noticeable to users. For a comparison, check out Figure 11-14.

228

CHAPTER 11 PWAS FROM THE START

B Framework Time

B App Logic Time
Reacts Remaining

Preactjs

Seconds

Figure 11-14. The comparison of the three solutions so far is very consistent, with
Vue trailing behind React by a few milliseconds, and Preact in the lead by an even
smaller margin

Vue leaves you just over three seconds to load up all of your own application logic
and resources. There’s less than a quarter of a second difference between Vue and Preact
on a 3G connection, and with enough tests, it’s possible that even that difference shrinks
further.

Summary of Vue’s PWA Effort

Vue had the most configuration needed to get set up so far, but that’s not saying much.
There’s just a handful of questions asked at the beginning, and that could be nice for a
little extra customization from the start. Additionally, Vue has made adding in runtime
caching the easiest of the three solutions, with the configuration file already available for
easy editing.

The next two frameworks you'll be looking at are at a disadvantage on paper. They're
bigger frameworks with more capabilities. While these first three options are focused
exclusively on the view layer of the application, Angular and Ionic (which is built on top
of Angular) are full-fledged front-end frameworks. Let’s see how Angular stacks up.

Angular PWA

Angular underwent a dramatic change in the last couple of years. Angular]S 1.x
dominated front-end frameworks for a few years before React came on to the scene.
The component-based model of React along with its virtual DOM abstraction lured
developers away, showing some of the weaknesses of the Angular]S framework. Once
ES6 finalized and TypeScript stormed onto the scene, the Angular team decided the

229

CHAPTER 11 PWAS FROM THE START

framework was due for a complete overhaul. What was formerly known as Angular 2
is now known as just Angular (the current version is Angular 5, and by the time you're
reading this it’s likely it could be even higher). Angular is not just an upgrade from
Angular]s, it’s a completely different framework.

Backed by Google, thousands of enterprise companies use Angular. It’s a fully
featured framework that not only takes care of the view layer, but has a much larger API
that allows for robust change detection, front-end routing, support for observables via
RxJS, and more.

You saw an Angular PWA in Chapter 10. But you gradually made that app a PWA
rather than starting as one. Here the goal is to start from scratch.

Angular’s Rocky PWA Start

Once upon a time, there was support for PWAs via a project called Angular Mobile:
https://mobile.angular.io/. The site looks promising, and is completely PWA
focused. However, at the time of this writing, that project is dead.

In its place is a project called Angular Service Worker. This is still a very new project,
so it’s still in beta, and there’s not a lot of documentation yet. Let’s see what we can
squeeze out of it, though.

Let’s get started by installing the Angular CLI and creating an app:

npm install -g @angular/cli
ng new angular-pwa
cd angular-pwa

This will create a new Angular project called angular-pwa. All of your packages and
dependencies were installed, and you're ready to go.
The next step is to install the Angular Service worker:

npm install --save @angular/service-worker
ng set apps.0.servicelWorker=true

This will install the necessary files, and sets a flag inside of the .angular-cli. json
file. From there, you need to create a configuration file that will allow you to
customize your service worker. Create an empty file in the root of the project and call it
ngsw-manifest.json. You don’t need to add anything in there for static caching, as that’s
already taken care of for you. But for runtime caching, you can configure it like so:

230

https://mobile.angular.io/

CHAPTER 11 PWAS FROM THE START

"dynamic": {

"group": [
{

"name": "angular-pwa",

"urls": {
"/*": { "match": "prefix" }

}’

"cache": {
"optimizeFor": "performance",
"maxAgeMs": "360000000",
"maxEntries": 10,
"strategy": "lru"

}

}
]
}

At the moment, finding documentation for this is nearly impossible, and the
properties don’t seem to follow the standard ones you're used to in other projects. There
are a few presentations on this file, but anything official seems to still be forthcoming.
Hopefully, by the time you read this everything is well documented.

Building the Angular PWA

Luckily, the Movies Finder app was built with the Angular CLI, so you should already
be familiar with the necessary build commands. You could run ng serve, and that will
launch a server with all of your files served from memory. But you're more interested in
what the production-ready package looks like, because that’s when you get your service
worker and your ngsw-manifest.json. So let’s go ahead and build the project using ng
build --prod and you’ll deploy the resulting dist folder, which should now have your
service worker in it. You'll find this brand new Angular PWA here: https://angular-
pwa-e74db.firebaseapp.com/.

231

https://angular-pwa-e74db.firebaseapp.com/
https://angular-pwa-e74db.firebaseapp.com/

CHAPTER 11 PWAS FROM THE START

Running Lighthouse on Firebase-Deployed Angular

The relatively underwhelming PWA scores are shown in Figure 11-15.

Results for: hitps:/i lar-pwa-e7ddb fir com/ <
Aug 28, 2017, 10:33 PM CDT « * Runtime settings

LighthouSe |

Versic

Progressive Wab App B4 Progressive Web App Performance Accessibility Best Practices
Performance 94
Accessibility q; Progressive Web App 64
These audits validate the aspects of a Progressive Web App, as specified by the baseline PWA Checklist.
Best Practices B5
4 failed audits
+ Dwoes not provide fallback content when JavaScript is not available ®

The page body should render some content if 1s scripts are not avallable.

A

User will not be prompled 1o Install the Web App x
Failures: No manifest was fatched, Manifast start_url is not cached by a Service Waorker.

v

Is not configured for a custom splash screen b4
Failures: No manifest was letched.

v

Address bar does not match brand colors 4
Falures: No manifest was fatched, No "<mata name="theme-color's" tag found.

7 Passed Audits

Manual checks to verify

Performance 04
These encapsulale your app's performance.
Metrics
These metrics encapsulate your app’s performance across a number of dimensions.
234 ms 468 ms 702 ms 938 ms 12s 143 16s 19s 21s 23s

nljpmpbjk/9c012861-8695-4357-9eb5-0a538179blddabest-practices

Figure 11-15. Angular CLI falls short of producing the same out-of-the-box PWA
experience as React, Preact, and Vue.js

Given the fact that the Angular CLI didn’t provide even a service worker out of the
box, much less an app manifest, the PWA score isn’t surprising. The Accessibility and
Best Practices scores are decent, and at this point you're well equipped to get those
scores up to 100s. What you have less control over is that Performance score. Thankfully,
it’s really solid, but it doesn’t quite hit the same level as the other frameworks and
libraries you've seen. A few points, though, shouldn’t scare you away from using Angular.
You can see in Figure 11-16 that Angular falls behind the rest of the pack.

232

CHAPTER 11 PWAS FROM THE START

B Framework Time

W App Logic Time

Reactjs Remaining

Preact s

Wuejs

Angularjs

)
w
-
w

Figure 11-16. Angular trails the other three solutions by almost half a second, but
that’s not the real issue with the PWA offering

Summary of Angular’s PWA Offering

The performance of Angular is surprisingly good considering the amount of features
available in the framework. The real issue here is that Angular is such a major player
in the front-end community, and has been for a long time, and yet at the moment
there isn’t much support for starting an Angular application as a PWA. It looks like
improvements are coming, but the framework has clearly been passed by the other
major solutions. Even more surprising is that Angular is a Google-backed project, and in
the push for PWAs there is no bigger champion than Google.

Given this, you have to think that by the time you're reading this, Angular will get
its PWA ducks in a row. As it stands at this moment, there is quite a bit of work to do to
before Angular gets up to the level of React, Preact, or Vue when it comes to PWAs.

That should make the next and final framework all the more interesting. Ionic, which
is built with Angular, promises devs a great PWA experience from a framework that’s
geared toward compiled native applications. Let’s see what it’s got.

lonic PWA

Ionic is a framework built on top of Angular that focuses on building native mobile
apps with front-end technologies. If you're familiar with Phone Gap, it’s the same idea:
leveraging Cordova to take a JavaScript application and make it native mobile-friendly.

233

CHAPTER 11 PWAS FROM THE START

Because that mission is closely aligned with PWAs, in late 2016, the Ionic team
announced support for PWAs as well. If that support proves to be robust, it could be an
alternative to starting a PWA project with Angular, since that’s what’s under the Ionic
hood. Let’s go through the installation process and see if it’s able to improve on the
Angular CLI experience.

Installing lonic

The developer experience for setting up Ionic is definitely a pleasant one. There’s robust
documentation for just about everything, and the steps are on par with what you've seen
for React, Preact, and Vue. To begin, just install the Ionic CLI and start up a project:

npm i -g cordova ionic
ionic start ionic-pwa

After running these commands, you'll be asked a couple of configuration questions
like in Figure 11-17.

234

CHAPTER 11 PWAS FROM THE START

{Denniss-MacBook-Pro:ionic-pwa dennissheppard$ ionic start ionic-pwa
{ Hi! Welcome to CLI 3.9.

We decided to merge core plugins back into the main ionic CLI package. The
@ionic/cli-plugin-ionic-angular, @ionie/cli-plugin-ionicl, @ionic/cli-plugin-cordova, and

@ionic/cli-plugin-gulp plugins have all been deprecated and won't be loaded by the CLI
i anymore. We listened to devs and determined they added unnecessary complexity. You can
uninstall them from your project(s).

Ne functionality was removed and all commands will continue working normally. You may
wish to review the CHANGELOG:
https://github.com/ionic-team/ionic-cli/blob/master/CHANGELOG.md#changelog

Thanks,
The Ionic Team

? The Ionic CLI can automatically check for CLI updates in the background. Would you like to enable
'this? No

? What starter would you like to use: blank

v Creating directory ./ionic-pwa - done!
Fetching app base (¥ ib.com/ioni eam/ionic2-app-base -hiv 3 . .gz)
+ Downloading - done!

Fetching starter template blank
+ Downloading - done!

v Updating package.json with app details - done!

v Creating configuration file ionic.config.json - done!
HIEE 1Installing dependencies may take several minutes!

> npm install
v Running command - done!
> git init
> git add -A
1> git commit -m "Initial commit" no-gpg-sign

|22 A2 Your Ionic app is ready to go! An F a2

« Run your app in the browser (great for initial development):
ionic serve

Run on a device or simulator:
ionic cordova run ios

Test and share your app on a device with the Ionic View app:

http://view.ionic.io

Next Steps:
Go to your newly created project: cd ./ionic-pwa

Figure 11-17. Setting up a new lonic project

Just like with a couple of the other solutions you've looked at, there are different
templates for developers to choose from to bootstrap the app. A lot of mobile
applications have a tabbed interface, and Ionic will start you off with one of those out of
the box if you'd like. For your PWA, though, you'll just choose the Blank template. Once
everything is installed, you can cd into the project’s directory.

235

CHAPTER 11 PWAS FROM THE START

Enabling the lonic Service Worker

When building an Ionic app for production, you should get a service worker and an app
manifest automatically. Those are already huge improvements over the built-in
Angular CLI process. You just need to tweak one thing in the index.html file to enable
the service worker.

The service worker registration code is already right there inside the index.html
file; you simply need to uncomment it. After that’s taken care of, you can kick off a
production build.

Building lonic

In the root directory of the app is a package. json where you can see what options you
have for either running the app locally or creating a production-ready bundle. One

of the options in there is the npm command ionic:build, which will take care of the
production build. Type npm run ionic:build and you have your production-ready
files. Unlike the other projects you've looked at in this chapter, Ionic will build your web
production files into a www directory, like in Figure 11-18.

fonts
icon
favicon.ico
build
main.css

service-worker.js

Figure 11-18. The result of running an Ionic production build, which gives you an
app manifest and a service worker

236

CHAPTER 11 PWAS FROM THE START

Note Remember that lonic is, first and foremost, a native app solution, so any
web-specific builds need a special output directory.

In the www directory, you should have your app manifest and a service-worker. js
file. Those files were just copied over from the src directory, which contains an editable
service worker file. No need to mess with any configuration files; the service-worker.js
is right there. So if you want to add in runtime caching, background syncing, or push
notifications, that’s your spot.

You can already see that the Tonic team has put in a bit more of a focus on PWAs because
you're getting nice support without having to do much of anything, except commenting out
the registration code. Now comes the moment of truth: let’s deploy the app.

Deploying and Testing the lonic PWA

This is your last PWA project to deploy, which is good because Firebase limits the
number of projects you can have for free. You can find the Ionic PWA you're going to test
here: https://ionic-pwa-6d2e5.firebaseapp.com/.

Open it up in the browser and take a look in DevTools. You've got a manifest and a
service worker. Moving down to the cache, you can see in Figure 11-19 that pre-caching
works by default.

oL @ Developer Tools - https://ionic-pwa-6d2e5 firebaseapp.com/
[w ﬂ Elements Console Sources MNetwork Performance Memory Application Security Audits AdBlock

Application
Bl Manifest {¥ Request Response
£t Service Workers 0 https://ionic-pwa-6d2eS firebaseapp.com/
B Clear storage 1 https://ionic-pwa-6d2e5.firebaseapp.com/assets/fonts/roboto-medium.woff2
2 https://ionic-pwa-6d2e5.firebaseapp.com/assets/fonts/roboto-regular.woff2
Storage 3 https:/fionic-pwa-6d2e5 firebaseapp.com/build/main.css
» EE Local Storage 4 hitps://ionic-pwa-6d2eS.firebaseapp.com/build/main.js
» 55 Session Storage 5 https://ionic-pwa-6d2e5.firebaseapp.com/build/polyfills.js
= IndexedDB 6 https:/fionic-pwa-6d2e5 firebaseapp.com/build/vendor.js
= \Web S0L T https:/fionic-pwa-6d2e5 firebaseapp.com/index.htm|
> ; Cookies _8 https://ionic-pwa-6d2eS.firebaseapp.com/manifest.json

Cache

v £ Cache Storage

£% jonic-cache - https:/fionic-pwa

== Application Cache

Figure 11-19. Pre-caching works with no configuration

237

https://ionic-pwa-6d2e5.firebaseapp.com/

CHAPTER 11 PWAS FROM THE START

It looks like everything is in order here for a really solid Lighthouse score. Let’s take a
look at the results in Figure 11-20.

Results for: hitps:/fionic-pwa-6d2eS firebaseapp.com/ <
Aug 27, 2017, 12:36 AM CDT + * Runtime sefttings

Progressive Web App 9 Progressive Web App Performance Accessibility Best Practices
Performance 93
Accessibility a4 Progressive Web App »
These audits validate the aspects of a Progressive Web App, as specified by the baseline PWA Checklist.
Best Practices 100
1 failed audits
» Does not provide fallback content when JavaScript is not available ®

The page body should render some conlent if its scripts are nol available.

» 10 Passed Audits

» Manual checks to verify

Performance 03
These encapsulate your app's performance.

Metrics
These metrics encapsulate your app's performance across a number of dimensions.

290 ms. 581 ms. 871 ms 128 158 1.7s 25 23s 268 28s

First meaningful paint 2,230 ms

First Interactive (beta) 2450 ms

Consistently Interactive (beta) 2,450 ms

R

Perceptual Speed Index: 2,750 (targel: < 1,250) 84

-

Estimated Input Latency: 16 ms (targat: < 50 ms) 100

Figure 11-20. Ionic posts a solid improvement over Angular CLI Lighthouse scores

Ionic improves on Angular by 27 points in the PWA category. The only mark against
Ionic is a lack of anything showing on the page when JavaScript is disabled in a browser.
That might seem kind of silly, since without JavaScript, there’s not much of an app
anyway. But remember the progressive part of PWAs. Even on the oldest browsers,
the user needs to see something. This is a very easily fixed issue, though, using the
<noscript> tag and putting a string of text in there explaining that there’s nothing to see
here if the user disabled JavaScript. With that tweak, say hello to a perfect PWA score.

238

CHAPTER 11 PWAS FROM THE START

In the Best Practices category, Ionic bests the Angular CLI by 15 points, though there
was a drop of a few points in the Accessibility category. It’s definitely still an acceptably
high score, though.

The interesting score is Performance as it’s only a point below Angular’s score. So
you make huge improvements in two areas while only losing a point on Performance
and a few points on Accessibility.

The average Time to First Interactive is only 150 milliseconds slower than Angular.
You can see the comparison to other frameworks in Figure 11-21.

W Framework Time
Reactjs B App Logic Time

Remaining
Preacts
Vuejs
Angular js

lonic

L] 1 2 3 4 3

Seconds

Figure 11-21. Time to First Interactive across all frameworks and libraries. lonic’s
is slowest, but by a marginal amount and with vastly improved PWA and Best
Practice scores.

Ionic takes up about half of the allotted time of your goal, leaving a little more
than 2.5 seconds to load your app’s resources.

Summary of lonic’s PWA Offering

If you're looking to whip up a quick and simple PWA or an app that has a heavy mobile
focus, and you're partial to Angular, then Ionic is undoubtedly a better option. With
little to no configuration, you get a near perfect PWA score, a big improvement to Best
Practices, with only the slightest drop in performance.

If, on the other hand, you're planning a bigger Angular project, you may be better off
manually improving the PWA capabilities of an Angular app.

No matter which route you go, Ionic really improves on Angular CLI from the PWA
perspective and is very comparable to the other solutions you've examined.

239

CHAPTER 11 PWAS FROM THE START

Starting a PWA from Scratch

What a great time to be a developer focusing on PWAs! Almost any solution you turn to,
you should not only have great support for PWAs, but really solid performance as well.

Preact obviously takes home a much deserved overall PWA gold medal and to boot
was the easiest setup that provided the most value for your time. But you really can’t go
wrong with even the poorest performing solution we examined: Angular. Using the skills
you've learned throughout this book, you should be able to improve those scores in no
time at all, and the performance wasn’t far enough away from Preact that you should
dismiss it out of hand.

There are still a few other things you can do to squeeze a drop or two of extra
performance out of your app.

Looking Ahead

What I'll talk about next isn’t necessarily PWA-specific. You've learned just about all
there is to know about PWAs. For now. Where you're going, you don’t need to know
about PWAs.

240

PART IV

Leveling Up Your PWA

CHAPTER 12

Leveling Up Your PWA

At this point, your official PWA education is complete. Congratulations! Using what
you've learned in this book, you now should be able to create a web application that
loads fast, is installable on Android devices, works completely offline, and engages
users. However, there is always more to learn. Developers tend to be smart people, and
smart people are going to keep coming up with better and better ways to do things.
That’s what this chapter is about: taking steps beyond what you've learned about PWAs
and making your apps even better. That will include even more performance patterns
and enhancements, like Google’s PRPL pattern, lazy loading, code splitting, server-side
rendering, and web workers. You'll explore all of that and more in this chapter. If you've
made it this far, you've earned enough XP; it’s time to level up your PWA!

Google’s PRPL Pattern

PRPL is a pattern of best practices to build fast web applications. It was “discovered”
by the Polymer team at Google. It’s not a technology in and of itself, but a collection of
things you can do to make the user’s experience in your app a great one. Even better,
you've been using most of the PRPL pattern all along, but now you have a name for it.

o P:Pushresources for the initial route. I've gone over server push quite
a few times in our journey here, but again, this is important to eliminate
the need for multiple requests from the browser when the server is
capable of pushing the resources an initial page needs all at once.

¢ R:Render the initial route. Not just render, but render it fast. Use the
app shell architecture to make the first route super-light so the user gets
instant content. Sometimes that means using rel="preload" or inlining
styles or inlining JavaScript or just removing render blocking resources.
Under five seconds on a 3G connection, and under three seconds on an
LTE connection, are great goals for rendering the initial route.

243
© Dennis Sheppard 2017

D. Sheppard, Beginning Progressive Web App Development, https://doi.org/10.1007/978-1-4842-3090-9_12

CHAPTER 12 LEVELING UP YOUR PWA

e P:Pre-cache remaining routes. You saw this with almost every
library and framework we looked at. Pre-caching is essential to
optimal performance. Any resource the initial route doesn’t use, but
the rest of the app might need is cached before it’s even asked for.
This way when the user navigates to the other parts of the app that do
need those resources, it’s already available in the cache.

e L:Lazyload everything the user doesn’t need on a page. If a user
isn’t going to need a CSS file or an image until he or she reaches a
certain route, there’s no need to load it beforehand. It might seem
like pre-caching and lazy loading are opposite strategies, but they
really play well together. When a user navigates to a route where the
resources weren't loaded in advance, they can be lazy loaded from
the service worker’s cache, resulting in no additional network calls on
a lazy loaded route.

Lazy Loading

The goal of lazy loading is to ensure that your app only loads what is necessary for
the route the user is navigating to. This means that instead of a 500KB bundle getting
downloaded on initial load, there’s a chance that the majority of that bundle never loads
at all if the user never navigates to the routes that require loading those resources.

I've gone over those first three principles of PRPL quite a few times, but I haven'’t
discussed lazy loading. One of the reasons for that is that while the concept is simple
in theory, the implementation of lazy loading is largely dependent upon whatever
framework or library you're using. Additionally, a prerequisite of lazy loading is
something called code splitting, so let’s talk about that next.

Code Splitting

One of the excellent features of HTTP/2 is that requests are fast and cheap. The browser
can make dozens of requests at the same time, which causes monolithic bundles to be a
sort of anti-pattern. Why would you load 500KB of resources when you only need 5KB for
the initial load? This means you can be ultra-smart about how you split up your bundle.
Rather than blocking rendering with that huge monolithic chunk, code splitting allows
you to download and parse just what you need on a route and pre-cache the rest.

244

CHAPTER 12 LEVELING UP YOUR PWA

This is significantly different from past JavaScript deployment best practices.
Previously, we would minify and concatenate and that’s our bundle. The browser
downloads it and parses it, and that’s just the way it’s worked for years. That answer isn’t
good enough anymore because we have the ability to do better.

You may have noticed one commonality among the libraries and frameworks
you played with in the last chapter. Their build processes were all built on Webpack.
Webpack is kind of the de facto standard of building and bundling front-end applications
nowadays. Using Webpack, you're actually able to split your code into multiple bundles
that you can load either asynchronously or on demand.

Note Webpack is not a requirement to implement code splitting. There are other
methods by which you can split your code into separate, smaller bundles. As of
2017, however, Webpack is rather ubiquitous in the JavaScript build landscape.

In 2018 or 2019, that could change.

The method by which you can do this will once again vary based on your application.
After all, Webpack doesn’t know where the best place to split your code is unless you
help it out a little. While many frameworks and their build systems abstract away the
Webpack details (which isn’t a bad thing, by the way, since rumors abound about
developers getting lost in a Webpack config and never being heard from again), we can
still take a look at how you might go about splitting up your code bundle:

const path = require('path');
const HTMLWebpackPlugin = require('html-webpack-plugin');

module.exports = {
entry: {
popular-movies: './src/popular-movies.js',
new-movies: './src/new-movies.js'

}s
output: {
filename: '[name].bundle.js',
path: path.resolve(dirname, 'dist")
}
};

245

CHAPTER 12 LEVELING UP YOUR PWA

Here you're specifying two different code modules in the entry property of
Webpack’s module. exports object. The result of these two modules is two bundles
named popular-movies.bundle. js and new-movies.bundle. js.

If the initial route of the application only needs the popular-movies bundle, that’s
all the initial route requests. You can create multiple small bundles out of your app since
HTTP/2 welcomes as many bundles as you can throw at it.

There are various ways to split your code, so depending on the library or framework
you're using, do a little bit of research on how to implement code splitting that makes
sense for your application. For now, let’'s move on to additional methods of improving
that all-important first page load.

Analyzing Bundles

The bane of a browser’s performance focus is giant resources. They take a long time to
download, and the browser has to figure out what to do with them. That’s one of the
reasons that all of your PWAs from scratch loaded so quickly. The bundle sizes of each of
them were remarkably small.

Oftentimes throughout the development process of an application, we try out
libraries, decide they're not quite what we wanted or needed, and then try another
library. Or, we pull in an entire library for one small thing, much like the Movies Finder
app is doing with the expansion of the mobile menu. It references the entire jQuery
library for one small function.

In either of those cases, the result is a bloated JavaScript bundle. Once your JavaScript
resources are bundled, it’s difficult to really see what’s included in there. Additionally,
your node_modules folder usually consists of ten pounds of “Nope!” in a five-pound bag.
Good luck figuring out what you can pluck out of there. The package. json file is better in
smaller projects, but as your project grows, so too does your package. json.

Thankfully there are solutions to seeing exactly what is in your JavaScript bundles.
One such solution is the webpack-bundle-analyzer package. The process for using
this will vary slightly depending on your setup, but let’s take a look at an analysis of the
Movies Finder PWA app.

If you still have the Movies Finder code around, go back to that directory, and if not go
ahead and re-clone the repo here: https://github.com/dennissheppard/Movies-Finder.
Then run npm install --save-dev webpack-bundle-analyzer -gto install the

npm package.

246

https://github.com/dennissheppard/Movies-Finder

CHAPTER 12 LEVELING UP YOUR PWA

The next step to analyze Movies Finder’s bundles is specific to the Angular CLI, but
if you have a non-framework specific webpack. config. js file, you can run webpack
--profile --json > stats.json to generate metadata about your bundle that will live
in a file called stats. json.

For the Movies Finder app, however, you'll run ng build --prod --stats-jsonto
generate the stats. json file. Then to actually see your bundle analysis, you just need to
run webpack-bundle-analyzer dist/stats.json. This command will launch a browser
tab where you can visually assess your bundle, as in Figure 12-1.

@ @ [webpack Bundle Analyzer b Dennis

C © 127.0.0.1:8888 * By-D PO smOBz;™

vendor.8d7b8b5b26cc9e120d94.bundle.js

vendor.8d7b8b5b26ccSel20d94.bundle.js

Stat size: 2.12 MB
Parsed size: 639.84 KB

Geipped size: 155.66 KB ned e_mOd u IeS

@angular core-js

forms

ok — modules

~ forms.es5js
core.esd.Js — = ..

i hitp
@angular - - T - ==& modules

platform-browser.es5.js
oo
Bangiar

= hipessis

router.esS.jS common.ess.js

zZone.js e,
: .‘"

BTN pipn ol TR I'mm‘m‘n

Gaterls smeitia DISLIS mer . o =

Figure 12-1. Webpack bundle analyzer is helpful in identifying what's included in
your built bundles

247

CHAPTER 12 LEVELING UP YOUR PWA

As you can see, there are a lot of items that get put into your bundles. In the case of
Movies Finder, the bulk of your app is in the vendor bundle. A good portion of that vendor
bundle is rxjs. However, the app doesn’t use a large amount of what’s included in rxjs.

By comparison, you can go through this same process on the Angular CLI PWA you
built in the last chapter. The results for that PWA are in Figure 12-2.

e e/ [Webpack Bundle Analyzer x \ Dennis

C ® 127.0.0.1:8888 w H Yy & (Rl HOB ;™ E

vendor.18287452cd4e8fd71cf7.bundle.js

vendor.18287452cd4e8fd7 1cf7.bundle.js

Stat size: 831.25 KB
Parsed size: 210.79 KB
Gzipped size: 53.38 KB

nivue_modules

@angular rxjs
core common
@angular "

Senduler @é!

core.esS.|s

. -
platform-browser.es5.js e 2%

Foamlree

Figure 12-2. Webpack bundle analyzer for the Angular CLI PWA shows a much
smaller vendor bundle

248

CHAPTER 12 LEVELING UP YOUR PWA

When you're not importing and using features of libraries, you're going to drastically
reduce bundle size. Examining the differences in those two vendor bundles shows
that by adding in routing, for example, you're increasing your bundle size. This isn’t to
suggest you shouldn’t use routing in your apps, but it does point out that you should be
aware of everything you're importing.

A great example of this with the Movies Finder app is that the part of the app that
makes API calls imports all of the rxjs library, but it only actually needs the map operator:

// import 'rxjs/Rx';
import 'rxjs/add/operator/map’;

Making this simple switch in one file of that entire app reduces the vendor bundle
size from 156KB to 123KB (gzipped). That’s a 21% reduction in bundle size by only
importing the portion of the library you need instead of the entire library!

Remember, as a general rule, the less code you have to ship to the browser, the faster
your app is going to load.

Server-Side Rendering

A long time ago, logic for web apps was all taken care of by the server. Doing anything on
the screen, like clicking a button, required a trip to the server to return the entire page
again. These were called postbacks and in general they resulted in a bad user experience.

As JavaScript pervaded the web app landscape, AJAX solved the issue of postbacks and
we now only need a subset of data from the server instead of re-rendering the entire page.

The one good thing about those server-rendered pages, though, was that the first
page load was pretty fast. Think about the page load process you've experienced in the
apps you've looked at so far that are rendered on the client-side compared to how a
traditional server-side—rendered app loads.

249

CHAPTER 12 LEVELING UP YOUR PWA

Figure 12-3 should give you some idea of how server-side rendering works compared
to client-side rendering.

server side rendering

, S
< Oom </>
om o
ﬂ J/
1 x| 1
- =S| |=2

A 4

client side rendering

: = AR
om oo </> Om oo
Owm oo Oom
A J/ A
XN | T | N |

Figure 12-3. Server-side rendering gets all of its data from the server in one shot,
while client-side rendering pulls down the HTML file, requests the JavaScript file,
requests data from the API, and then is finally rendered.

You can actually combine the benefits of server-side rendered pages and client-side
rendered pages by only using server-side rendering for the initial page load and sending
the JavaScript necessary for page interactivity down after the app shell is visible. Once
the JavaScript is downloaded and executed, the page is ready for the user. That process is
also called hydrating the page.

250

CHAPTER 12 LEVELING UP YOUR PWA

One of the benefits of this kind of setup, aside from faster loading of initial pages, is
SEO. Because the app is fully rendered on the server, search engine crawlers are more
easily able to see a full page, improving your search score.

Furthermore, for any users or browsers that may have JavaScript turned off, they
would still see an (almost) immediately rendered page, which is a really nice progressive
enhancement to have.

You can even pick and choose what you’d like to render on the server. Maybe it
makes sense for your application to have the server take care of just the application shell
and let the JavaScript take care of the actual content. Because the app shell is loaded
almost instantly, the perceived loading time of the app is much quicker for users.

Drawbacks to Server-Side Rendering

All of this sounds great, in theory. The problem that comes along with server-side
rendering, however, is complexity. All of your JavaScript code now needs to be able to
run on a server as well as in the browser. This is called Isomorphic JavaScript, or more
recently, Universal JavaScript.

Think about how much of your JavaScript code likely references browser-specific
objects, like document and window. None of that exists on the server. You also need to
make sure you wrap any DOM manipulation code in a check to insure the server doesn’t
execute it.

Resources to Implement Server-Side Rendering

In fact, the complexity of Universal JavaScript is such that entire books are written about
it, and many frameworks and libraries have separate projects dedicated to server-side
rendering. Next. js is a very popular framework for server-rendered React applications
(and there are many others). Vue. js has a project called Nuxt. js. Angular Universal was
a big focus for the Angular team with the new version of Angular.

None of this is to say that you should be scared away from looking into server-side
rendering. It makes sense in a lot of cases, but not as much in others. It’s another tool at
your disposal to try to achieve that ever-elusive 100 Performance score in Lighthouse.

251

CHAPTER 12 LEVELING UP YOUR PWA

Pre-Rendering

As you're doing additional research on server-side rendering you may run across the
term pre-rendering. This is the process of taking your initial route and creating a static
web page from it. There are build tools that can do this, so that once you have your page
pre-rendered, you can distribute it to CDNs. Because the initial route is now a static
page, the browser only needs to pull down the HTML and CSS, resulting in what should
be a very quickly loading page. The JavaScript needed to “hydrate” the page for any user
interactivity can come down separately, avoiding any render blocking.

Let’s move on to another rendering problem that JavaScript and the Web has long
been faced with, and the solution that will further improve your app’s performance.

Web Workers

One of the drawbacks of client-side development is that all code runs on the UI thread.
So anything that requires a lot of processing can block the UI from rendering or being
interactive. You've likely experienced this with apps that appear to be frozen. For
example, take a look at this PInkr at http://bit.1ly/2wgCOoH.

Here is the markup:

<body>
<div>
<div style="padding: 15px;">
<button id="freezeBtn" onclick="freeze()">
Freeze Everything!
</button>
</div>
</div>
<div>

</div>
<div>

</div>
</body>

252

http://bit.ly/2wgCOoH

CHAPTER 12 LEVELING UP YOUR PWA
And the very important processing going on in the background:

function freeze() {
for (let i = 0; i < 500000; i++) {
let result = i * i;
console.log(result);
}
}

When you run this, yes, it appears that there are two adorable dog gifs, and while
you're goofily smiling at them, click that button that says Freeze Everything! and see what
happens. The dogs stopped moving! Why would anyone ever want those dogs to stop
doing the cute things they’re doing?

Unfortunately they become temporarily frozen because that button kicks off a
function that requires intense processing. It’s a pointless process in this case, but that’s
not the point. You've asked the browser to do some kind of processing that is intensive
enough that it can no longer properly render the UI. Everything freezes. Rendering,
downloading additional resources, parsing other code. Everything. That’s a problem if
you have anything you need to process on the front end

You might think that you don’t have much you actually need to process on the client
side. After all, most processing should happen on the server, right? You're not thinking
in terms of this new world of apps on the Web that are as powerful as native apps. For
example, there are now web-based spreadsheets. Think about that. If you have a formula
in a spreadsheet that calculates hundreds or thousands of numbers, you're not going
to want to throw up a loading message every time. Especially a loading message that
won't even animate because the entire Ul is now unresponsive. There are also web-
based games, web-based video, and image processing apps. More and more processing
is getting pushed to the browser, and users expect the Ul to remain responsive. As they
should! So what is a processing-happy, front-end developer to do?

Web workers are the solution. They allow you spin off a collection of work to a script
that runs in the background, which is also able to notify the main execution thread
when it’s finished. Web workers are a multi-threaded JavaScript solution. You can see
in Figure 12-4 that the interaction between the JavaScript file and the web worker is the

same as with service workers.

253

CHAPTER 12 LEVELING UP YOUR PWA

d'i_/:—>©

javascript web worker

Figure 12-4. Web workers allow the main Ul thread to offload processing to a
script that runs in the background, making sure that the Ul remains responsive

Let’s take the same code from the gif example in the Plnkr and throw the processing
into a web worker. You can see the final result at http://bit.1ly/2wHyVdk.
The script. js from before is now:

function freeze() {
createWorker();

}

function createWorker() {
var worker = new Worker('worker.js');
worker.postMessage('start-freeze');

worker.onmessage = function (e) {
alert('final number: ' + e.data);

};

Instead of doing any processing in here, you now have a createWorker function that
creates a new Worker object, and you pass it your worker script. All of your processing
will be done in there by a file called worker. js. You can communicate with the worker
via messages, similar to how you did before with service workers, passing in data if the
main thread needs to send the worker any information.

Note The postMessage method requires that you pass something in, so you
have a string passed in there, even though the worker doesn’t actually use it.

The main thread also can listen for a message with worker.onmessage, in which data
from the worker comes through on the data property on the e (event) object.

254

CHAPTER 12 LEVELING UP YOUR PWA
Moving over to the worker implementation:

self.addEventListener('message', function(e) {
freeze();

};

function freeze() {
let result;
for (let i = 1; i < 30000000; i++) {
result = i * i;
}
self.postMessage(result);

}

The worker listens for a message. In this case, you just want the worker to start the
freeze function. It does, goes through the meaningless loop, and sends the result back to
the main thread via the self.postMessage method.

When you run this, not only do you see that the gifs continue animating, but the
result is returned significantly faster when the dedicated thread is responsible for
calculating it.

You could also configure your worker to make API calls and process the results. Just
like you imported the pirate-manager. js app into your service worker before, web
workers can also use the importScripts function. If you expect a large amount of data
from an API call and you need to process that data, simply import whatever script would
typically make the call and call that function from within the web worker. When the call
is finished, you can use the messaging mechanism to let the main thread know that the
worker has fetched and processed the data.

The cute dog gifs example shows the use of a dedicated web worker. The life cycle of
this worker is the same as the page that created it. When that page is no longer in scope,
the worker dies along with it. If you need a worker to live across multiple pages, you
can use a shared worker. The instantiation is the same: you just use the SharedWorker
constructor when creating your worker rather than just Worker.

Obviously the pointless loop is a vastly simplified example, but you can imagine the
power web workers bring to front-end web development. As a bonus, dedicated web
workers share universal support across browsers, including mobile Safari. Shared web
workers, on the other hand, don’t have quite the same level of acceptance, with only
Chrome, Firefox, and Opera supporting them.

255

CHAPTER 12 LEVELING UP YOUR PWA

PWA News

We've had such a great time on this journey of learning everything there is to know about
Progressive Web Apps that it inspired some exciting new PWA updates from Apple and
Google. Let’s see what they've got for us.

Safari

Service worker support is coming to Safari! This is FANTASTIC news! As of early August
2017, Webkit, which is the engine that powers Safari, changed the status of service
workers to “in development.” Since mobile Safari accounts for a significant share of
web traffic, this makes your PWA knowledge all the more important. It’s unclear when
this will actually be widely available, but Safari Tech Preview 38 has them enabled as an
experimental feature. So as a new PWA developer, you now have a responsibility to get
out there and fill up the i0OS world with service worker and PWA goodness.

Workbhox

While you were busy learning, the Google Chrome team released a new service worker
generation tool called Workbox. It’s a collection of libraries and tools to generate a
service worker for you, much like how sw-precache does.

Before you panic about the possibility of everything you've learned being wasted,
don’t. Workbox is just another tool in your belt. sw-precache is still the default out-of-
the-box solution right now for all of the frameworks and libraries you've looked at. Plus,
I'll go over what Workbox has to offer. The concepts are all the same, just wrapped up in
a new package.

To get started with Workbox, you install it by running npm install workbox-cli
--global. In the root of your project (feel free to use any of the projects you've gone
over throughout the book, or spin up a new project), you can generate a service worker
with the following command: workbox generate:sw. The CLI will ask you a number of
questions, like in Figure 12-5.

256

CHAPTER 12 LEVELING UP YOUR PWA

. @ Movies-Finder — workbox-cli TERM_PROGRAM=Apple_Terminal SHELL=/bin/bash...
...m projects/Movies-Finder — workbox-cli TERM_PROGRAM=Apple_Terminal SHELL=/bin/bash -+

[Denniss-MBP:Movies-Finder dennissheppard$ workbox generate:sw
? What is the root of your web app? dist
? Which file types would you like to cache? (Press <space> to select, <a> to tog
gle all, <i> to inverse selection)
>® txt
@ json
png
ipg
ico
html
js
css

Figure 12-5. Workbox CLI setup

After those questions, such as what you would like to cache and where you want the
CLI to put the resulting service worker, you will have a generated file. If you look in there,
you'll see that the result is actually similar to a sw-precache-generated service worker,
just with much less code. There’s an array of all the files you want to cache, and then at
the bottom of the file you see two simple lines tying everything together:

const workboxSW = new self.WorkboxSW();
workboxSW.precache(fileManifest);

With this, you now have a service worker with pre-caching all set up. You might
remember that Workbox is a collection of libraries and tools. WorkboxSW is the high-
level wrapper that ties all of the modules together. For pre-caching and runtime
caching, WorkboxSW is likely all you'll ever need. You create a new instance of it and call
precache and you're all set.

The result of this generated file is just like every other service worker you've seen,
with the same registration process and the same lifecycle. If you like this type of CLI
generation, it’s easy to plug it into your existing npm build process in the scripts array
inside of your package. json, just like you did with the Movies Finder app:

"build-sw": "ng build --prod && workbox-cli generate:sw"

Note If you’re not using Angular for your PWA project, just replace ng build
with whatever your build script happens to be.

257

CHAPTER 12 LEVELING UP YOUR PWA

If you have a Webpack build process where you're editing Webpack config files
directly, there is a Workbox Webpack plugin, surprisingly called workbox-webpack-
plugin. In your plugins array, just include your Workbox configuration:

plugins: [
new workboxPlugin({
globDirectory: '/dist’',
globPatterns: ['**/*.{html,js,css}'],
swDest: path.join('/dist', 'service-worker.js'),
})’
]

Workbox supports runtime caching as well via the router.registerRoute method.

The syntax is very similar to using sw-toolbox:

workboxSW.router.registerRoute(
"https://api.themoviedb.org/*",
workboxSW.strategies.cacheFirst({
cacheName: 'movies',
cacheExpiration: {
maxEntries: 20,
maxAgeSeconds: 7 * 24 * 60 * 60,
}
1)
)

As you can see, not all that much changed regarding what I've discussed with
sw-precache and sw-toolbox compared with Workbox. Instead of having two libraries
handling different features, everything is rolled into one.

Try Workbox out on your project and see if you like it. Whether you do or not,
for now sw-precache and sw-toolbox are still excellent choices to take care of your

caching needs.

258

CHAPTER 12 LEVELING UP YOUR PWA

A Last Word

Even in the process of writing this book, and certainly while you were reading it, the
development landscape morphed. New libraries were released, older ones lost some
users, and syntax changed. That’s what technology does, and as developers we have to
learn to embrace that. It is extremely likely that code you write today will be obsolete
in just a few years, and the framework or library you used on that project has a finite
lifespan.

However, every concept you learned in this book will be relevant as long as the Web
continues to dominate in terms of user reach. The syntax will change, browser support
might get better (or a new browser might arrive on the scene), and the libraries and
frameworks we looked at will come and go. In the end, though, the principles that make
a Progressive Web App a progressive web app are that it loads fast, it works (even if only
minimally) on all browsers, it’s reliable with or without an Internet connection, and it
engages users in ways that only native applications did in the past. Even as technology
changes, those tenets will live far beyond any hot development trend.

The Web is constantly challenged on multiple fronts, and time and again the Web
has kept pace or surpassed those challengers. With PWAs, the Web is well equipped to
do so once again.

Thanks for reading! Hopefully it was as enjoyable to read and follow along as it was to
write. Best of luck!

259

Index

A

Angular PWA, 229
Angular Service Worker, 230
build-in option, 231
configuration file, 230
efforts, 233
Firebase-Deployed, 232
Rocky, 230

App manifest, 197
angular-cli.json file, 200
application tab, 200
Chrome’s address bar, 204
home screen, 202
index.html file, 200
Lighthouse PWA score, 205
manifest file, 198
splash page, 203

App shell architecture
async and defer, 149
caching, 143
dynamic content loads, 142
index.html file, 148
JavaScript and CSS, 151
Lighthouse performance comparison,

146-147

meaning, 139
measurement, 145
mobile and web view, 141
pirate app, 140
render blocking scripts, 148
stylesheet parsing and execution, 151

© Dennis Sheppard 2017

B

Bundles, 246
development process, 246
vendor bundle, 248
webpack-bundle-analyzer package,
246-247

C

Caching and offline function
caching option
cache option, 49
items returns, 51
network requests, 49
network tab, 51
process, 52
response objects, 52
retrieving cache
items, 50
service-worker.js, 47
dynamic page, 69
fetch event, 45
listener intercepts, 45-46
site returns, 46
update option, 47
offline (see Offline function)
strategies, 56
error messages, 60
fallback, 60
fastest strategy, 58
respondWith function, 59

D. Sheppard, Beginning Progressive Web App Development, https://doi.org/10.1007/978-1-4842-3090-9

261

https://doi.org/10.1007/978-1-4842-3090-9

INDEX

Caching and offline function (cont.) G

stale-while-revalidate, 57 ,
Google’s PRPL pattern, 243

code splitting, 244
lazy loading, 244
web applications, 243

sw-precache, 63
command line, 64
config file, 65
sw-precache-config.js, 64
sw-toolbox, 65
update, 61 H

application tab, 63 Header compression, 158

implementation, 61 Head-of-line blocking, 155
Chrome DevTools, IndexedDB HTTP 1.1 requests, 156

section, 18 HTTP/2 requests, 157
Content .(le?llvery network (CND), 180 HTTP/2, 159
Cross-origin resource Node.js

sharing (CORS), 126 browser running, 161

implementation, 159
D, E protocol column, 162
server, 160
server push, 162
comparison, 170

DevTools, 15
app manifest section, 17
cache storage section, 18

E J , 164
offline mode, 16 Xpress.js server, 16

firebase, 169

initial request, 163
initiator column, 167
Lighthouse results, 171
link header, 168
pirate-manager.js, 168
pushed resource, 167
F request-response
pattern, 163

service workers option, 17, 42

test slow connections, 16

throttling, 16

Web app manifest, 99
Dynamic page caching, 69

Fetch, 29
Firebase deployment, 189 server push and cached
CLI 191 files, 170
console, 190 Hypertext Transfer Protocol (HTTP), 155.
See also HTTP/2

firebase.json file, 191
Lighthouse results, 192
Movies Finder, 190

header compression, 158
head-of-line blocking, 155

262

INDEX

|, J, K initial Lighthouse scores, 179
mobile, 177

IndexedDB vs. localF , 82
pexe vs: ‘ocdtrorage Movies Finder performance, 206

built-in fallback, 84
function details, 83
pirate app, 84 (@)
refresh option, 85
structure, 82

Ionic project, 233
build-in, 236
deploying and testing, 237
efforts, 239
installation, 234
interactive across, 239

Offline function
Internet connection, 56
landing page, 54
navigator.onLine, 55
page/message, 54
sync testing, 80

pre-caching works, 237 P, Q
service worker, 236 Persistent notifications, 116
setup, 235 Preact
solid improvement, 238 build-in process, 219
CLI, 218
L effort, 223

Firebase-Deployed, 221
HTTP/2 and server push, 220
installation, 218
interactive, 223
Lighthouse scores, 222
plugins, 220
pre-caching assets, 219
Progressive web apps (PWA)
browser support hierarchy, 8-9
build process, 180
comScore, 4
home screen icon and splash screen, 7
IndexedDB, 10
M, N mobile-like experience, 6
mobile web activities, 4, 5
notifications, 8
offline support via caching, 7

Lighthouse tool, 11
accessibility section, 15
blocking resources, 14
categories, 12
DevTools (see DevTools)
excessive DOM size, 15
options, 12
performance section, 14
progressive web app section, 13
Webpagetest.org, 18

localForage, 86

message event, 90
Movies Finder app, 175
first page load, 178

263

INDEX

react-pwa directory, 211

service worker, 213

terminal page, 211
Render-blocking stylesheet, 193

Progressive web apps (cont.)
performance, 7
progressive enhancement, 6-7
push API and notification API, 10
service workers, 9
source code, 181
Web app manifest, 10 S

web workers, 10 Safari, 256
Promises, 25 sendNotification function, 116
callback functions, 25 Server push

config file, 194
implementation, 193
Lighthouse scores, 196
Movies Finder bundles, 195
Server-side rendering, 249
client-side rendering, 250

chain methods, 27
execution order, 26
secondAsyncFn, 28
self-explanatory syntax, 26
thenable function, 27
Push notifications, 109, 111

action options, 132
application data, 132
architecture, 119

catching push events, 130
enableNotifications function, 122
handling click events, 135
mobile testing, 133

process, 118
PushSubscription returns, 123
remote devices option, 134
setPushTimer() function, 127
user subscribe, 119

React PWA, 210

app creation, 211

build directory, 214

deploying and measuring app, 215
effort, 217

react app, 214

React.js code, 216

264

drawbacks, 251
hydrating page, 250
pre-rendering, 252
resources, 251
Service workers
application tab, 34
architecture, 23-24

browser compatibility, 43

DevTools options, 42
fetch, 29

index.html file, 32
life cycle, 24, 31
non-nefarious, 24
potential benefits, 24
promises, 25

recap, 43

scope option, 36
script.js file, 33
script.js, 31

scripts directory, 37
service-worker.js, 32
updated scope, 38

update files, 38
log statement, 39
skipWaiting() method, 41
updated and activated, 41
sw-precache
dist/index.html file, 183
images and API calls, 188
index.html, 183
installation, 182
maxEntries option, 188
movies finder, 185
package.json file, 183, 185
service worker, 183, 184
sw-precache-config.js file, 186
sw-toolbox
cacheFirst, 67
dynamic content, 65
importScripts, 66
IndexedDB section, 68
index.html, 66
styles directory, 68
sw-toolbox.js, 67
Sync API
data storage
architecture, 92

IndexedDB vs. localForage, 82

localForage, 86
message event, 90
pirate app architecture, 86
script.js, 91
implementation details
manager/service layer file, 77
markup changes, 80
pirateManager object, 75
pirate-manager.js, 75
script.js code, 77
improvements, 81
listen option, 74

INDEX

progressive enhancements, 74
register, 73
testing for, 80

T, U

thenable function, 27

Voluntary Application Server

Identification (VAPID) keys, 119

Vue.js PWA, 223

comparison, 229

dist directory, 225

effort, 229

Firebase-Deployed, 227
Lighthouse scores, 228

patterns and caching strategies, 226
template, 226

Vue CLI and PWA creation, 224
webpack configuration, 227
webpack.prod.conf.js, 226

W XY, Z

Web app manifest

DevTools, 99

display property, 106

home screen installation, 100
Chrome’s menu, 101
device home screen, 104
handling installation events, 100
icon and name app, 103

manifest file, 96

properties, 97

splash screen, 104

start_url property, 107

265

INDEX

Web notifications, 111
permission, 111
sending function, 113
service workers, 116
tagging notifications, 116
Webpagetest.org, 18
WebPageTest results, 145
Web workers, 252
client-side development, 252

266

processing data, 253

script.js, 254

self.postMessage method, 255

Ul thread, 254

worker.onmessage code, 254
Workbox, 256

CLI setup, 257

plugins array, 258

sw-toolbox, 258

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Part I: Intro to PWAs and Tooling
	Chapter 1: Introduction to Progressive Web Apps
	 What a Progressive Web App Actually Is
	 Current and Future PWA Support
	 Looking Ahead

	Chapter 2: Tools to Measure Progressive Web Apps
	 A Light to Keep You Off the Rocks
	 Chrome DevTools
	 Webpagetest.org
	 Looking Ahead

	Part II: PWA Features
	Chapter 3: Service Workers
	 Promises
	 Fetch
	 Service Workers
	 Register the Service Worker
	 Updating the Service Worker
	 Other DevTools Options
	 Browser Compatibility
	 Service Worker Recap
	 Looking Ahead

	Chapter 4: Caching and Offline Functionality with Service Workers
	 The fetch Event
	 The Cache API
	 Going Offline
	 Different Caching Strategies
	 Updating the Cache
	 sw-precache
	 sw-toolbox
	 Dynamic Page Caching
	 Looking Ahead

	Chapter 5: Background Sync for Offline Apps with Service Workers
	 The Background Sync API
	 Registering for sync
	 Listening for sync
	 Implementation Details of Using sync
	 Testing for Offline Sync

	 Making Improvements
	 Data Storage
	 IndexedDB vs. localForage
	 Using localForage For Better Offline Support
	 The message Service Worker Event
	 Looking Ahead

	Chapter 6: Adding your App to the Home Screen with Web App Manifest
	 Installing the App to the Home Screen
	 Handling Installation Events
	 Manually Adding the App to the Home Screen

	 The App Splash Screen
	 The display Property
	 The start_url Property
	 Looking Ahead

	Chapter 7: Notifications
	 Web Notifications
	 Requesting Permission to Notify
	 Sending a Notification
	 Tagging Notifications
	 Web Notifications with Service Workers

	 Push Notifications
	 Subscribing a User to Push Notifications
	 Saving the PushSubscription Object
	 Triggering the Push Notification
	 Catching Push Events in the Service Worker
	 Testing Push on Mobile
	 Handling Notification Click Events
	 Looking Ahead

	Chapter 8: App Shell Architecture and Loading Performance
	 What an App Shell Is
	 Caching the App Shell
	 Measuring App Shell Performance
	 Going Beyond the App Shell
	 Render Blocking Scripts
	 Async and Defer
	 Deferring Stylesheet Parsing and Execution
	 Preloading JavaScript and CSS and Other Resources
	 Looking Ahead

	Chapter 9: Exploring HTTP/2 and Server Push
	 Head-of-Line Blocking
	 Header Compression
	 Introducing HTTP/2
	 Implementing HTTP/2 in Node.js
	 Server Push
	 Deploying HTTP/2 and Server Push
	 Measuring the Impact of HTTP/2 and Server Push
	 Looking Ahead

	Part III: Putting the Features to Use
	Chapter 10: Turning a Real App into a PWA
	 The Movies Finder App
	 The Plan to Make a PWA
	 Getting the Code and Running It
	 Setting Up sw-precache
	 Caching All the Things
	 Deploying to Firebase
	 Moving the Render-Blocking Stylesheet
	 Implementing Server Push
	 Adding the App Manifest
	 Thoughts on Movies Finder Performance
	 Looking Ahead

	Chapter 11: PWAs From the Start
	 React PWA
	 Creating a React App
	 Configuring the Service Worker
	 Running and Building the React App
	 Deploying and Measuring Your React PWA
	 Summary of React’s PWA Effort

	 Preact PWA
	 Preact CLI
	 Running the Built-in Preact HTTP/2 Server
	 Preact CLI Plugins
	 Running Lighthouse on Firebase-Deployed Preact
	 Summary of Preact’s PWA Effort

	 Vue.js PWA
	 Vue CLI and PWA Creation
	 What the Deployed Vue PWA Offers
	 Running Lighthouse on Firebase-Deployed Vue
	 Summary of Vue’s PWA Effort

	 Angular PWA
	 Angular’s Rocky PWA Start
	 Building the Angular PWA
	 Running Lighthouse on Firebase-Deployed Angular
	 Summary of Angular’s PWA Offering

	 Ionic PWA
	 Installing Ionic
	 Enabling the Ionic Service Worker
	 Building Ionic
	 Deploying and Testing the Ionic PWA
	 Summary of Ionic’s PWA Offering

	 Starting a PWA from Scratch
	 Looking Ahead

	Part IV: Leveling Up Your PWA
	Chapter 12: Leveling Up Your PWA
	 Google’s PRPL Pattern
	 Lazy Loading
	 Code Splitting

	 Analyzing Bundles
	 Server-Side Rendering
	 Drawbacks to Server-Side Rendering
	 Resources to Implement Server-Side Rendering
	 Pre-Rendering

	 Web Workers
	 PWA News
	 Safari
	 Workbox

	 A Last Word

	Index

